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EXPLICIT ESTIMATES FOR
THE RIEMANN ZETA FUNCTION

YUANYOU F. CHENG AND SIDNEY W. GRAHAM

ABSTRACT. We apply van der Corput’s method of expo-
nential sums to obtain explicit upper bounds for the Riemann
zeta function on the line σ = 1/2. For example, we prove that

if t ≥ e, then |ζ(1/2 + it)| ≤ 3t1/6 log t. These results will be
used in an application on primes to short intervals [4].

1. Introduction. It is well known that the distribution of prime
numbers is related to the study of the Riemann zeta-function. For
σ > 1, the Riemann zeta-function is defined to be the following infinite
sum

ζ(s) =
∞∑

n=1

n−s,

where s = σ + it with real variables σ and t.

This definition can be extended to the whole complex plane except
at s = 1. The following definitions for σ > 0 and s �= 1 can be
obtained respectively by virtue of the partial and the Euler-MacLaurin
summation formulae.

ζ(s) =
s

s − 1
− s

∫ ∞

1

u − [u]
us+1

du,

and
ζ(s) =

1
s

+
1
2
− s

∫ ∞

1

u − [u] − 1/2
us+1

du.

For reference, one may see [1, 8, 13, 14]. The following formula

∑
a<n≤b

f(n) =
∫ b

a

f(x) dx −
∫ b

a

f(x) d

(
x − [x] − 1

2

)
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is a simple form of the summation formulae (see [3]). For σ > 1, we
apply the last formula to

∑
x<n≤X n−s for any 0 < x < 1 and, letting

X → ∞, obtain

(1) ζ(s) =
x1−s

1 − s
+

x − [x] − 1/2
xs

− s

∫ ∞

x

u − [u] − 1/2
us+1

du,

which can also be the definition of ζ(s) for σ > 0 and s �= 1.

Number theorists have devoted considerable effort to obtaining upper
bounds for ζ(1/2 + it). Littlewood [11] was the first to obtain a
nontrivial bound; he used Weyl’s method to prove for t ≥ e that

ζ(1/2 + it) � t1/6 log3/2(t).

At the time of this writing, the best known estimate is due to Huxley
[7], who proved that

ζ(1/2 + it) � t89/570+ε.

In this article our objective is to obtain upper bounds for ζ(1/2 + it)
with explicit constants. We will apply these bounds to estimates for
gaps between primes [4]. Our approach will be to use the simplest
aspects of van der Corput’s method of exponential sums. This has
the advantage of being simple enough to make explicit estimates pos-
sible without an extraordinary amount of effort but strong enough to
make the estimates useful. We state our result in the following three
theorems.

Theorem 1. If t ≥ 0, then

(2a) |ζ(1/2 + it)| ≤ 1√
4t2 + 1

+ 1 + 0.267
√

4t2 + 1.

If t ≥ 2, then

(2b) |ζ(1/2 + it)| ≤ 2t1/2 + 5.505.

If t ≥ 2 and N is a positive integer, then

(2c) |ζ(1/2 + it)| ≤
∑
n<N

n−1/2 +
1

2N1/2
+

2N1/2

√
4t2 + 1

+
√

4t2 + 1
24N3/2

+
√

4t2 + 1
√

4t2 + 9
72N3/2

.
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Theorem 2. If t ≥ e, then

|ζ(1/2 + it)| ≤ 6t1/4 + 41.124.

Theorem 3. If t ≥ e, then

|ζ(1/2 + it)| ≤ 1.457t1/6 log t + 40.995t1/6 + 1.863 log t + 123.125.

Theorem 1 is an easy estimate that we shall use for small values
of t. The theory of exponent pairs provides a useful context for
understanding the results in Theorems 2 and 3. It is well known (see,
e.g., [6]) that if (k, l) is an exponent pair, then

ζ(1/2 + it) � tk/2+l/2−1/4 log t.

Theorems 2 and 3 are explicit versions of this with the exponent pairs
B(0, 1) = (1/2, 1/2) and AB(0, 1) = (1/6, 2/3), respectively.

For applications, it is convenient to combine Theorems 1 through 3
into the following result.

Corollary. If 0 ≤ t ≤ e, then |ζ(1/2 + it)| ≤ 2.657. If t ≥ e, then

|ζ(1/2 + it)| ≤ 3t1/6 log t.

