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SYMMETRIC DIOPHANTINE EQUATIONS

AJAI CHOUDHRY

ABSTRACT. In this paper we use certain properties of ra-
tional binary forms to solve several diophantine equations of
the type f(x, y) = f(u, v). If on applying the nonsingular lin-
ear transformation T defined by x = αu + βv, y = γu + δv,
the binary form φ(x, y) becomes a scalar multiple of the form
φ(u, v), we call φ(x, y) an eigenform of the linear transforma-
tion T . If f(x, y) = L(x, y)φ(x, y) where φ(x, y) is an eigen-
form of the linear transformation T and L(x, y) is not an eigen-
form of T , the diophantine equation f(x, y) = f(u, v) reduces,
on making the substitution x = m(αu+βv), y = m(γu+ δv),
to a linear equation in the variables u and v while m is an ar-
bitrary parameter. The solution of this linear equation read-
ily yields a parametric solution of the original diophantine
equation. We first use eigenforms to obtain parametric solu-
tions of several general types of diophantine equations such
as L1(x, y)Qr

1(x, y)Qs
2(x, y) = L1(u, v)Qr

1(u, v)Qs
2(u, v) and

{Π5
i=1Li(x, y, z)}Qr(x, y, z) = {Π5

i=1Li(u, v, w)}Qr(u, v, w)
where Ls and Qs denote linear and quadratic forms and r
and s are arbitrary integers, and then we obtain paramet-
ric solutions of several specific diophantine equations such as
the equation f(x, y) = f(u, v) where f(x, y) = xn + xn−1y +
· · · + yn, n being an arbitrary odd integer and the equation
x7 + y7 + 625z7 = u7 + v7 + 625w7.

1. Introduction. In this paper we use certain properties of binary
forms to solve several symmetric diophantine equations of the type

(1.1) f(x, y) = f(u, v).

We will use Ls, Qs and Cs to denote linear, quadratic and cubic forms,
respectively. All the forms considered in this paper will be assumed to
be defined over the field Q of rational numbers. Further, reducibility
of a form means reducibility over Q.
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We call a binary form φ(x, y) to be an eigenform of a nonsingular
linear transformation T defined by

(1.2)
x = αu+ βv,

y = γu+ δv,

where α, β, γ and δ are rational numbers if the binary form obtained
from φ(x, y) by applying the linear transformation T is given by
kφ(u, v), where k is a non-zero rational number. We now consider
diophantine equations of the type (1.1) when f(x, y) is a binary form
defined by

(1.3) f(x, y) = L(x, y)φ(x, y)

where φ(x, y) is an eigenform of degree r of the linear transformation
T so that φ(αu + βv, γu + δv) = kφ(u, v) and L(x, y) is an arbitrary
linear form which is not an eigenform of T . To obtain solutions of (1.1)
with f(x, y) �= 0, we write

(1.4)
x = m(αu+ βv),
y = m(γu+ δv),

where m is arbitrary. We note that φ(x, y) is also an eigenform of the
linear transformation defined by (1.4) and, with these substitutions,
equation (1.1) reduces to the linear equation

(1.5) mr+1kL(αu+ βv, γu+ δv) = L(u, v).

The solution of (1.5) readily leads to a parametric solution of (1.1). We
can similarly solve the equation

(1.6) L1(x, y)φ(x, y) = L2(u, v)φ(u, v).

More generally, if the form obtained by applying the linear transforma-
tion T to a binary form φ1(x, y) is kφ2(u, v), the diophantine equation

(1.7) L1(x, y)φ1(x, y) = L2(u, v)φ2(u, v)

reduces to a linear equation in u and v on making the substitutions
(1.4), and hence we can obtain a parametric solution of (1.7).
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In order to solve equations of the type (1.1) when f(x, y) is given by
(1.3), we need to determine a suitable linear transformation T such that
the binary form φ(x, y) is an eigenform of the linear transformation
T . It is seen by direct substitution that any linear form px + qy is
an eigenform of the linear transformation T defined by (1.4) provided
α, β, γ and δ are chosen such that γ �= 0 and

(1.8) βp2 + (δ − α)pq − γq2 = 0.

Similarly the arbitrary quadratic form ax2+bxy+cy2 is an eigenform of
the linear transformation T if α, β, γ and δ are chosen such that γ �= 0,
δ = −α and

(1.9) bα− aβ + cγ = 0.

