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INEQUALITIES OF OSTROWSKI
TYPE IN TWO DIMENSIONS

NENAD UJEVIĆ

ABSTRACT. A weighted version of Ostrowski type inequal-
ity in two dimensions is established. An ordinary generaliza-
tion of Ostrowski’s inequality in two dimensions and a corre-
sponding Ostrowski-Grüss inequality are also derived.

1. Introduction. In 1938 A. Ostrowski proved the following integral
inequality, [15] or [14, p. 468].

Theorem 1. Let f : I → R, where I ⊂ R is an interval, be a
mapping differentiable in the interior Int I of I, and let a, b ∈ Int I,
a < b. If |f ′(t)| ≤ M , for all t ∈ [a, b] then we have

(1)
∣∣∣∣f(x) − 1

b − a

b∫
a

f(t) dt

∣∣∣∣ ≤
[
1
4

+
(x − (a + b/2))2

(b − a)2

]
(b − a)M,

for x ∈ [a, b].

The first (direct) generalization of Ostrowski’s inequality was given
by Milovanović and Pečarić in [12]. In recent years a number of
authors have written about generalizations of Ostrowski’s inequality.
For example, this topic is considered in [1, 3, 5, 7] and [12]. In this
way some new types of inequalities are formed, such as inequalities of
Ostrowski-Grüss type, inequalities of Ostrowski-Chebyshev type, etc.
The first inequality of Ostrowski-Grüss type was given by Dragomir
and Wang in [5]. It was generalized and improved in [7]. Cheng gave a
sharp version of the mentioned inequality in [3]. The first multivariate
version of Ostrowski’s inequality was given by Milovanović in [10],
see also [11] and [14, p. 468]. Multivariate versions of Ostrowski’s
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inequality were also considered in [2, 6] and [9]. In this paper we give
a weighted two-dimensional generalization of Ostrowski’s inequality.
For that purpose, we introduce specially defined functions, which can
be considered as “harmonic functions,” since they are generalizations of
harmonic or Appell-like polynomials in two dimensions. In Section 3 we
use the mentioned generalization to obtain an ordinary two-dimensional
Ostrowski type inequality. Finally, in Section 4 we give a corresponding
Ostrowski-Grüss inequality.

2. A weighted Ostrowski type inequality. Let Ω = [a, b] ×
[a, b] ⊂ R2 and let w : Ω → R be an integrable function such that
w(x, y) ≥ 0, for all (x, y) ∈ Ω. We define

(2)
Pk+1(t, s) =

1
(k!)2

t∫
a

s∫
a

(t − x)k(s − y)kw(x, y) dx dy,

k = 0, 1, 2, . . .

Specially, we set

P0(t, s) = w(t, s).

Lemma 2. Let Pk(t, s) be defined by (2). Then we have

∂2Pk+1(t, s)
∂t∂s

= Pk(t, s), k = 0, 1, 2, . . . .

Proof. We have

∂Pk+1(t, s)
∂t

=
1

(k!)2
∂

∂t

[ t∫
a

s∫
a

(t − x)k(s − y)kw(x, y) dx dy

]

=
k

(k!)2

t∫
a

s∫
a

(t − x)k−1(s − y)kw(x, y) dx dy.
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From the above relation we get

∂2Pk+1(t, s)
∂t∂s

=
∂

∂s

(
∂Pk+1(t, s)

∂t

)

=
1

(k − 1)!2

t∫
a

s∫
a

(t − x)k−1(s − y)k−1w(x, y) dx dy

= Pk(t, s).

Specially, we have

∂2P1(t, s)
∂t∂s

=
∂2

∂t∂s

( t∫
a

s∫
a

w(x, y) dx dy

)

=
∂

∂s

( s∫
a

w(t, y) dx

)
= w(t, s) = P0(t, s).

Let f : Ω → R be a given function. Here we always suppose that
f ∈ C2n+2(Ω). We now define

(3) Jk+1 =

b∫
a

Pk+1(b, s)
∂2k+1f(b, s)
∂tk∂sk+1

ds, k = 0, 1, . . . , n,

(4) wk(y) =
1
k!

b∫
a

(b − x)kw(x, y) dx ≥ 0, k = 0, 1, . . . , n

and

(5) Qj+1(wk, s) =
1
j!

s∫
a

(s − y)jwk(y) dy, j = 0, 1, . . . , n,

(6) Q0(wk, s) = wk(s).
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Note that

(7) Qk+1(wk, s) = Pk+1(b, s).