2. Proof of Theorem 1. The first estimate in Theorem 1 follows
directly from (1). We note for any x < X that

|ζ(1/2)| ≤ 2x1/2

√
4t2 + 1

+
1

2x1/2
+

1
2

√
4t2 + 1

×
( ∫ X

x

|u − [u] − 1/2|
u3/2

du +
1
2

∫ ∞

X

du

u3/2

)
.

We choose x = 1/4 and X = 28 and get the stated result.

Most of our other estimates will require the following lemma, which
we quote from [2].
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Lemma 1. If σ ≥ 1/2 and t ≥ 2, then

ζ(s) =
[t]∑

n=1

1
ns

+ C(s)

where |C(s)| ≤ 5.505.

Now from Lemma 1, if s = 1/2 + it, then

(3)
∣∣∣∣

∑
n≤tβ

1
ns

∣∣∣∣ ≤
∫ tβ

0

du

u1/2
≤ 2tβ/2.

This estimate in the case of β = 1 together with Lemma 1 proves
estimate (2b) of Theorem 1.

To prove estimate (2c), we begin by noticing that if σ > 1 and N is
a positive integer, then

ζ(s) =
∑
n<N

n−s +
∫ ∞

N−
u−s d[u]

=
∑
n<N

n−s +
∫ ∞

N

u−s du −
∫ ∞

N−
u−s d(u − [u] − 1/2).

After integrating by parts, we find that

(4) ζ(s) =
∑
n<N

n−s +
1
2
N−s +

N1−s

s − 1
− s

∫ ∞

N

(u− [u]− 1/2)u−s−1 du.

The last integral converges for σ > 0 so (4) defines an analytic
continuation of ζ(s) in the half-plane σ > 0.

Now let B1(u) = u − 1/2 and B2(u) = u2 − u − 1/6 be the first two
Bernoulli polynomials, and set Bk(u) = Bk(u− [u]). Then the integral
in (4) may be written as

−s

∫ ∞

N

u−s−1B1(u) du = −1
2

s

∫ ∞

N

u−s−1 dB2(u).
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After integrating this by parts and substituting into (4), we get

ζ(s) =
∑
n<N

n−s +
1
2
N−s +

N1−s

s − 1
− s

12Ns+1

+
1

(s + 1)Ns+1
− s(s + 1)

2

∫ ∞

N

B2(u)
us+2

du.

Estimate (2c) now follows by setting s = 1/2 + it and noting that
∣∣∣∣
∫ ∞

N

B2(u)
us+2

du

∣∣∣∣ ≤ 1
6

∫ ∞

N

du

u5/2
=

1
9N3/2

when σ = 1/2.

We use Theorem 1 in the proof of the Corollary for small values of
t. When 0 ≤ t ≤ e, estimate (2a) gives |ζ(1/2 + it)| ≤ 2.657. For
e ≤ t ≤ 30, estimate (2a) gives |ζ(1/2 + it)| ≤ 3t1/6 log t. The same
estimate follows from estimate (2b) for 30 ≤ t ≤ 700. In the range
700 ≤ t ≤ 5100, the Corollary follows by using estimate (2c) with
N = [t/4] + 1.

3. Van der Corput’s method. The following Kusmin-Landau
lemma, see [5], gives a nontrivial estimate on the exponential sums
under some conditions.

Lemma 2. Suppose f is a continuously differentiable real-valued
function with a monotonic derivative and ‖f ′‖ ≥ U−1 for some positive
real number U on the interval (a, b]. Then

|S| =
∣∣∣∣

∑
n∈(a,b]

e2πif(n)

∣∣∣∣ ≤ 1
π

U + 1.

Proof. If we replace f by −f in the last sum, then we get the conjugate
for the whole sum, which has the same absolute value as the whole sum.
Thus, we may assume that f ′ is increasing. Since f ′ is continuous by
our assumption, there must exist an integer k such that

k + U−1 ≤ f ′(n) ≤ k + 1 − U−1,
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for all n’s in the interval. Note that
∣∣∣∣

M∑
n=L

e2πif(n)

∣∣∣∣ =
∣∣∣∣e−kn

M∑
n=L

e2πif(n)

∣∣∣∣ =
∣∣∣∣

M∑
n=L

e2πif(n)−kn

∣∣∣∣.

We may further assume that U−1 ≤ f ′(n) ≤ 1 − U−1.