In fact, when α, β, γ and δ satisfy these conditions, using the substitu-
tions (1.2), we get

(1.10) ax2 + bxy + cy2 = (α2 + βγ)(au2 + buv + cv2).

It now readily follows that given a pair of forms of degrees not ex-
ceeding two, we can choose α, β, γ and δ suitably to determine a linear
transformation T such that both forms are eigenforms of the linear
transformation T . Further, it follows from the definition of eigenforms
that the product of two or more eigenforms of a linear transformation
T is also an eigenform of T . Thus, given a reducible binary cubic form
C(x, y) or a quartic form of the type Q1(x, y)Q2(x, y), we can find
a suitable linear transformation T such that these binary forms are
eigenforms of the linear transformation T .

Using the above ideas we obtain parametric solutions of a number of
diophantine equations of the type (1.1), two examples being as follows:

(1.11) x(x+ y)(x+ 2y)(x+ 3y)(x+ 4y)
= u(u+ v)(u+ 2v)(u+ 3v)(u+ 4v)

and

(1.12) xn + xn−1y + · · · + yn = un + un−1v + · · · + vn,

where n is an arbitrary odd integer.
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Some diophantine equations of the type f(x, y, z) = f(u, v, w), may
also be solved using eigenforms. As an example, we obtain a parametric
solution of the following equation:

(1.13) x7 + y7 + 625z7 = u7 + v7 + 625w7.

In Section 2 we use eigenforms to solve a number of general types
of diophantine equations of the type (1.1). Generally we obtain para-
metric solutions but in some cases a complete solution is obtained. In
Section 3 we apply these methods to obtain solutions of several specific
diophantine equations and problems.

2. General diophantine equations.

2.1 The diophantine equation

(2.1) Lr
1(x, y)L

s
2(x, y)L3(x, y) = Lr

1(u, v)L
s
2(u, v)L3(u, v),

where r and s are arbitrary integers and we assume that no two of
the forms Li(x, y), i = 1, 2, 3, are linearly dependent as otherwise the
equation reduces to a simpler equation the complete solution of which
is readily determined.

First we apply the nonsingular linear transformation determined by
the equations

(2.2)
L1(x, y) = X, L1(u, v) = U,

L2(x, y) = Y, L2(u, v) = V,

when equation (2.1) reduces to the type

(2.3) XrY sL4(X,Y ) = UrV sL4(U, V ).

As XrY s is an eigenform of the linear transformation X = αU ,
Y = βV , we can obtain a parametric solution of equation (2.3) by the
method already described for solving the general diophantine equation
(1.1). To obtain the complete solution of equation (2.3), we write

(2.4)
X

m1
=

U

m2
,

Y

m3
=

V

m4
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where mi, i = 1, 2, 3, 4 are arbitrary integers so that equation (2.3)
reduces to

(2.5) mr
1m

s
3L4(m1m4U,m2m3V ) = mr+1

2 ms+1
4 L4(U, V ).

Now (2.4) and (2.5) may be considered as three linear equations in
the variables X, Y, U, V , and their complete non-zero solution may be
written as follows:

(2.6)
X = dψ1(m1,m2,m3,m4), Y = dψ2(m1,m2,m3,m4),
U = dψ3(m1,m2,m3,m4), V = dψ4(m1,m2,m3,m4),

where mi, i = 1, 2, 3, 4 are integer parameters and d is an arbitrary
rational number.

To show that this solution of equation (2.3) is complete, let X1, Y1,
U1 and V1 be any given solution of (2.3) so that

(2.7) Xr
1Y

s
1 L4(X1, Y1) = Ur

1V
s
1 L4(U1, V1).

If we choose m1 = X1, m2 = U1, m3 = Y1, m4 = V1, it is easy to
see that X1, Y1, U1 and V1 satisfy the linear equations (2.4) and (2.5).
Since (2.6) gives the complete non-zero solution of these equations, we
must have

(2.8)
X1 = dψ1(m1,m2,m3,m4), Y1 = dψ2(m1,m2,m3,m4),
U1 = dψ3(m1,m2,m3,m4), V1 = dψ4(m1,m2,m3,m4),

for the values of mi, i = 1, 2, 3, 4 already chosen and a suitable value
of d. This shows that the solution (2.6) of equation (2.3) is complete
and hence it leads to a complete solution of equation (2.1).