We also define

(8) uk(s) =
∂kf(b, s)

∂tk
, k = 0, 1, . . . , n

such that

(9) u
(k+1)
k (s) =

∂2k+1f(b, s)
∂tk∂sk+1

.

Lemma 3. Let Jk+1, wk, Qj+1, uk be defined by (3), (4), (5) and
(8), respectively. Then we have

(10) Jk+1 =
k∑

j=0

(−1)k−j+1Qj+1(wk, b)u(j)
k (b) + (−1)k+1U0(wk),

where

U0(wk) =

b∫
a

wk(s)uk(s) ds.

Proof. From (3), (7) and (9) it follows

(11) Jk+1 =

b∫
a

Qk+1(wk, s)u(k+1)
k (s) ds, k = 0, 1, . . . , n.

We have
(12)

Q′
j+1(wk, s) =

1
(j−1)!

s∫
a

(s−y)j−1wk(y) dy = Qj(wk, s), j=1, . . . , n,

Q′
1(wk, s) = wk(s) = Q0(wk, s).
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We now set Jk+1 = Uk+1(wk). Then from (11) and (12) we get

(−1)k+1Uk+1(wk)

= (−1)k+1

[
Qk+1(wk, s)u(k)

k (s)
∣∣s=b
s=a −

b∫
a

Qk(wk, s)u(k)
k (s) ds

]

= (−1)k+1Qk+1(wk, b)u(k)
k (b) + (−1)k

b∫
a

Qk(wk, s)u(k)
k (s) ds,

since Qk+1(wk, a) = 0. The above relation can be rewritten in the form

(−1)k+1Uk+1(wk) = (−1)k+1Qk+1(wk, b)u(k)
k (b) + (−1)kUk(wk).

In a similar way we get

(−1)kUk(wk) = (−1)kQk(wk, b)u(k−1)
k (b) + (−1)k−1Uk−1(wk).

If we continue this procedure then we obtain

(−1)k+1Jk+1 = (−1)k+1Uk+1(wk)

=
k∑

j=0

(−1)jQj+1(wk, b)u(j)
k (b) + U0(wk).

From the above relation we easily get (10).

We now define

Kk+1 =

b∫
a

∂Pk+1(t, b)
∂t

∂2kf(t, b)
∂tk∂sk

dt, k = 0, 1, . . . , n,(13)

zk(x) =
1
k!

b∫
a

(b − y)kw(x, y) dy ≥ 0, k = 0, 1, . . . , n(14)

and

(15) Rj(zk, t) =
1

(j − 1)!

t∫
a

(t − x)j−1zk(x) dx, j = 1, 2, . . . , n,
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(16) R0(zk, t) = zk(t).

Note that

(17)
∂Pk+1(t, b)

∂t
= Rk(zk, t).

We also define

(18) vk(t) =
∂kf(t, b)

∂sk
, k = 0, 1, . . . , n

such that

(19) v
(k)
k (t) =

∂2kf(t, b)
∂tk∂sk

.

Lemma 4. Let Kk+1, zk, Rj, vk be defined by (13), (14), (15) and
(18), respectively. Then we have

(20) Kk+1 =
k∑

j=1

(−1)k−jRj(zk, b)v(j−1)
k (b) + (−1)kV1(zk),

where

V1(zk) =

b∫
a

zk(t)vk(t) dt.

Proof. From (13), (17) and (19) it follows

(21) Kk+1 =

b∫
a

Rk(zk, t)v(k)
k (t) dt.

We have
(22)

R′
j(zk, t) =

1
(j−2)!

t∫
a

(t−x)j−2zk(x) dx = Rj−1(zk, t), j=2, . . . , n,

R′
1(zk, t) = zk(t) = R0(zk, t).
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We now set Kk+1 = Vk+1(zk). Then from (21) and (22) we get

(−1)kVk+1(zk)

= (−1)kRk(zk, b)v(k−1)
k (b) + (−1)k−1

b∫
a

Rk−1(zk, t)v(k−1)
k (t) dt,

since Rk(zk, a) = 0. We can rewrite the above relation in the form

(−1)kVk+1(zk) = (−1)kRk(zk, b)v(k−1)
k (b) + (−1)k−1Vk(zk).