Define g(n) = f(n + 1) − f(n). We have g′(n) = f ′(n + 1) − f ′(n).
The assumption that f ′ is increasing implies that g′ > 0, so that g is
increasing. Furthermore, using the mean-value theorem, we know that
g(n) = f ′(mn) for some n ≤ mn ≤ n + 1. It follows that

(5) U−1 ≤ f ′(n) ≤ g(n) ≤ f ′(n + 1) ≤ 1 − U−1.

Denote

G(n) =
1

1 − e2πig(n)
=

1
2

+
1
2

i cot(πg(n)).

Then

G(n)(e2πif(n) − e2πif(n+1)) =
e2πif(n) − e2πif(n+1)

1 − e2πig(n)
= e2πif(n),

and

G(n) − G(n − 1) =
1
2i
{cot(g(n − 1)) − cot(g(n))}.

It follows that
∣∣∣∣

M∑
n=L

e2πif(n)

∣∣∣∣ =
∣∣∣∣

M−1∑
n=L

(e2πif(n) − e2πif(n+1))G(n) + e2πif(M)

∣∣∣∣

=
∣∣∣∣e2πif(L)G(L) +

M−1∑
n=L+1

e2πif(n)(G(n) − G(n − 1))

+ e2πif(M)(1 − G(M − 1))
∣∣∣∣

≤
∣∣∣∣

M−1∑
n=L+1

(G(n) − G(n − 1))e2πif(n)

∣∣∣∣
+ |G(L)e2πif(L)| + |(1 − G(M − 1))e2πif(M)|

≤
M−1∑

n=L+1

|G(n) − G(n − 1)| + |G(L)| + |1 − G(M − 1)|.
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Recalling (5) and noting that cot(x) is a decreasing function for
0 < x < π and the values of G(n) − G(n − 1) have the same sign
for all n’s, we get

∣∣∣∣
M∑

n=L

e2πif(n)

∣∣∣∣ ≤ 1
2
{cot(πg(L)) − cot(πg(M − 1))}

+
1
2

+
1
2

cot(πg(L)) +
1
2

+
1
2

cot(g(M − 1))

= cot(πg(L)) + 1.

We use the fact that cot(x) < 1/x for 0 < x ≤ π/2, getting

∣∣∣∣
M∑

n=L

e2πif(n)

∣∣∣∣ ≤ 1
π‖g(L)‖ + 1 ≤ 1

πU−1
+ 1,

which proves the lemma.

The next lemma shall be used to estimate the “zeta sums,” defined
as those sums on the right sides of (8) and (17).

Lemma 3. Assume that f is a real-valued function with two con-
tinuous derivatives on [N + 1, N + L]. If there exist two real numbers
V < W with W > 1 such that

(6)
1
W

≤ |f ′′(x)| ≤ 1
V

for x on [N + 1, N + L], then

∣∣∣∣
N+L∑

n=N+1

e2πif(n)

∣∣∣∣ ≤ 1
5

(
L

V
+ 1

)
(8W 1/2 + 15).

Proof. The condition (6) implies that either f ′′(x) > 0 or f ′′(x) < 0
for N +1 ≤ x ≤ N +L. Without loss of generality, we may assume that
f ′′(x) > 0 for N +1 ≤ x ≤ N +L. Under this assumption we know that
f ′(x) is increasing and by the mean-value theorem we have, for some
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N + 1 ≤ x0 ≤ N + L, that f ′(N + L) − f ′(N + 1) = f ′′(x0)L ≤ L/V .
Denote C1 = [f ′(N + 1)], Cj = Cj−1 + 1 for j = 2, 3, . . . , k − 1, and
Ck = 	f ′(N + L)
. Then k ≤ L/V + 2.

Let ∆, 0 < ∆ < 1/2, be a parameter to be chosen later, and let

xj = (f ′)−1(Cj − ∆), for j = 2, 3, . . . , k

yj = (f ′)−1(Cj + ∆), for j = 1, 2, . . . , k − 1,

and

zj = (f ′)−1(Cj), for j = 1, 2, . . . , k.

On each interval [yj , xj+1], we have ‖f ′(x)‖ ≥ ∆. We have k − 1 such
intervals; the sub-sum corresponding to each of them, by Lemma 2, is
bounded by 1/(π∆) + 1.

On all other 2(k − 1) intervals, we use the trivial estimate

∣∣∣∣
∑

a≤n≤b

e2πif(n)

∣∣∣∣ ≤ b − a + 1.

By the mean-value theorem, we have

f−1(Cj + ∆) − f−1(Cj) =
1

f ′(x0)
(Cj + ∆ − Cj) ≤ W∆,

and

f−1(Cj) − f−1(Cj − ∆) =
1

f ′(x0)
(Cj − Cj + ∆) ≤ W∆.