We also note that we can suitably modify the above method to obtain
the complete solution of equations of the type

(2.9) Lr
1(x, y)L

s
2(x, y)L3(x, y) = Lr

4(u, v)L
s
5(u, v)L6(u, v).

2.2 The diophantine equation

(2.10) L1(x, y)L2(x, y)L3(x, y)L4(x, y)
= L5(u, v)L6(u, v)L7(u, v)L8(u, v),
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where we assume that no two of the four forms on each side of the
equation (2.10) are linearly dependent.

There exist non-zero integers ai, bi, i = 1, 2, 3 such that both
a1L1(x, y) + a2L2(x, y) + a3L3(x, y) and b1L4(u, v) + b2L5(u, v) +
b3L6(u, v) vanish identically. The nonsingular linear transformations
defined by

(2.11)
a1L1(x, y) = X, a2L2(x, y) = Y,

b1L4(u, v) = U, b2L5(u, v) = V,

reduce equation (2.10) to the type

(2.12) XY (X + Y )L9(X,Y ) = UV (U + V )L10(U, V ).

It is easily seen that XY (X+Y ) is an eigenform of each of the following
six linear transformations:

(i) X = U , Y = V ,

(ii) X = V , Y = U ,

(iii) X = U , Y = −(U + V ),

(iv) X = V , Y = −(U + V ),

(v) X = −(U + V ), Y = U ,

(vi) X = −(U + V ), Y = V .

We can thus get six parametric solutions of equation (2.12) by the
method already described and these, in turn, lead to six parametric
solutions of (2.10). For determining the integers ai we can choose any
three linear forms out of the four linear forms on the lefthand side of
equation (2.10), and this can be done in four different ways. Similarly
for determining bi we can choose three linear forms on the righthand
side of (2.10) in four different ways. Thus, we could get a maximum of
4 × 4 × 6 = 96 parametric solutions of (2.10) in this manner.

As a special case of (2.10), we note that we can solve the equation

(2.13) L1(x, y)L2(x, y)L3(x, y)L4(x, y)
= L1(u, v)L2(u, v)L3(u, v)L4(u, v).

2.3 The diophantine equation

(2.14) λL(x, y)Q(x, y) = µL(u, v)Q(u, v).
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We assume that L(x, y) is not a factor of Q(x, y) as otherwise (2.14)
reduces to a simpler equation of which the complete solution is readily
obtained. Let Q(x, y) = ax2 + bxy + cy2 and we choose α, β and γ
to be rational numbers satisfying the relation bα− aβ + cγ = 0. Then
Q(x, y) is an eigenform of the linear transformation defined by

(2.15)
x = αu+ βv,

y = γu− αv,

and with these substitutions,

(2.16) Q(x, y) = (α2 + βγ)Q(u, v).

On substituting the values of x and y given by (2.15) in (2.14), we get

(2.17) λ(α2 + βγ)L(αu+ βv, γu− αv) = µL(u, v).

Now (2.15) and (2.17) are three linear equations in the variables x, y,
u and v and their complete solution may be written, on substituting
γ = (aβ − bα)/c, as follows:

(2.18)
x = dψ1(α, β), y = dψ2(α, β),
u = dψ3(α, β), v = dψ4(α, β),

where α, β and d are arbitrary parameters. We will now show that
this solution is complete. Let X, Y , U and V be any given solution of
equation (2.14) so that

(2.19) λL(X,Y )Q(X,Y ) = µL(U, V )Q(U, V ).

We will show that there exist suitable rational values of α and β such
that the solution (2.18) generates the given solution X, Y , U and V .
We will choose α, β and γ so as to satisfy the equations

(2.20)
X = αU + βV,

Y = γU − αV,

bα− aβ + cγ = 0.

With these values of α, β and γ, it is easily seen from (2.16) and (2.20)
that

(2.21) Q(X,Y ) = (α2 + βγ)Q(U, V ),
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and hence it follows from (2.19), (2.20) and (2.21) that

(2.22) λ(α2 + βγ)L(αU + βV, γU − αV ) = µL(U, V ).

Thus, X, Y , U and V satisfy the equations (2.15) and (2.17) where
α and β have been chosen as mentioned above. Since (2.18) gives the
complete non-zero solution of these equations, we must have

(2.23)
X = dψ1(α, β), Y = dψ2(α, β),
U = dψ3(α, β), V = dψ4(α, β)

for the values of α and β already chosen and a suitable value of d. This
shows that (2.18) is a complete solution of equation (2.14). We may
present this complete solution in terms of integer parameters p, q and
r by writing α = p/r, β = q/r and clearing denominators which is
possible since equation (2.14) is a homogeneous equation.