In a similar way we obtain

(−1)k−1Vk(zk) = (−1)k−1Rk−1(zk, b)v(k−2)
k (b) + (−1)k−2Vk−1(zk).

If we continue this procedure then we get

(−1)kKk+1 = (−1)kVk+1(zk)

=
k∑

j=1

(−1)jRj(zk, b)v(j−1)
k (b) + V1(zk).

From the above relation we easily get (20).

Theorem 5. Let Ω = [a, b] × [a, b] ⊂ R2, and let w : Ω → R be an
integrable function, w(x, y) ≥ 0. If f ∈ C2n+2(Ω) and

(23) M2n+2 = max
(t,s)∈Ω

∣∣∣∣∂
2n+2f(t, s)

∂tn+1∂sn+1

∣∣∣∣ , Mw = max
(t,s)∈Ω

w(t, s)

then we have the identity

(24)

b∫
a

b∫
a

w(t, s)f(t, s) dt ds =
n∑

i=0

Ki+1 −
n∑

i=0

Ji+1 + In+1,

where

In+1 =

b∫
a

b∫
a

Pn+1(t, s)
∂2n+2f(t, s)
∂tn+1∂sn+1

dt ds
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and the inequality

(25)

∣∣∣∣∣∣
b∫

a

b∫
a

w(t, s)f(t, s) dt ds −
n∑

i=0

Ki+1 +
n∑

i=0

Ji+1

∣∣∣∣∣∣
≤ M2n+2Mw

(n + 2)!2
(b − a)2n+4,

where Ji+1, Ki+1are given by Lemmas 3 and 4.

Proof. Integrating by parts, we obtain

(26)

In+1 =

b∫
a

b∫
a

Pn+1(t, s)
∂2n+2f(t, s)
∂tn+1∂sn+1

dt ds

=

b∫
a

ds

b∫
a

Pn+1(t, s)
∂

∂t

(
∂2n+1f(t, s)
∂tn∂sn+1

)
dt

=

b∫
a

ds

[
Pn+1(t, s)

∂2n+1f(t, s)
∂tn∂sn+1

∣∣t=b
t=a

]

−
b∫

a

b∫
a

∂Pn+1(t, s)
∂t

∂2n+1f(t, s)
∂tn∂sn+1

dt ds

=

b∫
a

Pn+1(b, s)
∂2n+1f(b, s)
∂tn∂sn+1

ds

−
b∫

a

b∫
a

∂Pn+1(t, s)
∂t

∂2n+1f(t, s)
∂tn∂sn+1

dt ds,

since Pn+1(a, s) = 0.

If we introduce the notation

(27) Ln+1 =

b∫
a

b∫
a

∂Pn+1(t, s)
∂t

∂2n+1f(t, s)
∂tn∂sn+1

dt ds
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then we can write
In+1 = Jn+1 − Ln+1.

Integrating by parts, we get

Ln+1 =

b∫
a

b∫
a

∂Pn+1(t, s)
∂t

∂

∂s

(
∂2nf(t, s)
∂tn∂sn

)
dt ds

=

b∫
a

dt

[
∂Pn+1(t, s)

∂t

∂2nf(t, s)
∂tn∂sn

∣∣s=b
s=a

]

−
b∫

a

b∫
a

∂2Pn+1(t, s)
∂t∂s

∂2nf(t, s)
∂tn∂sn

dt ds

=

b∫
a

∂Pn+1(t, b)
∂t

∂2nf(t, b)
∂tn∂sn

dt −
b∫

a

b∫
a

Pn(t, s)
∂2nf(t, s)
∂tn∂sn

dt ds,

since (∂Pn+1(t, a)/∂t) = 0 and Lemma 2 holds. Thus,

Ln+1 = Kn+1 − In.

Hence, we have

(28) In+1 = Jn+1 − Kn+1 + In.

The above described procedure is the first step of the whole procedure.
In a similar way we get

In = Jn − Kn + In−1.

If we now continue the above described procedure, then we get

(29) In+1 =
n∑

i=1

Ji+1 −
n∑

i=1

Ki+1 + I1.