Thus, we get

∣∣∣∣
N+L∑

n=N+1

e2πif(n)

∣∣∣∣ ≤ (L/V + 1)(1/(π∆) + 1) + 2(L/V + 1)(W∆ + 1)

= (L/V + 1)(1/(π∆) + 2W∆ + 3).

Taking ∆ = 1/
√

2πW and noting that 2
√

2/
√

π < 8/5, we obtain the
claimed result.
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4. Estimate for sums over those n’s between tα and t. In this
section we will use Lemma 3 to obtain the following estimates.

Lemma 4. If t ≥ e, then
∣∣∣∣

∑
t2/3<n≤t

n−1/2−it

∣∣∣∣ ≤ 1.5t1/6 + 101.006,

and ∣∣∣∣
∑

t1/2<n≤t

n−1/2−it

∣∣∣∣ ≤ 4t1/4 + 35.619.

Proof. For this proof, the number α is either 2/3 or 1/2. We
let τ (> 1) and t1 (> e) be positive constants whose values will be
determined later. We shall apply Lemma 3 when t ≥ t1 and use a
trivial estimate for e ≤ t ≤ t1.

We let Xj = τ jtα and Nj = [Xj ] for j = 0, 1, . . . , J with
j ≤ [(1 − α) log t/ log τ ] + 1. It follows that

(7)
∑

tα<n≤t

1
ns

=
J∑

j=1

min{Nj ,t}∑
n=Nj−1+1

1
ns

.

Using the partial summation formula for each inner sum in the last
expression, we get

(8)
∣∣∣∣

min{Nj ,t}∑
n=Nj−1+1

1
ns

∣∣∣∣ ≤ 1
(Nj−1 + 1)1/2

max
L≤Nj−Nj−1

∣∣∣∣
Nj−1+L∑

n=Nj−1+1

e−it log n

∣∣∣∣.

Let f(x) = −t log x/2π. For Xj−1 < Nj−1 + 1 ≤ x ≤ Nj ≤ Xj , we
have

t

2πτ2X2
j−1

=
t

2πX2
j

≤ |f ′′(x)| =
∣∣∣∣ t

2πx2

∣∣∣∣ <
t

2πX2
j−1

.

Applying Lemma 3 by letting V = 2πX2
j−1/t and W = 2πτ2X2

j−1/t
to the zeta sums on the right side of (8) and noting that
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L ≤ Nj − Nj−1 < Xj − Xj−1 + 1 ≤ (τ − 1)Xj−1 + 1, we get

(9)

∣∣∣∣
Nj−1+L∑

n=Nj−1+1

e−it log n

∣∣∣∣ ≤ 1
5

(
(τ − 1)t
2πXj−1

+
t

2πX2
j−1

+ 1
)

×
(

27/2π1/2τXj−1

t1/2
+ 15

)

=
1
5
(K1 + K2 + K3 + K4 + K5 + K6),

where

K1 =
25/2τ (τ − 1)t1/2

π1/2
, K2 =

25/2τt1/2

π1/2Xj−1
, K3 =

27/2π1/2τXj−1

t1/2
,

K4 =
15(τ − 1)t
2πXj−1

, K5 =
15t

2πX2
j−1

, K6 = 15.

Noting Nj−1 + 1 > Xj−1 and combining (7), (8) and (9), we obtain

∣∣∣∣
∑

tα<n≤t

1
ns

∣∣∣∣ ≤ 1
5

J∑
j=1

K1 + · · · + K6

X
1/2
j−1

.

In the term K3 we have to sum X
1/2
j−1. In this case

(10)
J∑

j=1

X
1/2
j−1 = tα/2

J−1∑
j=0

τ j/2 ≤ τJ/2tα/2

τ1/2 − 1
≤ τ1/2t1/2

τ1/2 − 1
.

In other cases we note that, for any 0 < δ < 2,

(11)
J∑

j=1

X
−δ/2
j−1 ≤

∞∑
j=0

X
−δ/2
j =

∞∑
j=0

(τ jtα)−δ/2 =
τ δ/2

(τ δ/2 − 1)
t−δα/2.