2.4 The diophantine equation

(2.24) Lr(x, y)Qs(x, y) = Lr(u, v)Qs(u, v).

We assume that the exponents r and s are relatively prime. Using
the substitutions defined by (2.15) where, as before, we take α and β
to be arbitrary and γ = (aβ − bα)/c, equation (2.24) reduces to

(2.25) (α2 + βγ)sLr(αu+ βv, γu− αv) = Lr(u, v)

which may be written as

(2.26)
(
α2 − bαβ

c
+
aβ2

c

)s

=
{

L(u, v)
L(αu+ βv, γu− αv)

}r

= trs

where t is some rational number. To solve (2.26), we write

α2 − (bαβ)/c+ (aβ2)/c = tr,(2.27)
L(u, v) = ts{L(αu+ βv, γu− αv)}.(2.28)

When r is even, one solution of equation (2.27) is α = tr/2, β = 0
and hence the complete solution of this quadratic equation in α and
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β is readily found. With these values of α and β, we get a solution
for u and v from the linear equation (2.28) and thereafter x and y are
determined by (2.15) where γ = (aβ − bα)/c. This gives a complete
solution of equation (2.24).

When r is odd, a parametric solution of equation (2.27) may be found
by writing t = t21 when one solution of equation (2.27) is α = tr1, β = 0.
By solving the three linear equations (2.15) and (2.28) for the variables
x, y, u and v we get a parametric solution of equation (2.24).

2.5 The diophantine equation

(2.29) Lr
1(x, y)L2(x, y)Qs(x, y) = Lr

1(u, v)L2(u, v)Qs(u, v).

To solve this equation, we choose a linear transformation T such that
both L1(x, y) and Q(x, y) are eigenforms of this linear transformation.
Then the form Lr

1(x, y)Qs(x, y) is also an eigenform of the linear
transformation T and we now obtain, in general, a parametric solution
of equation (2.29) by the method already described for solving the
general equation (1.1). As a special case when r = s = 1, we can
obtain, in general, a parametric solution of the equation

(2.30) L1(x, y)L2(x, y)Q(x, y) = L1(u, v)L2(u, v)Q(u, v).

2.6 The diophantine equation

(2.31) L1(x, y)Qr
1(x, y)Q

s
2(x, y) = L1(u, v)Qr

1(u, v)Q
s
2(u, v).

To solve this equation we choose a linear transformation T so that
both Q1(x, y) and Q2(x, y) are eigenforms of the linear transformation
T . Then the form Qr

1(x, y)Q
s
2(x, y) is also an eigenform of the linear

transformation T and we obtain, in general, a parametric solution of
equation (2.31) by the method already described for solving the general
equation (1.1).

As special cases of (2.31), we can obtain, in general, parametric
solutions of the following fifth degree equations:

(2.32) L1(x, y)Q1(x, y)Q2(x, y) = L1(u, v)Q1(u, v)Q2(u, v),
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(2.33) L1(x, y)L2(x, y)L3(x, y)Q(x, y)
= L1(u, v)L2(u, v)L3(u, v)Q(u, v),

(2.34) L1(x, y)L2(x, y)L3(x, y)L4(x, y)L5(x, y)
= L1(u, v)L2(u, v)L3(u, v)L4(u, v)L5(u, v).

2.7 The diophantine equation

(2.35) L(x, y)C(x, y) = L(u, v)C(u, v).

If C(x, y) is a reducible cubic form, equation (2.35) reduces to an
equation of type (2.13), (2.24) or (2.30). If C(x, y) is irreducible and
its discriminant is a perfect square, then also (2.35) can be solved
using eigenforms. For example, if C(x, y) = x3 + axy2 + by2 and its
discriminant −4a3−27b2 is a perfect square, say t2, it can be verified by
direct computation that the cubic form C(x, y) is an eigenform of the
linear transformation T defined by (1.2) where α = 9b + t, β = −2a2,
γ = −6a and δ = t − 9b, and equation (2.35) can accordingly be
solved. If, however, C(x, y) = ax3 + bx2y + cxy2 + dy3, we first
apply the nonsingular linear transformation x = X − bY/(3a), y = Y ,
u = U − bV/(3a), v = V to equation (2.35) which now reduces to the
type

(2.36) L1(X,Y )C1(X,Y ) = L1(U, V )C1(U, V ).

where C1(X,Y ) = X3 + AXY 2 + BY 3. Since the discriminant is an
invariant of the linear transformation applied to the cubic form C(x, y),
the discriminant of the cubic form C1(X,Y ) is also a perfect square
and we can therefore obtain a parametric solution of (2.36) as already
described. This solution, in turn, leads to a parametric solution of the
equation (2.35).

