
ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 34, Number 3, Fall 2004

WHEN ARE ASSOCIATES UNIT MULTIPLES?

D.D. ANDERSON, M. AXTELL, S.J. FORMAN AND JOE STICKLES

ABSTRACT. Let R be a commutative ring with identity.
For a, b ∈ R define a and b to be associates, denoted a ∼ b, if
a|b and b|a, to be strong associates, denoted a ≈ b, if a = ub
for some unit u of R, and to be very strong associates, denoted
by a ∼= b, if a ∼ b and further when a �= 0, a = rb implies
that r is a unit. Certainly a ∼= b ⇒ a ≈ b ⇒ a ∼ b. In this
paper we study commutative rings R, called strongly associate
rings, with the property that for a, b ∈ R, a ∼ b implies a ≈ b
and commutative rings R, called présimplifiable rings, with
the property that for a, b ∈ R, a ∼ b (or a ≈ b) implies that
a ∼= b.

Let R be a commutative ring with identity and let a, b ∈ R. Then
a and b are said to be associates, denoted a ∼ b, if a|b and b|a, or
equivalently, if Ra = Rb. Thus if a ∼ b, there exist r, s ∈ R with
ra = b and sb = a and hence a = sra. So if a is a regular element (i.e.,
nonzero divisor), sr = 1 and hence r and s are units. Hence if a and b
are regular elements of a commutative ring R with a ∼ b, then a = ub
for some u ∈ U(R), the group of units of R. For a, b ∈ R, let us write
a ≈ b if a = ub for some u ∈ U(R). Of course, a ≈ b implies a ∼ b
for elements a and b of any commutative ring R and for an integral
domain the converse is true. In [14], Kaplansky raised the question of
when a commutative ring R satisfies the property that for all a, b ∈ R,
a ∼ b implies a ≈ b. He remarked that Artinian rings, principal ideal
rings, and rings with Z(R) ⊆ J(R) satisfy this property. (Here Z(R)
and J(R) denote the set of zero divisors and Jacobson radical of a
ring R, respectively.) But he gave two examples of commutative rings
that fail to satisfy this property. Let us recall these two examples and
give a third example. (1) Let R = C([0, 3]), the ring of continuous
functions on [0, 3]. Define a(t), b(t) ∈ R by a(t) = b(t) = 1− t on [0, 1],
a(t) = b(t) = 0 on [1, 2], and a(t) = −b(t) = t − 2 on [2, 3]. Then
a(t) ∼ b(t) (for c(t)a(t) = b(t) and c(t)b(t) = a(t) where c(t) = 1 on
[0, 1], c(t) = 3 − 2t on [1, 2], and c(t) = −1 on [2, 3]), but a(t) �≈ b(t).
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(2) Let R = {(n, f(X)) ∈ Z×GF (5)[X] | f(0) ≡ n mod 5}, a subring
of Z×GF (5)[X]. Then (0, X) ∼ (0, 2̄X), but (0, X) �≈ (0, 2̄X). Here it
is interesting to note that, while Z × GF (5)[X] has the property that
a ∼ b⇒ a ≈ b, its subring R does not. (3) (Fletcher [12]). Let K be a
field and R = K[X, Y, Z]/(X −XY Z). Then X̄ ∼ X̄Ȳ , but X̄ �≈ X̄Ȳ .
Actually, we later show (Theorem 9) that K can be replaced by any
commutative ring.

The purpose of this paper is to study commutative rings R with
the property that, for all a, b ∈ R, a ∼ b implies a ≈ b. Let us call
such rings strongly associate. These rings, called “associate rings,” were
introduced and studied by Spellman et al. [16]. The basis for our choice
of the word “strongly associate” will become apparent from the next
paragraph.

A general study of various associate relations was begun by Anderson
and Valdes-Leon in [5]. Let R be a commutative ring and let a, b ∈ R.
There a and b were defined to be associates, denoted a ∼ b, if a|b and
b|a, strong associates, denoted a ≈ b, if a = ub for some u ∈ U(R),
and very strong associates, denoted a ∼= b, if a ∼ b and further when
a �= 0, a = rb (r ∈ R) implies r ∈ U(R). Clearly a ∼= b ⇒ a ≈ b
and a ≈ b ⇒ a ∼ b, but examples were given to show that neither of
these implications could be reversed. Thus it is of interest to study
commutative rings R where for all a, b ∈ R (i) a ∼ b ⇒ a ≈ b,
(ii) a ≈ b ⇒ a ∼= b, or (iii) a ∼ b ⇒ a ∼= b. We have already defined
a ring R satisfying (i) to be strongly associate. Following Bouvier [7],
we define a commutative ring R to be présimplifiable if, for x, y ∈ R,
xy = x implies x = 0 or y ∈ U(R). We first note that (ii) and (iii) are
equivalent to R being présimplifiable and give some other conditions
equivalent to R being présimplifiable. Note that while∼ and≈ are both
equivalence relations on R, the relation ∼= is an equivalence relation on
R if and only if R is présimplifiable. While the various implications of
Theorem 1 are known, we include a proof for the convenience of the
reader.

Theorem 1. For a commutative ring R, the following conditions are
equivalent.

(1) For all a, b ∈ R, a ∼ b⇒ a ∼= b.