We wind up with the estimate

(12)
∣∣∣∣

∑
tα<n≤t

n−s

∣∣∣∣ ≤ 1
5
(L1 + · · · + L6),
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where

L1 =
25/2τ3/2(τ1/2 + 1)

π1/2
t(1−α)/2, L2 =

25/2τ5/2

π1/2(τ3/2 − 1)
t(1−3α)/2,

L3 =
27/2π1/2τ3/2

τ1/2 − 1
, L4 =

15τ1/2(τ1/2 + 1)
2π

t(2−3α)/2,

L5 =
15τ5/2

2π(τ5/2 − 1)
t(2−5α)/2, L6 =

15τ1/2

(τ1/2 − 1)
tα/2.

We have used the fact Xj−1 ≥ tα. When α = 2/3 and t ≥ t1, we get

(13)
∣∣∣∣

∑
t2/3<n≤t

n−s

∣∣∣∣ ≤ c1t
1/6 + c2,

where

c1 = k1 =
25/2τ3/2(τ1/2 + 1)

5π1/2
, c2 = k3 + k4 +

k2

t
1/2
1

+
k5

t
2/3
1

+
k6

t
1/3
1

with

k2 =
25/2τ5/2

5π1/2(τ3/2 − 1)
, k3 =

27/2π1/2τ3/2

5(τ1/2 − 1)
, k4 =

3τ1/2(τ1/2 + 1)
2π

,

k5 =
3τ5/2

2π(τ5/2 − 1)
, k6 =

3τ1/2

τ1/2 − 1
.

Taking τ = 1.096 and t1 = 48449 gives (13) with c1 = 1.5 and
c2 = 101.006, provided t ≥ t1. When e < t ≤ t1, we use the estimate

(14)
∣∣∣∣

∑
tα<n≤t

1
ns

∣∣∣∣ ≤
∑

tα<n≤t

1
n1/2

≤
∫ t

1

du

u1/2
≤ 2t

1/2
1 .

This completes the proof of the first part of Lemma 4.

Similarly, in the case of α = 1/2, we use (12) when t ≥ t′1 to obtain

(15)
∣∣∣∣

∑
t2/3<n≤t

n−s

∣∣∣∣ ≤ d1t
1/4 + d2,
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with

d1 = k1 + k4 and d2 = k3 +
k2 + k4 + k6

t
′1/4
1

.

Taking τ ′ = 1.088 and t′1 = 4773, we have d1 = 2.5 and d2 = 115.417.
When e ≤ t < t′1, the same upper bound follows from (14). We may
also take τ ′ = 1.523 and t′1 = 882 to get d1 = 4 and d2 = 35.619.

5. Weyl van der Corput lemma. To deal with zeta sums over
those n’s between t1/3 and t2/3 by applying van der Corput’s method,
we first use Corput’s version of “Weyl differencing.” For references, one
may see [5, 6, 8, 12, 15].

Let M be a positive integer. We have

M
N+L∑

n=N+1

e2πif(n) =
M∑

m=1

N+L−m∑
n=N+1−m

e2πif(n+m).

Interchanging the order of the summation, we get

M

N+L∑
n=N+1

e2πif(n) =
N+L−1∑

n=N+1−M

min{M,N+L−n}∑
m=max{N+1−n,1}

e2πif(n+m).

Thus we have

M2

∣∣∣∣
N+L∑

n=N+1

e2πif(n)

∣∣∣∣
2

=
∣∣∣∣

N+L−1∑
n=N+1−M

min{M,N+1−n}∑
m=max{N+1−n,1}

e2πif(n+m)

∣∣∣∣
2

.

Regarding the inner sum over m for each fixed n as bn and an = 1 and
using Cauchy’s inequality |∑n anbn|2 ≤ |∑n |an|2

∑
n |bn|2, we obtain

M2

∣∣∣∣
N+L∑

n=N+1

e2πif(n)

∣∣∣∣
2

< (L+M)
N+L−1∑

n=N+1−M

∣∣∣∣
min{M,N+L−n}∑

m=max{N+1−n,1}
e2πif(n+m)

∣∣∣∣
2

.

We then use the inequalities that e2πif = e−2πif and |z|2 = zz̄ for the
last sum over m in the above inequality and interchange the order of



ESTIMATES FOR RIEMANN ZETA FUNCTION 1273

the summation, getting

M2

∣∣∣∣
N+L∑

n=N+1

e2πif(n)

∣∣∣∣
2

≤ (L + M)
N+L−1∑

n=N+1−M

min{M,N+L−n}∑
m1=max{N+1−n,1}

×
min{M,N+L−n}∑

m2=max{N+1−n,1}
e2πi[f(n+m1)−f(n+m2)]

= (L + M)
M∑

m1=1

M∑
m2=1

min{N+L−m1,N+L−m2}∑
n=max{N+1−m1,N+1−m2}

e2πi[f(n+m1)−f(n+m2)].