2.8 The diophantine equation

(2.37) {Π5
i=1Li(x, y, z)}Qr(x, y, z) = {Π5

i=1Li(u, v, w)}Qr(u, v, w).
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To solve equation (2.37), we first choose integers p, q, r and s, not all
zero, such that we have identically

(2.38) pL2(x, y, z) + qL3(x, y, z) + rL4(x, y, z) + sL5(x, y, z) = 0.

We next solve for z the equation

pL2(x, y, z) + qL3(x, y, z) = 0

to get z = L(x, y). We also write w = L(u, v). If we now write
L′

i(x, y), i = 1, 2, 3, 4, 5 and Q′(x, y) to denote the forms obtained by
substituting z = L(x, y) in Li(x, y, z), i = 1, 2, 3, 4, 5 and Q(x, y, z),
respectively, equation (2.37) reduces to

L′
1(x, y){L′

2(x, y)L
′
4(x, y)}2{Q′(x, y)}r

= L′
1(u, v){L′

2(u, v)L
′
4(u, v)}2{Q′(u, v)}r

which is a special case of equation (2.31) and a parametric solution
may accordingly be obtained.

3. Solution of specific diophantine equations and problems.

3.1 The diophantine equation

(3.1) a(x3 + y3) = b(u3 + v3).

This equation where a and b are non-zero integers such that gcd (a, b) =
1 has been considered by Oppenheim [5] who gave a method of obtain-
ing rational solutions and by Choudhry [2] who has given a complete
solution in parametric form. Solving equation (3.1) by the method
described in Section 2.3, we get the complete primitive solution given
below:

(3.2)

dx = a(p4 + 2p3q + 3p2q2 + 2pq3 + q4) + b(p− q)r3,
dy = −a(p4 + 2p3q + 3p2q2 + 2pq3 + q4) + b(2p+ q)r3,
du = r{a(p3 − q3) + br3},
dv = r{a(2p3 + 3p2q + 3pq2 + q3) − br3},
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where p, q, r are arbitrary integer parameters and d is an integer so
chosen that gcd (x, y, u, v) = 1. This solution of (3.1) has not been
published earlier.

3.2 Pythagorean triangles with areas in a given ratio. We now
consider the problem of finding two Pythagorean triangles with areas
in a given ratio. Dickson [3, pp. 174 175] has outlined the solutions to
this problem given by Fermat, Euler and others, and has further stated
that Euler found ten pairs of such triangles with areas in a given ratio.
If we take two Pythagorean triangles with sides 2xy, x2 − y2, x2 + y2

and 2uv, u2 − v2, u2 + v2, their areas will be in any given ratio a : b if

(3.3) bxy(x2 − y2) = auv(u2 − v2).

This equation can be solved by the method indicated in Section 2.2 and
we get the following solution of (3.3):

x = 2ap4q + bq5, u = ap5 + 2bpq4,
y = ap4q − bq5, v = ap5 − bpq4,

where p and q are arbitrary parameters. We thus obtain infinitely many
pairs of Pythagorean triangles with areas in a given ratio a : b. When
a = b, the above solution provides examples of equiareal Pythagorean
triangles. More parametric solutions of (3.3) can be obtained as
indicated in Section 2.2.

3.3 The diophantine equation

(3.4) x4 + y4 + z4 = u4 + v4 + w4.

While Dickson [3, pp. 653 655] mentions several parametric solutions
of this equation, its complete solution is not yet known. To solve this
equation, we write z = u+ v, w = x+ y when (3.4) reduces to

xy(2x2 + 3xy + 2y2) = uv(2u2 + 3uv + v2).