(2) For all a, b ∈ R, a ≈ b⇒ a ∼= b.
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(3) For all a ∈ R, a ∼= a.

(4) R is présimplifiable.

(5) Z(R) ⊆ 1− U(R) = {1− u | u ∈ U(R)}.
(6) Z(R) ⊆ J(R).

(7) For 0 �= r ∈ R, sRr = Rr ⇒ s ∈ U(R).

Proof. (1) ⇒ (2) Clear. (2) ⇒ (3) For a ∈ R, a ≈ a and so a ∼= a.
(3)⇒ (4) Assume that x = yx. Now x ∼= x. Hence x = 0 or y ∈ U(R).
(4) ⇒ (5) Let x ∈ Z(R). Suppose that zx = 0 where z �= 0. Then
z = z(1 − x), so 1 − x ∈ U(R) and the result follows. (5) ⇒ (6) Let
x ∈ Z(R). For r ∈ R, −rx ∈ Z(R) and hence 1 + rx ∈ U(R). Thus
x ∈ J(R). (6) ⇒ (7) Suppose that 0 �= r ∈ R and sRr = Rr. Then
r = str for some t ∈ R. Thus r(1− st) = 0, so 1− st ∈ Z(R) ⊆ J(R).
Then st = 1−(1−st) is a unit and so s itself is a unit. (7)⇒ (1) Suppose
that a ∼ b and a �= 0. Suppose that a = rb. Then Ra = rRb = rRa.
Hence r ∈ U(R). So a ∼= b.

Corollary 2 (Kaplansky [14]). A présimplifiable ring R is strongly
associate.

Présimplifiable rings have been investigated by Bouvier in a series of
papers [7] [11] and by Anderson and Valdes-Leon [5, 6]. Examples of
présimplifiable rings include integral domains and quasilocal rings. For
a commutative ring R, R is présimplifiable ⇔ R[[X]] is présimplifiable,
while R[X] is présimplifiable ⇔ R is présimplifiable and 0 is a primary
ideal of R [5, pp. 471 472] (of course, if 0 is primary, then R is
présimplifiable). For a Noetherian ring R, R is présimplifiable ⇔⋂∞

n=1 In = 0 for each proper (principal) ideal of R ⇔ for each
0 �= a ∈ R, there exists a natural number N(a) so that if a = a1 · · · an

where each ai is a nonunit, then n ≤ N(a) [5, Theorem 3.9]. Condition
(7) of Theorem 1 was introduced and used by Fletcher [12, 13] in his
study of unique factorization in commutative rings with zero divisors.
He called a ring satisfying (7) a “pseudo-domain.” Our main interest
in présimplifiable rings is Corollary 2: a présimplifiable ring is strongly
associate. It is easily seen that a présimplifiable ring is indecomposable.
Since a direct product of strongly associate rings is strongly associate
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(Theorem 3), a strongly associate ring need not be présimplifiable. Note
that Z(Z4), the idealization of Z by Z4, is strongly associate, but not
présimplifiable (Corollary 16). Since Z(Z4) is indecomposable, it is not
even a direct product of présimplifiable rings.

We first note how strongly associate and présimplifiable rings behave
with respect to direct products, direct limits, inverse limits, and ul-
traproducts. Parts (1) and (2) of Theorem 3 for strongly associate
rings are given in Spellman et al. [16] while parts (2) and (3) for
présimplifiable rings are given by Bouvier [10]. Recall that (Λ,≤) is a
directed quasi-ordered set if ≤ is a reflexive and transitive relation on
Λ and for α, β ∈ Λ, there exists γ ∈ Λ with α ≤ γ and β ≤ γ. For the
definition of a direct and inverse system and their limits, see Rotman
[15].

Theorem 3. (1) Let {Rα}α∈Λ be a nonempty family of commutative
rings. Then R =

∏
α∈Λ Rα is strongly associate if and only if each

Rα is strongly associate. However, R is not présimplifiable whenever
|Λ| > 1.

(2) Let (Λ,≤) be a directed quasi-ordered set and let {Rα}α∈Λ be a
direct system of rings. If each Rα is strongly associate, respectively,
présimplifiable, then the direct limit R = lim−→ Rα is strongly associate,
respectively, présimplifiable.

(3) Let (Λ,≤) be a directed quasi-ordered set and let {Rα}α∈Λ be an
inverse system of rings. If each Rα is présimplifiable, then the inverse
limit R = lim←− Rα is présimplifiable.

(4) Let F be an ultrafilter on Λ. Then the ultraproduct
∏

Rα/F
is strongly associate, respectively, présimplifiable, ⇔ {α ∈ Λ | Rα

is strongly associate, respectively, présimplifiable} ∈ F . Hence an
ultraproduct of strongly associate, respectively, présimplifiable, rings is
strongly associate, respectively, présimplifiable.