We calculate the inner sum for m1 = m2 and m1 �= m2 separately. If
m1 = m2, then the involved terms contribute to

M∑
m=1

N+L−m∑
n=N+1−m

1 = ML.

If m1 �= m2, then the sum over the involved terms is twice that of
the corresponding one under the condition m1 > m2. We denote
m = m1 − m2. For each fixed m, the equation m1 − m2 = m has
M − m solutions for the ordered pair 〈m1, m2〉 under the condition
1 ≤ m1 ≤ M and 1 ≤ m2 ≤ M , which are 〈M, m− m〉, . . . , 〈m + 1, 1〉.
Let us change the variable n+m2 to n. Thus the involved terms under
the condition m1 �= m2 contribute to

2
M−1∑
m=1

(M − m)
N+L−m∑
n=N+1

e2πi[f(n+m)−f(n)].

It follows that

M2

∣∣∣∣
N+L∑

n=N+1

e2πif(n)

∣∣∣∣
2

≤ (L + M)
{

ML + 2
M−1∑
m=1

(M − m)
∣∣∣∣

N+L−m∑
n=N+1

e2πi[f(n+m)−f(n)]

∣∣∣∣
}

.
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Dividing the factor M2 on both sides and denoting the last sum in the
last expression by S′, we get the following lemma.

Lemma 5. Let f(n) be a real-valued function and M a positive
integer. Then

∣∣∣∣
N+L∑

n=N+1

e2πif(n)

∣∣∣∣
2

≤ (L + M)L
M

+
2(L + M)

M

M−1∑
m=1

(
1− m

M

)
max
K≤L

|S′
m(K)|,

where

S′
m(K) =

N+K∑
n=N+1

e2πi[f(n+m)−f(n)].

6. Estimate for those n’s between t1/3 and t2/3.

Lemma 6. If t ≥ e, then
∣∣∣∣

∑
t1/3<n≤t2/3

n−1/2−it

∣∣∣∣ ≤ 1.457t1/6 log t+37.495t1/6+1.863 log t+16.614.

Note that t1/3 ≥ 1. For small t, we use the trivial estimate

∣∣∣∣
∑

t1/3<n≤t2/3

1
ns

∣∣∣∣ ≤
∑

1<n≤t2/3

1
n1/2

≤
∫ t2/3

1

du

u1/2
≤ 2t1/3.

This suffices to prove the lemma when e ≤ t ≤ t2, where t2 =
2.028 × 1013. Henceforth, we assume that t ≥ t2. As in Section 3
we let κ, κ > 1, be a positive constant to be determined later. We let
Xj = κjt1/3 for j = 0, 1, . . . , J and Nj = [Xj ] so that XJ ≥ t2/3 where
J < (log t/3 log κ) + 1. Thus,

(16)
∑

t1/3<n≤t2/3

1
ns

=
J∑

j=1

min{Nj ,t2/3}∑
n=Nj−1+1

1
ns

,
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and

(17)
∣∣∣∣
min{Nj ,t2/3}∑
n=Nj−1+1

1
ns

∣∣∣∣ ≤ 1

X
1/2
j−1

max
L≤Nj−Nj−1

∣∣∣∣
Nj−1+L∑

n=Nj−1+1

e−it log n

∣∣∣∣.

Instead of using Lemma 3 only, we need to use Lemma 5 first in this
case. We denote the last sum by Sj , let f(x) = −(t/2π) log x and note
that L ≤ Nj −Nj−1 ≤ (κ−1)Xj−1+1. We note here that the choice of
M will be subject to 2 ≤ γ ≤ M := γXj−1/t1/3, where γ is a constant
whose value will be determined later. Applying Lemma 5 for each j,
we get

|Sj | ≤ ((κ−1)Xj−1 + 1 + γt
−1/3
2 Xj−1)1/2((κ−1)Xj−1 + 1)1/2

M1/2

(18)

+
21/2(κXj−1 + 1)1/2

M1/2

( M−1∑
m=1

(
1 − m

M

)
max
K≤L

|S′
m(K)|

)1/2

,

where

S′
m(K) =

Nj−1+K∑
n=Nj−1+1

e−it[log(n+m)−log(n)];

here we have used the inequality

(19) (a + b)1/2 ≤ a1/2 + b1/2

for any a ≥ 0 and b ≥ 0.