This is an equation of type (2.30) and noting that y(2x2 +3xy+2y2) is
an eigenform of the linear transformation x = m(2u+ 3v), y = −2mv,
we may solve this equation and hence obtain a parametric solution of
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(3.4) which, on substituting m = p/q and clearing denominators, may
be written as follows:

x = 3pq4, u = 24p4q,

y = 2p(16p4 + q4), v = q(16p4 + q4),
z = q(8p4 − q4), w = p(32p4 − q4).

3.4 Arithmetic progressions of equal lengths and equal prod-
ucts of terms. We now consider the problem of finding two arithmetic
progressions of n terms each and with equal products of terms. Partial
solutions for n = 3 and n = 4 have been given by Gabovich [4], for
n = 4 and n = 5 by Choudhry [1], and for arbitrary n by Mirkowski
and Makowski [6] as well as by Choudhry [1].

To obtain such arithmetic progressions when n = 4, we have to solve
the diophantine equation

(3.5) x(x+ y)(x+ 2y)(x+ 3y) = u(u+ v)(u+ 2v)(u+ 3v).

This is a special case of equation (2.13) and, following the procedure
described for solving this equation, we apply the linear transformation
given by x = X, y = −X − Y/2, u = 2U + V/2, v = −U − V/2, which
reduces (3.5) to the type (2.12) and we thus get six parametric solutions
of equation (3.5). These solutions, written in terms of arbitrary integers
p and q are given in Table 1.

TABLE 1. Solutions of equation (3.5).

x y u v

p(3p4 + q4) −p(p4 − q4) 4p4q −q(p4 − q4)
2p(3p4 − q4) −p(2p4 − 5q4) 13p4q −q(7p4 + 2q4)
2p(3p4 + 4q4) −p(2p4 + 7q4) −13p4q q(5p4 − 2q4)
2p(3p4 − 4q4) −p(2p4 − 5q4) 7p4q −q(5p4 − 2q4)
6p(p4 + q4) −p(2p4 + 7q4) −15p4q q(7p4 + 2q4)
p+ 3q −q p q

The last solution does not lead to any solution of our diophantine
problem even though it is a nontrivial solution of equation (3.5).
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Many more parametric solutions of equation (3.5) may be obtained
as indicated in Section 2.2.

When n = 5, we have to solve the equation

(3.6) x(x+y)(x+2y)(x+3y)(x+4y) = u(u+v)(u+2v)(u+3v)(u+4v)

This equation is a special case of equation (2.32). We can choose the
forms L1(x, y), Q1(x, y) and Q2(x, y) in a variety of ways but these
lead to only seven parametric solutions of (3.6) that generate different
solutions of our diophantine problem. These solutions, written in terms
of integer parameters p and q are given in Table 2.

TABLE 2. Solutions of equation (3.6).

x y u v

11pq5 −p(27p5 + 5q5) 99p5q −q(45p5 + q5)
14pq5 p(27p5 − 5q5) 126p5q −q(45p5 + q5)
5pq5 p(p5 − q5) 5p5q −q(p5 − q5)

12p(36p5 + q5) −p(432p5 + 7q5) 2q(216p5 + q5) −2q(126p5 + q5)
−16p(p5 − q5) p(16p5 − 5q5) 2q(32p5 + q5) −2q(10p5 + q5)
18p(3p5 + q5) −p(54p5 + 5q5) 2q(81p5 + q5) −q(45p5 + 2q5)
−2p(8p5 − q5) 8p6 2q(4p5 − q5) q6

When n is arbitrary, we take the two arithmetic progressions as
x, x + y, . . . , x + (n − 1)y, and u + v, u + 2v, . . . , u + ny so that we
have to solve the diophantine equation

(3.7) x(x+ y)(x+ 2y) · · · {x+ (n− 1)y}
= (u+ v)(u+ 2v) · · · {u+ (n− 1)v}(u+ ny)

which is of type (1.6). As the form [(x+ y)(x+ 2y) · · · {x+ (n− 1)y}]
is an eigenform of the linear transformation x = mu, y = mv, we can
obtain a parametric solution of (3.7). This parametric solution has
already been given earlier by Choudhry [1].

3.5 Diophantine equations involving fifth powers. We will now
obtain parametric solutions of diophantine equations of the type

(3.8) X5 + Y 5 + λZ5 = U5 + V 5 + λW 5
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for several integer values of λ, for example, when λ = 2, 6, 8, 16, 19,
38, 44, 59, 61, 88, etc. We will also obtain parametric solutions of the
diophantine equations

(3.9) 2X5 + 2Y 5 + Z5 = 2U5 + 2V 5 +W 5

and

(3.10) 4X5 + 4Y 5 + Z5 = 4U5 + 4V 5 +W 5.