Proof. (1) Note that, for (aα), (bα) ∈∏
Rα, (aα) ∼ (bα), respectively,

(aα) ≈ (bα), ⇔ each aα ∼ bα, respectively, aα ≈ bα. Thus
∏

Rα is
strongly associate if and only if each Rα is strongly associate. The
second statement follows from the fact that a présimplifiable ring is
indecomposable.
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(2) We give the proof for the présimplifiable case. The proof for the
strongly associate case is similar. Let x, y ∈ R with x = xy and y �= 0.
For α ∈ Λ, let λα: Rα → R be the natural map. Now there exists
α0 ∈ Λ and xα0 , yα0 ∈ Rα0 with λα0(xα0) = x, λα0(yα0) = y, and
xα0 = xα0yα0 . Now yα0 �= 0 since λα0(yα0) = y �= 0, so yα0 ∈ U(Rα0).
Hence y = λα0(yα0) ∈ U(R). Thus R is présimplifiable.

(3) The proof of (3) is given by Bouvier [10]. His proof which assumes
that (Λ,≤) is totally ordered may easily be modified to the case where
(Λ,≤) is a directed quasi-ordered set.

(4) Observe that the property of a ring R being strongly associate,
respectively, présimplifiable, can be expressed in terms of a first-
order sentence: σ = ∀x ∀ y ∃ z ∃w ∃u ∃ v ∃ k ∀ l[((xz = y) ∧
(yw = x)) ⇒ ((kl = l) ∧ (uv = k)∧(xu = y))], respectively, σ =
∀x ∀ y ∃w ∃ v ∀ z[(xy = x)⇒ (((x = w)∧(wz = w))∨((yu = v)∧(uz =
z)))]. Thus (4) follows from �Los’s theorem.

Corollary 4 (Kaplansky [14]). A principal ideal ring or Artinian
ring is strongly associate.

Proof. A principal ideal ring is a finite direct product of PID’s and
SPIR’s (recall that a special principal ideal ring is a principal ideal
ring with one prime ideal and that prime ideal is nilpotent) while an
Artinian ring is a finite direct product of (0-dimensional) local rings. In
either case, the ring is a product of strongly associate rings and hence
is strongly associate.

We have observed that a quasilocal ring is présimplifiable and hence
strongly associate. We next show that a semi-quasilocal ring is strongly
associate. But since a finite direct product of quasilocal rings is semi-
quasilocal, a semi-quasilocal ring need not be présimplifiable.

Theorem 5. A semi-quasilocal ring (R, M1, . . . , Mn) is strongly
associate.

Proof. Let a, b ∈ R with a ∼ b. We show that a ≈ b. We may assume
that a �= 0. Choose r ∈ R with ra = b. Since a �= 0, some RMi

a �= 0,
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say RM1a �= 0. Then in RM1 , a/1 ∼ b/1; so a/1 ∼= b/1. Hence
(r/1)(a/1) = b/1 gives that r/1 is a unit in RM1 . Suppose that r has
been chosen so that r/1 is a unit in RMi

for i = 1, . . . , s. Suppose that
r/1 is not a unit in RMs+1 . Then RMs+1a = 0. (For, as shown above, if
RMs+1a �= 0, then r/1 is a unit in RMs+1 .) Hence ann (a)Ms+1 = RMs+1 ,
i.e., ann (a) �⊂Ms+1. Choose t ∈ ann (a)∩M1∩· · ·∩Ms−Ms+1. Then
(r+t)a = b, (r+t)/1 is a unit in RMi

for i = 1, . . . , s since r/1 ∈ U(RMi
)

and t/1 ∈MiMi
and (r + t)/1 is a unit in RMs+1 since r/1 ∈Ms+1Ms+1

and t/1 ∈ U(RMs+1). Thus replacing r by r + t we have ra = b and r/1
is a unit in RMi

for i = 1, . . . , s + 1. Continuing, we get an r ∈ R with
ra = b where r/1 is a unit in each RMi

, i.e., r is a unit of R.

Other classes of rings that are strongly associate are rings with “good
factorization properties.” A nonzero nonunit of a commutative ring R is
irreducible if a = bc implies a ∼ b or a ∼ c and R is said to be atomic if
every (nonzero) nonunit of R is a finite product of irreducibles. A ring R
is called a bounded factorization ring (BFR) if, for each nonzero nonunit
a ∈ R, there exists a natural number N(a) so that if a = a1 · · · an where
each ai is a nonunit, then n ≤ N(a). We have already remarked that a
BFR is présimplifiable and hence is strongly associate. An atomic ring
with only finitely many nonassociate atoms that are not prime is called
a generalized Cohen-Kaplansky (CK) ring. Aḡargün, Anderson, and
Valdes-Leon [2] showed that a generalized CK ring is a finite direct
product of finite local rings, SPIR’s, and integral domains. Hence a
generalized CK ring is strongly associate.

Various notions of unique factorization rings with zero divisors have
been given. Perhaps the most natural is the following. A commutative
ring R is a unique factorization ring (UFR) if (1) R is atomic and
(2) if 0 �= a1 · · · an = b1 · · · bm where each ai, bj is irreducible, then
n = m and after re-ordering, if necessary, each ai ∼ bi. Since a UFR is
clearly présimplifiable, a UFR is strongly associate. (It turns out that
a UFR R is either a UFD, an SPIR, or a quasilocal ring (R, M) with
M2 = 0, see, for example, Anderson and Valdes-Leon [5].) Fletcher
[12, 13] defined a second type of unique factorization ring. His type
of unique factorization ring turns out to be a finite direct product of
UFD’s and SPIR’s and hence is strongly associate. A third type of
unique factorization ring called a weak UFR was defined by Aḡargün,
Anderson, and Valdes-Leon [1]. It turns out to be either a finite direct
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product of UFD’s and SPIR’s or a quasilocal ring (R, M) with M2 = 0.
Thus it too is strongly associate.