To estimate S′
m(K) we apply Lemma 3 by letting f(x) =

−(t/2π)[log(x + m) − log(x)]. Note that

f ′(x) =
t

2π

(
1
x
− 1

x + m

)
,

and

f ′′(x) = − t

2π

(
1
x2

− 1
(x + m)2

)
= − mt

π(x + m0)3
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for some m0, 0 ≤ m0 ≤ m ≤ M . Putting V = πX3
j−1/mt

and W = π(κ + 1)3X3
j−1/mt, we have 1/W ≤ |f ′′(x)| ≤ 1/V for

Xj−1 < Nj−1 + 1 ≤ x ≤ Nj−1 + K ≤ Xj . It follows that

max
K≤L

|S′
m(K)| ≤ 1

5

(
m1/2(H1 + H2) +

H3

m1/2
+ m(H4 + H5) + H6

)
,

where

H1 =
8(κ − 1)(κ + 1)3/2t1/2

π1/2X
1/2
j−1

, H2 =
8(κ + 1)3/2t1/2

π1/2X
3/2
j−1

,

H3 =
8π1/2(κ + 1)3/2X

3/2
j−1

t1/2
, H4 =

15(κ − 1)t
πX2

j−1

,

H5 =
15t

πX3
j−1

, H6 = 15.

Next we consider

(20)
M−1∑
m=1

(
1 − m

M

)
max
K≤L

|S′
m(K)|

≤ 1
5

M−1∑
m=1

((
1 − m

M

)
m1/2(H1+H2) +

H3

m1/2
+ m(H4+H5) + H6

)
.

We recall a standard result in numerical analysis from [11].

Lemma 7. Let f : C[a, b] → R be twice continuously differentiable.
Then the error for the trapezoidal rule can be represented in the form

∫ b

a

f(x) dx =
b − a

2
[f(a) + f(b)] − (b − a)3

12
f ′′(ξ)

with some ξ ∈ [a, b].

We are going to use the last formula in the form of the inequality
∫ k

k−1

f(x) dx ≥ 1
2
[f(k − 1) + f(k)],
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with k − 1 and k in places of a and b, respectively, and the condition
that f ′′(x) < 0.

For f(x) = [1 − (x/M)]x1/2, we sum from k = 2 to k = M to avoid
the problem of f not being differentiable at 0. We get

∫ M

1

f(x) dx ≥
∑

1≤m≤M−1

f(m) − 1
2

[f(1) + f(M)],

or
4
15

M3/2 − 2
3

+
2

5M
≥

∑
1≤m≤M−1

f(m) − 1
2

+
1

2M
.

With a little algebra, we then get

∑
1≤m≤M−1

(
1 − m

M

)
m1/2 ≤ 4

15
M3/2 − 1

6
− 1

10M
≤ 4

15
M3/2

for the sum of the first two terms on the right side of (20). We have

M−1∑
m=1

(
1 − m

M

)
m−1/2 ≤

∫ M

0

(
1 − u

M

)
1

u1/2
du ≤ 4

3
M1/2

for the sum of the third one in that. We then utilize

M−1∑
m=1

(
1 − m1/2

M

)
m =

1
6

M2 − 1
6
≤ 1

6
M2

for the sum of the fourth and fifth terms. Corresponding to the term
H6, it is easy to have

M−1∑
m=1

(
1 − m

M

)
=

1
2

M.

It follows, if we denote the sum on the left of the inequality (20) by S0,
that
(21)

S0 ≤ 1
5

(
4
15

M3/2(H1+H2) +
4
3

M1/2H3 +
1
6

M2(H4+H5) +
1
2

MH6

)
.
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Recalling (18) and (20), we obtain

|Sj | ≤ (κXj−1 + 1)1/2((κ − 1)Xj−1 + 1)1/2

γ1/2X
1/2
j−1

t1/6

+
21/2(κXj−1 + 1)1/2

γ1/2X
1/2
j−1

t1/6S
1/2
0 .