To solve (3.8) when λ = 2, we write

X = x+ y, U = u+ v,

Y = x− y, V = u− v,

Z = −x, W = −u,

when (3.8) reduces to

xy2(2x2 + y2) = uv2(2u2 + v2)

which is of type (2.32) and can accordingly be solved. This leads to
the following solution of (3.8) with λ = 2:

X = 2p(4p5 + q5), U = q(8p5 + q5),
Y = 2p(4p5 − q5), V = −q(8p5 − q5),
Z = −8p6, W = −q6.

To solve (3.8) for other values of λ, we write

(3.11)
X = ax+ y, U = au+ v,

Y = ax− y, V = au− v,

Z = x, W = u,

and choose λ = λ(a, r) = 2a(5r2 − a4) when (3.8) reduces to

(3.12) x(r2x4 + 2a2x2y2 + y4) = u(r2u4 + 2a2u2v2 + v4).

It is easily verified that the quartic form r2x4 + 2a2x2y2 + y4 is an
eigenform of the linear transformation x = mv, y = mru, and with
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these substitutions, we get a solution of (3.12) and hence also of (3.8)
in terms of the parameter m. On substituting m = p/q and clearing
denominators, we get the following parametric solution of (3.8):

X = p(aq5 + p5r3), U = q(ap5r2 + q5),
Y = p(aq5 − p5r3), V = q(ap5r2 − q5),
Z = pq5, W = p5qr2.

Thus we have obtained a parametric solution of (3.8) whenever λ is
of the type 2a(5r2 − a4). We observe that λ(−3, 4) = 6, λ(1, 1) = 8,
λ(2, 2) = 16, λ(−4, 16) = 608 = 32 · 19, λ(1, 2) = 38, λ(−4, 4) = 44,
λ(−4, 2) = 1888 = 32 · 59, λ(4, 10) = 1952 = 32 · 61, λ(1, 3) = 88. As
any fifth power, for example, 32, which is a factor of λ may be merged
with Z and W on the two sides, we get solutions of (3.8) for λ =6, 8,
16, 19, 38, 44, 59, 61, 88, etc.

Finally we note that any integer solution of

X5 + Y 5 + 16Z5 = U5 + V 5 + 16W 5

leads, on multiplying by 2, to the relation

2X5 + 2Y 5 + (2Z)5 = 2U5 + 2V 5 + (2W )5

which gives a solution of (3.9). Similarly any solution of (3.8) with
λ = 8, leads, on multiplying by 4, to a solution of (3.10).

3.6 The diophantine equation

(3.13) X7 + Y 7 + 625Z7 = U7 + V 7 + 625W 7.

We write

(3.14)
X = 5x+ 2y, U = 5u+ 2v,
Y = 5x− 2y, V = 5u− 2v,
Z = 2x, W = 2u,

when equation (3.13) reduces to

(3.15) x(3375x6 + 7500x4y2 + 2000x2y4 + 64y6)
= u(3375u6 + 7500u4v2 + 2000u2v4 + 64v6).
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We note that (3375x6 + 7500x4y2 + 2000x2y4 + 64y6) is an eigenform
of the linear transformation x = 4mv, y = 15mu, and with these
substitutions, we get a solution of (3.15) which, on writing m = p/q,
leads to the following solution of (3.13):

X = 5p(10125p7 + q7), U = q(16875p7 + q7),
Y = −5p(10125p7 − q7), V = q(16875p7 + q7),
Z = 2pq7, W = 6750p7q.

3.7 The diophantine equation

(3.16) xn + xn−1y + · · · + yn = un + un−1v + · · · + vn.

We will obtain a parametric solution of equation (3.16) when n is an
arbitrary odd integer. We may write equation (3.16) as

(3.17) (xn+1 − yn+1)(u− v) = (un+1 − vn+1)(x− y).

When n is odd, it is easily seen that the form (xn+1 − yn+1) is an
eigenform of the linear transformation x = mu, y = −mv, and with
these substitutions, (3.17) reduces to a linear equation in u and v which
is readily solved and this leads, on writing m = p/q, to the following
parametric solution of (3.16):

x = pn+1 + pqn, u = pnq + qn+1,

y = −pn+1 + pqn, v = pnq − qn+1.
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