Kaplansky’s second example {(n, f(X)) ∈ Z × GF (5) | f(0) ≡
n mod 5} is the pullback of Z → GF (5) ← GF (5)[X]. We next
consider conditions under which a pullback is (not) strongly associate
or présimplifiable.

Proposition 6. Let R1, R2, and R3 be commutative rings with
homomorphisms pi : Ri → R3 for i = 1, 2. Suppose that ker p1 � Z(R1)
and that there exists u ∈ U(R1) with p1(u), p1(u−1) ∈ p2(R2) −
p2(U(R2)). Then the pullback P of R1 → R3 ← R2 is not strongly
associate.

Proof. Choose a ∈ ker p1−Z(R1). Let u ∈ U(R1) with p1(u), p1(u−1)
∈ p2(R2) − p2(U(R2)). Suppose that p1(u) = p2(b1) and p1(u−1) =
p2(b2) where b1, b2 ∈ R2. Now (a, 0), (u, b1), (u−1, b2) ∈ P and (a, 0) ∼
(ua, 0) in P since (ua, 0) = (u, b1)(a, 0) and (u−1, b2)(ua, 0) = (a, 0).
But suppose that (a, 0) ≈ (ua, 0). Then there exists (u1, u2) ∈ U(P )
with (u1, u2)(a, 0) = (ua, 0). Hence ui ∈ U(Ri) and u1a = ua. Since
a �∈ Z(R1), u1 = u. But then p1(u) = p1(u1) = p2(u2) ∈ p2(U(R2)), a
contradiction.

Theorem 7. Let R1, R2, and R3 be commutative rings with
surjective homomorphisms pi : Ri → R3, i = 1, 2, which are not
isomorphisms. Suppose that R1 and R2 are integral domains. Let P
be the pullback of R1 → R3 ← R2. Then P is strongly associate,
respectively, présimplifiable, if and only if p1(U(R1)) = p2(U(R2)),
respectively, p−1

i (1) ⊆ U(Ri), or equivalently, p−1
i (U(R3)) = U(Ri),

for i = 1, 2.

Proof. (1) The strongly associate case.

(⇒) Suppose that P is strongly associate. Assume that p1(U(R1)) �=
p2(U(R2)), say p1(U(R1)) � p2(U(R2)). Choose u ∈ U(R1) with
p1(u) �∈ p2(U(R2)). Since p1 is not injective, ker p1 � Z(R1). By
Proposition 6, P is not strongly associate, a contradiction.

(⇐) Suppose that p1(U(R1)) = p2(U(R2)). Let (a1, a2), (b1, b2) ∈ P
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with (a1, a2) ∼ (b1, b2). We may assume that (a1, a2) �= (0, 0), say
a1 �= 0. So (r1, r2)(a1, a2) = (b1, b2) and (s1, s2)(b1,b2) = (a1, a2) where
(r1, r2), (s1, s2) ∈ P . Hence s1r1a1 = a1 and a1 �= 0 gives s1r1 = 1.
So r1 ∈ U(R1). If a2 �= 0, then likewise r2 ∈ U(R2). In this case
(r1, r2) ∈ U(P ) and hence (a1, a2) ≈ (b1, b2). So assume a2 = 0. Then
b2 = 0. Choose r̃2 ∈ U(R2) with p2(r̃2) = p1(r1). Then (r1, r̃2) ∈ U(P )
and (r1, r̃2)(a1, a2) = (r1, r̃2)(a1, 0) = (r1a1, 0) = (b1, 0) = (b1, b2). So
(a1, a2) ≈ (a2, b2).

(2) The présimplifiable case. Note that

p−1
i (1) ⊆ U(Ri)⇔ p−1

i (U(R3)) = U(Ri).

(⇒) Suppose that P is présimplifiable. Let r ∈ R1 with p1(r) = 1;
so (r, 1) ∈ P . Choose 0 �= a ∈ ker p2; so (0, a) ∈ P . Then
(0, a) = (r, 1)(0, a). Since P is présimplifiable, (r, 1) ∈ P . Hence
r ∈ U(R1).

(⇐) Suppose that (x1, x2) = (y1, y2)(x1, x2) where (x1, x2), (y1, y2) ∈
P . Assume that (x1, x2) �= (0, 0); say x1 �= 0. Then x1y1 = x1; so
y1 = 1. Thus p2(y2) = p1(y1) = 1. So by hypothesis, y2 ∈ U(R2).
Then (y1, y2) ∈ U(P ). Hence P is présimplifiable.

Corollary 8. Let D be an integral domain with prime ideal M . Let
p1 : D → D/M be the natural map and p2 : (D/M)[X] → D/M be
defined by p2(f(X)) = f(0). Then the pullback P of D → D/M ←
(D/M)[X] is strongly associate, respectively, présimplifiable, if and
only if p1(U(D)) = U((D/M)), respectively, M = 0.