Also recall (16), (17) and (21). For the factor S0 we shall use an
inequality similar to (19) in six components instead of two. We also
need several similar inequalities with the same or different summands
to (10) and (11) and recall that Xj−1 ≥ t1/3. For t ≥ t2, we wind up
with ∣∣∣∣

∑
t1/3<n≤t2/3

1
ns

∣∣∣∣ ≤ U0 + U1 + · · · + U6,

where

U0 =
(κ + (γ + 1)t−1/3

2 − 1)1/2(κ − 1 + t
−1/3
2 )1/2

γ1/2

(
log t

3 log κ
+ 1

)
t1/6,

U1 =
8γ1/4(κ − 1)1/2(κ + 1)3/4(κ + t

−1/3
2 )1/2

31/25π1/4

(
log t

3 log κ
+ 1

)
t1/6,

U2 =
8γ1/4κ1/2(κ + 1)3/4(κ + t

−1/3
2 )1/2

31/25π1/4(κ1/2 − 1)
,

U3 =
8π1/4κ1/2(κ + 1)3/4(κ + t

−1/3
2 )1/2

31/251/2γ1/4(κ1/2 − 1)
t1/6,

U4 =
γ1/2κ1/2(κ − 1)1/2(κ + t

−1/3
2 )1/2

π1/2(κ1/2 − 1)
t1/6,

U5 =
γ1/2κ(κ + t

−1/3
2 )1/2

π1/2(κ − 1)
,

and

U6 = 31/2(κ + t
−1/3
2 )1/2

(
log t

3 log κ
+ 1

)
.

We conclude that, for t ≥ t2,

(22)
∣∣∣∣

∑
t1/3<n≤t2/3

1
ns

∣∣∣∣ ≤ c3t
1/6 log t + c4t

1/6 + c5 log t + c6,
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where c3 = c30 + c31, c4 = c40 + c41 + c43 + c44, c5 = c56 and
c6 = c62 + c65 + c66, with

c30 =
(κ + (γ + 1)t−1/3

2 − 1)1/2(κ − 1 + t
−1/3
2 )1/2

3γ1/2 log κ
,

c31 =
8γ1/4(κ − 1)1/2(κ + 1)3/4(κ + t

−1/3
2 )1/2

33/25π1/4 log κ
,

c40 =
(κ + (γ + 1)t−1/3

2 − 1)1/2(κ − 1 + t
−1/3
2 )1/2

γ1/2
,

c41 =
8γ1/4(κ − 1)1/2(κ + 1)3/4(κ + t

−1/3
2 )1/2

31/25π1/4
,

c43 =
8π1/4κ1/2(κ + 1)3/4(κ + t

−1/3
2 )1/2

31/251/2γ1/4(κ1/2 − 1)
,

c44 =
γ1/2κ1/2(κ − 1)1/2(κ + t

−1/3
2 )1/2

π1/2(κ1/2 − 1)
,

c56 =
(κ + t

−1/3
2 )1/2

31/2 log κ
, c62 =

8γ1/4κ1/2(κ + 1)3/4(κ + t
−1/3
2 )1/2

31/25π1/4(κ1/2 − 1)
,

c65 =
γ1/2κ(κ + t

−1/3
2 )1/2

π1/2(κ − 1)
,

and
c66 = 31/2(κ + t

−1/3
2 )1/2.

We choose κ = 1.453 and γ = 2 to obtain the lemma for t ≥ t2.

7. Conclusion. Combining Lemma 1, the second part of Lemma 4
and (3) with β = 1/2 gives Theorem 2. Similarly, we combine Lemma 1,
the first part of Lemma 4, Lemma 6 and (3) with β = 1/3 to get
Theorem 3. We have already proved in Section 2 that the corollary is
valid for t ≤ 5100. We finish the proof of the corollary by applying
Theorem 2 for 5100 ≤ t ≤ 4 × 1014 and utilizing Theorem 3 for
t ≥ 4 × 1014.
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8. A. Ivić, The theory of the Riemann zeta function with applications, John Wiley
& Sons, New York, 1985.

9. A.A. Karatsuba, Basic analytic number theory, Springer-Verlag, New York,
1993.

10. Rainer Kress, Numerical analysis, Springer, New York, 1998.

11. J.E. Littlewood, Researches in the theory of the Riemann zeta function, Proc.
London Math. Soc. 20 (1992), records XXII XXVIII.

12. H.L. Montgomery, Ten lectures on the interface between analytic number
theory and harmonic analysis, Amer. Math. Soc., Providence, 1994.

13. Hans Rademacher, Topics in analytic number theory, Springer-Verlag, New
York, 1973.

14. E.C. Titchmarsh, The theory of the Riemann zeta-function, 2nd ed., Oxford
University Press, Oxford, 1985.

15. J.G. van der Corput, Zahlentheoretische Abschützungen, Math. Ann. 84
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