Proof. First, suppose that M = 0. Then it is easily checked that P
is présimplifiable and hence strongly associate. So assume M �= 0. By
Theorem 7, P is strongly associate ⇔ p1(U(D)) = p2(U((D/M)[X])).
Since p2(U((D/M)[X])) = U(D/M), the first result follows. Also, by
Theorem 7, P is présimplifiable ⇒ p−1

2 (1) ⊆ U((D/M)[X]). But since
1 + X ∈ p−1

2 (1), this is a contradiction. Thus P is not présimplifiable
if M �= 0.

Note that for D = Z and M = (p), p a prime, U(Z) → U(Z/(p))
is surjective only for p = 0, 2, 3. Then the pullback of Z → Z/(p) ←
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(Z/(p))[X] is strongly associate if and only if p = 0, 2, and 3 and
is présimplifiable if and only if p = 0. Thus we recover Kaplansky’s
second example.

However, the homomorphic image or subring of a strongly asso-
ciate ring or présimplifiable ring need not be so. The third example
R = K[X, Y, Z]/(X −XY Z), K a field, shows that the homomorphic
image of a présimplifiable ring need not even be strongly associate. The
second example R = {(n, f(X)) ∈ Z×GF (5)[X] | n ≡ f(0) mod 5} ⊆
Z × GF (5)[X] shows that a subring of a strongly associate ring
need not be strongly associate. Also, K[X, Y, Z]/(X − XY Z) =
K[X, Y, Z]/((X) ∩ (1 − Y Z)) naturally embeds into the strongly as-
sociate ring K[X, Y, Z]/(X) × K[X, Y, Z]/(1 − Y Z) ≈ K [Y, Z] ×
K[X, Y, Y −1]. In fact, K[X, Y, Z]/(X−XY Z) is a subdirect product of
two integral domains. Actually, any reduced ring is a subdirect product
of strongly associate rings: R ↪→ ∏{R/P | P is a minimal prime ideal
of R}. Thus if R is reduced with a finite number of minimal primes
(e.g., R is Noetherian and reduced), R is a finite subdirect product of
strongly associate rings. And the first example of a non-strongly asso-
ciate ring R = C([0, 3]) is a subring of a direct product of copies of R
which is strongly associate. Next, suppose that R is a présimplifiable
ring in which 0 is not primary, e.g., R = K[[X, Y ]]/(X)(X, Y ), K a
field. By a previously mentioned result, the présimplifiable ring R[[X]]
has R[X] as a non-présimplifiable subring. In fact, we next observe
that any ring R is both a subring of a strongly associate ring and of a
non-strongly associate ring. The first observation is due to Spellman
et al. [16].

Theorem 9. (1) Every ring is a subring of a strongly associate ring,
namely R ↪→ ∏

M∈Max(R) RM where Max(R) is the set of maximal
ideals of R.

(2) Every ring is a subring of a non-strongly associate ring. Indeed,
for any commutative ring R, R is a subring of the non-strongly associate
ring R[X, Y, Z]/(X −XY Z).

Proof. (1) Each RM being quasilocal is présimplifiable and hence
strongly associate. Thus

∏
RM is strongly associate by Theorem 3.

And, of course, R naturally embeds into
∏

RM by r → (r/1).



820 ANDERSON, AXTELL, FORMAN AND STICKLES

(2) Denoting the images of X, Y , and Z in R[X, Y, Z]/(X −XY Z)
by x, y, and z, we have x = xyz, so x ∼ xy. But x �≈ xy. For suppose
that f̄x = xy where f ∈ R[X, Y, Z]. Then fX − Y X ∈ X(1 − Y Z),
so f − Y ∈ (1 − Y Z) and hence f = Y + h(1 − Y Z) for some
h ∈ R[X, Y, Z]. To show that f̄ cannot be a unit, it suffices to show that
(Y + h(1−Y Z), X) �= R[X, Y, Z]. Suppose that (Y + h(1−Y Z), X) =
R[X, Y, Z]. Setting Y = Z and X = 0, we get that Y + h(1− Y 2) is a
unit in R[Y ] where now h ∈ R[Y ]. Setting h = a0 + a1Y + · · ·+ anY n,
Y + h(1−Y 2) = a0 + (a1 + 1)Y + (a2− a0)Y 2 + · · ·+ (an− an−2)Y n−
an−1Y

n+1 − anY n+2. Since Y + h(1− Y 2) is a unit, a0 must be a unit
and a1 +1, a2−a0, . . . , an−an−2, an−1, an must be nilpotent. Working
backwards gives that an, an−1, . . . , a2 are nilpotent. But then a2 − a0

must be a unit, a contradiction.

Having observed that a subring of a strongly associate ring need not
be strongly associate, Spellman et al. [16] dubbed a ring R “superasso-
ciate” if every subring of R is strongly associate. However, we prefer the
following terminology. A commutative ring R is hereditarily strongly
associate, respectively, hereditarily présimplifiable if each subring of
R is strongly associate, respectively, présimplifiable. Also, in Spell-
man et al., [16] a commutative ring R was defined to be domainlike
provided every zero divisor is nilpotent, that is, 0 is a primary ideal
of R. Thus a domain-like ring is présimplifiable since the nilradical
is always contained in the Jacobson radical. The converse is false as
K[[X, Y ]]/(X2, XY ) is présimplifiable but not domain-like. Note that
R[X] is présimplifiable ⇔ R[X] is domain-like ⇔ R is domain-like.
Also, if S ⊆ R is a pair of commutative rings with R domain-like, then
0S = 0R ∩ S is primary, so S is again domain-like. Thus a domain-
like ring is hereditarily présimplifiable and hence hereditarily strongly
associate. However, we have already noted that a présimplifiable ring
need not be hereditarily présimplifiable.

Since an integral domain is hereditarily strongly associate (even
domain-like), previous examples show that a homomorphic image of
a hereditarily strongly associate ring or direct product of a family of
hereditarily strongly associate rings need not be hereditarily strongly
associate. Also, note that Z×Z and Z2 ×Z2 are hereditarily strongly
associate, but are not domain-like. By Theorem 11 a Boolean ring is
strongly associate. Since a subring of a Boolean ring is again Boolean, a



WHEN ARE ASSOCIATES UNIT MULTIPLES? 821

Boolean ring is hereditarily strongly associate. But a Boolean ring with
more than two elements is not présimplifiable and hence not domain-
like.

Let R be a commutative ring. We have already observed that if r and
s are regular elements of R with r ∼ s, then r ≈ s. (In fact, r ∼= s.)
We next give a slight extension.

Lemma 10. Suppose that re ∼ sf where r and s are regular elements
of a commutative ring R and e and f are idempotents of R. Then
e = f and re ≈ sf . Hence for a ∈ R, a ∼ re implies a ≈ re. However,
re ∼= sf ⇔ e = 0 or 1.

Proof. Now 1 − f ∈ (0 : f) = (0 : sf) = (0 : re) = (0 : e), so
(1 − f)e = 0 and hence e = ef . Likewise, f = ef , and hence e = f .
So re ∼ se. Then in the ring Re, re and se are regular; so re = (ue)se
for some u ∈ R with ue a unit in Re. Then v = ue + (1 − e) is a
unit in R and re = v(se). Hence re ≈ se = sf . Suppose that a ∼ re.
Then a(1 − e) = 0, so a = ae. Hence ae ∼ re. Since ae is a regular
element of Re, as above we can replace a by a regular element of R. So
a = ae ≈ re. The last statement is obvious.

A commutative ring R is called a P.P. ring if principal ideals of R
are projective. Equivalently, R is a P.P. ring if each element x ∈ R can
be written in the form x = re where r is regular and e is idempotent.
This together with Lemma 10 gives Theorem 11 below. Certainly, a
von Neumann regular ring is a P.P. ring (as von Neumann regular rings
are characterized by the property that each element is the product of
a unit and an idempotent) and hence is strongly associate by the next
theorem. However, a P.P. ring, respectively, von Neumann regular ring,
is présimplifiable if and only if it is a domain, respectively, field.

Theorem 11. A P.P. ring is strongly associate.

We next give some examples using the method of idealization. Recall
that, if R is a commutative ring and M is an R-module, then R(M) =
R⊕M under the usual addition and multiplication (r1, m1)(r2, m2) =
(r1r2, r1m2 + r2m1) is a commutative ring with identity. Here we
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have U(R(M)) = U(R) ⊕M . In Anderson and Valdes-Leon [6], the
relations ∼, ≈, and ∼= were extended to modules. We recall these
definitions. Let m1, m2 ∈ M . We define m1 ∼ m2 ⇔ Rm1 = Rm2,
m1 ≈ m2 ⇔ m1 = um2 for some u ∈ U(R), and m1

∼= m2 ⇔ m1 ∼ m2

and further when m1 �= 0, m1 = rm2 ⇒ r ∈ U(R). We call M
strongly associate if m1 ∼ m2 ⇒ m1 ≈ m2 and M présimplifiable
if m1 ∼ m2 ⇒ m1

∼= m2. Theorem 1 carries over to modules
mutatis mutandis. For example, M is présimplifiable if and only if
Z(M) ⊆ J(R) or M = 0. Thus every R-module is présimplifiable
if and only if R is quasilocal. Note that M is strongly associate,
respectively, présimplifiable, if and only if each cyclic submodule of M
is strongly associate, respectively, présimplifiable. Hence a submodule
of a strongly associate, respectively, présimplifiable, module is again
strongly associate, respectively, présimplifiable. Unlike the ring case,
a direct sum or direct product of R-modules is présimplifiable if and
only if each direct summand (factor) is, but a direct sum or product
of strongly associate modules need not be strongly associate (see
Theorem 15 for an example).

Let R be a commutative ring and I a proper ideal of R. Then R/I is
both a ring and an R-module. We next show the relationship between
R/I being strongly associate as a ring and as an R-module.

Theorem 12. Let R be a commutative ring and I a proper ideal of
R. Put R̄ = R/I. Then the following two conditions are equivalent.

(1) R̄ is a strongly associate R-module.

(2) R̄ is a strongly associate ring and the natural map U(R)→ U(R̄)
is surjective.

Proof. (1) ⇒ (2). Let a, b ∈ R̄ with R̄a = R̄b. Then Ra = Rb so
there is a u ∈ U(R) with ua = b. Then ū ∈ U(R̄) and ūa = b. Thus
R̄ is strongly associate as a ring. Let v ∈ U(R̄). So R1̄ = Rv. Hence
there exists u ∈ U(R) with u1̄ = v. Then ū = v so U(R) → U(R̄) is
surjective.

(2) ⇒ (1). Let a, b ∈ R̄ with Ra = Rb. Then R̄a = R̄b so there
is a v ∈ U(R̄) with va = b. Choose u ∈ U(R) with ū = v. Then
ua = ūa = va = b. So R̄ is strongly associate as an R-module.
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The implication (1) ⇒ (2) of the previous theorem remains true if
“strongly associate” is replaced by “présimplifiable.” However, the
implication (2) ⇒ (1) does not remain valid if “strongly associate”
is replaced by “présimplifiable.” For example, if we take R = Z
and I = (2), then certainly Z/(2) is présimplifiable as a ring and
U(Z) → U(Z/(2)) is surjective, but Z/(2) is not présimplifiable as
a Z-module (see Theorem 15).

Corollary 13. Let R be a commutative ring. Then every R-module
is strongly associate if and only if for each proper ideal I of R, R/I
is a strongly associate ring and the natural map U(R) → U(R/I) is
surjective. Hence if R is semi-quasilocal, every R-module is strongly
associate.

Proof. The first statement follows immediately from the previous
theorem. Suppose that R is semi-quasilocal. Let I be a proper ideal of
R. Then R/I is again semi-quasilocal and hence is strongly associate as
a ring by Theorem 5. Also, it is well known that for R semi-quasilocal
the natural map U(R) → U(R/I) is surjective. Thus by the previous
theorem, the R-module R/I is strongly associate. Since every cyclic
R-module is strongly associate, every R-module is strongly associate.

However, the converse of the second part of the previous corollary is
not true, i.e., if R is a commutative ring with every R-module strongly
associate, R need not be semi-quasilocal. As an example, let R be any
Boolean ring. For I a proper ideal of R, R/I is a Boolean ring and hence
is strongly associate by Theorem 11 and certainly U(R) → U(R/I) is
surjective since the only unit of a Boolean ring is the identity. So
every R-module is strongly associate, but a Boolean ring need not be
semi-quasilocal.

Theorem 14. Let R be a commutative ring and M an R-module.

(1) If R(M) is strongly associate, then R and M are strongly asso-
ciate.

(2) R(M) is présimplifiable if and only if R and M are présimplifiable.
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(3) Suppose that R is présimplifiable. Then R(M) is strongly asso-
ciate if and only if M is strongly associate.

Proof. (1) Suppose that R(M) is strongly associate. Let r1, r2 ∈ R
with r1 ∼ r2. Then (r1, 0) ∼ (r2, 0) in R(M). So there is a unit
(u, m) ∈ R(M) with (r2, 0) = (u, m)(r1, 0). Since u is a unit of R,
r2 = ur1, so r1 ≈ r2. Hence R is strongly associate. The proof that M
is strongly associate is similar.

(2) Anderson and Valdes-Leon [6].

(3) (⇒) This follows from (1). (⇐) If (0, m1) ∼ (0, m2), then
m1 ∼ m2 and so m2 = um1 where u ∈ U(R). Then (u, 0) ∈ U(R, M)
and (0, m2) = (u, 0)(0, m1), so (0, m1) ≈ (0, m2). (This part did not
require R to be présimplifiable.) Next suppose that (a, m1) ∼ (b, m2)
where a and b are nonzero. Then a ∼ b, so a ∼= b. Suppose that
(b, m2) = (c, n)(a, m1). Then b = ca so c ∈ U(R). But then
(c, n) ∈ U(R(M)). Hence (a, m1) ∼= (b, m2) and so (a, m1) ≈ (b, m2).

We next determine when an abelian group is strongly associate or
présimplifiable.

Theorem 15. Let G be an abelian group.

(1) G is présimplifiable ⇔ G is torsion-free.

(2) G is strongly associate ⇔ G = F ⊕T where F is torsion-free and
T is torsion with either 4T = 0 or 6T = 0.

Proof. (1) For any integral domain a torsion-free module is
présimplifiable. Conversely, suppose that G is a présimplifiable abelian
group. Suppose that 0 �= a ∈ G has finite order n. Then a = (n + 1)a,
so n + 1 is a unit of Z, a contradiction. Hence G is torsion-free. Alter-
natively, observe that Z(G) ⊆ J(Z) = 0.

(2) Note that a nonzero cyclic group Zn is strongly associate⇔ n = 2,
3, 4, or 6. For suppose that Zn is strongly associate. Then for
1 ≤ l ≤ n − 1 with (n, l) = 1, 1̄ ∼ l̄. Hence 1̄ ≈ l̄, and so l̄ = ±1̄.
Hence φ(n) ≤ 2 and thus n = 2, 3, 4, or 6. Conversely, it is easily
checked that Zn is strongly associate for n = 2, 3, 4 and 6.
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Suppose that G is strongly associate. Then the torsion subgroup T
of G is also strongly associate. For 0 �= g ∈ T , 〈g〉 is strongly associate
and hence has order 2, 3, 4, or 6. Moreover, G can not have elements
of order both 3 and 4 for then G has an element a of order 12 and 〈a〉
is not strongly associate. Hence either 4T = 0 or 6T = 0. Since T is of
bounded order, it is a direct summand of G. Conversely, suppose that
G = F ⊕T where F is torsion-free and 4T = 0 or 6T = 0. It suffices to
show that each nonzero cyclic subgroup 〈a〉 of G is strongly associate.
If a has infinite order, this is clear. So assume that a has finite order.
Then 4a = 0 or 6a = 0, so 〈a〉 ∼= Zn for n = 2, 3, 4 or 6. By the first
paragraph of (2), 〈a〉 is strongly associate.

Corollary 16. Let G be an abelian group and let Z(G) be the
idealization of Z and G.

(1) Z(G) is présimplifiable ⇔ G is torsion-free.

(2) Z(G) is strongly associate ⇔ G = F ⊕ T where F is torsion-free
and 4T = 0 or 6T = 0.

Hence Z(Z5) is not strongly associate. This example is also given in
Allenby [3]. We next show that every ideal of Z(Z5) can be generated
by two elements.

Lemma 17. Suppose that p is prime. Then every ideal of the
idealization Z(Zp) can be generated by two elements.

Proof. Let I be a nonzero proper ideal of Z(Zp). If some (0, 0) �=
(0, a) ∈ I, then (0, 1̄) ∈ I, so I/((0, 1̄)) is principal. So assume no
(0, 0) �= (0, a) ∈ I. Now (n, 0) ∈ I for some n > 0. Let n1 be the least
positive integer with (n1, 0) ∈ I. Then (n, 0) ∈ I ⇒ (n, 0) ∈ ((n1, 0)).
If I = ((n1, 0)), we are done. So assume that some (n, ā) ∈ I where
n �= 0 and a ∈ Z with a �= 0. We can choose n2 minimal with
(n2, 1̄) ∈ I. Then I = ((n1, 0), (n2, 1̄)). For if (n, ā) ∈ I, (n− an2, 0) =
(n, ā)− a(n2, 1̄) ∈ ((n1, 0)) and hence (n, ā) ∈ ((n1, 0), (n2, 1̄)).

We have observed that a principal ideal ring is strongly associate.
However, we have the following example.
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Example 18. Let p ≥ 5 be prime. Then every ideal of the
idealization Z(Zp) can be generated by two elements, but Z(Zp) is
not strongly associate.

Likewise, it is not hard to determine which K [X]-modules, K a field,
are présimplifiable or strongly associate. Since J(K[X]) = 0, a K[X]-
module is présimplifiable if and only if it is torsion-free. We leave
it for the reader to verify that for f(X) ∈ K[X], the cyclic K[X]-
module K[X]/(f(X)) is strongly associate if and only if deg f(X) ≤ 1.
Thus a K[X]-module M is strongly associate if and only if either M is
torsion-free or there is a fixed linear polynomial f(X) ∈ K[X] with each
nonzero torsion cyclic submodule of M isomorphic to K[X]/(f(X)), or
equivalently, M = F ⊕ T where F is torsion-free (possibly 0) and T is
either 0 or is isomorphic to a direct sum of copies of K[X]/(f(X)) for
some fixed linear polynomial f(X) ∈ K[X].

In Spellman et al. [16] the question is raised whether R being strongly
associate implies that R[X] is strongly associate. (Of course, R [X]
strongly associate implies that R is strongly associate.) Our next
example, [5, Example 6.1], shows that this need not be the case.

Example 19. Let R = Z(2)(Z4), the idealization of Z(2) and Z4,
so R is a one-dimensional local ring. Hence R is présimplifiable and
thus strongly associate. However, R[X] is not strongly associate. For
let a = (0, 1̄) ∈ R and f = (1, 0) + (2, 0)X ∈ R[X]. Then a ∼ af , but
a �≈ af .

We have seen that a subring of a strongly associate ring need not
be strongly associate. We next show that an overring of a strongly
associate ring need not be strongly associate.

Example 20. (A local ring with a regular ring of quotients that is
not strongly associate.) Let (A, M) be a two-dimensional regular local
ring, and let 0 �= f ∈M2 be a principal prime (e.g., A = K[[X, Y ]], K
a field, and f = X2 +Y 3). Then Af is a non-Euclidean PID [4]. Hence
there is a proper ideal I of Af with U(Af )→ U(Af/I) not surjective.
(For it is easily proved that if U(B) → U(B/J) is surjective for each
proper ideal J of a PID B, then B is a Euclidean domain with (smallest)
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algorithm θ : B → N given by θ(0) = 0, θ(a) = 1 for u ∈ U(B), and
θ(p1 · · · pn) = n + 1 where p1, . . . , pn are principal primes of B.) Let
R = A(Af/I), the idealization of A and Af/I. Then R is a local ring
and f(= (f, 0)) is a regular principal prime of R. Now Rf = Af (Af/I).
Since Af/I is not a strongly associate Af -module (Theorem 12), Rf is
not a strongly associate ring (Theorem 14).

Example 19 shows that a polynomial ring over a strongly associate
ring need not be strongly associate. This raises the following question.

Question 21. Let R be a strongly associate ring. Is the power series
ring R[[X]] strongly associate?
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