We have

(30) I1 =

b∫
a

b∫
a

P1(t, s)
∂2f(t, s)

∂t∂s
dt ds.
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Using the previously given notations we have

u′
0(s) =

∂f(b, s)
∂s

, w0(y) =

b∫
a

w(x, y) dx

and

P1(b, s) =

b∫
a

s∫
a

w(x, y) dx dy = Q1(w0, s).

From the above relations it follows

(31) J1 =

b∫
a

Q1(w0, s)u′
0(s) ds

and

L1 =

b∫
a

s∫
a

∂P1(t, s)
∂t

∂f(t, s)
∂s

dt ds.

such that

(32) I1 = J1 − L1.

We also have

v0(t) = f(t, b), z0(x) =

b∫
a

w(x, y) dy and
∂P1(t, b)

∂t
= R0(z0, t).

From the above relations we get

(33) K1 =

b∫
a

R0(z0, t)v0(t) dt

such that

(34) L1 = K1 − I0,
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where

I0 =

b∫
a

b∫
a

f(t, s)w(t, s) dt ds.

From (29), (32) and (34) it follows

(35) In+1 =
n∑

i=0

Ji+1 −
n∑

i=0

Ki+1 + I0.

Hence, (24) holds.

We now estimate In+1,

∣∣∣∣
b∫

a

b∫
a

Pn+1(t, s)
∂2n+2f(t, s)
∂tn+1∂sn+1

dt ds

∣∣∣∣

=
∣∣∣∣

b∫
a

b∫
a

1
n!2

[ t∫
a

s∫
a

(s − y)n(t − x)nw(x, y) dx dy

]

× ∂2n+2f(t, s)
∂tn+1∂sn+1

dt ds

∣∣∣∣

≤ M2n+2Mw

n!2

∣∣∣∣
b∫

a

b∫
a

(s − a)n+1

n + 1
(t − a)n+1

n + 1
dt ds

∣∣∣∣

=
M2n+2Mw

(n + 1)!2

(
(b − a)n+2

n + 2

)2

=
M2n+2Mw

(n + 2)!2
(b − a)2n+4.

This completes the proof.

3. An inequality of Ostrowski type. Here we use the notations
introduced in Section 2. We now choose w(x, y) = 1. If we substitute
this in (4) then we have

wn(y) =
1
n!

b∫
a

(b − x)n dx =
(b − a)n+1

(n + 1)!
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such that

Qj+1(wn, b) =
1
j!

b∫
a

(b − y)jwn(y) dy =
(b − a)n+1

(n + 1)!
(b − a)j+1

(j + 1)!
.

We also have

U0(wn) =

b∫
a

wn(s)un(s) ds =
(b − a)n+1

(n + 1)!

b∫
a

un(s) ds.

Thus, from Lemma 3 we get
(37)

Jn+1 = Ĵn+1

=
(b−a)n+1

(n + 1)!

[ n∑
j=0

(−1)n−j(b−a)j+1

(j + 1)!
u(j)

n (b)+(−1)n+1

b∫
a

un(s) ds

]
.

If we substitute w(x, y) = 1 in (14) then we have

zn(x) =
1
n!

b∫
a

(b − y)n dy =
(b − a)n+1

(n + 1)!

and

Rj(zn, b) =
1

(j − 1)!

b∫
a

(b − x)j−1zn(x) dx =
(b − a)n+1

(n + 1)!
(b − a)j

j!
.

We also have

V1(zn) =

b∫
a

zn(t)vn(t) dt =
(b − a)n+1

(n + 1)!

b∫
a

vn(t) dt.

Thus, from Lemma 4 we get
(37)

Kn+1 = K̂n+1

=
(b−a)n+1

(n + 1)!

[ n∑
j=1

(−1)n−j(b−a)j

j!
v(j−1)

n (b) + (−1)n

b∫
a

vn(t) dt

]
.
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We now introduce the notation

(38) În+1 =

b∫
a

b∫
a

P̂n+1(t, s)
∂2n+2f(t, s)
∂tn+1∂sn+1

dt ds,

where

(39) P̂n+1(t, s) =
1

(n + 1)!2
(s − a)n+1(t − a)n+1.

Theorem 6. Under the assumptions of Theorem 5 and the notations
(36) (39) we have

∣∣∣∣
b∫

a

b∫
a

f(t, s) dt ds −
n∑

i=0

Ĵi+1 +
n∑

i=0

K̂i+1

∣∣∣∣ ≤ M2n+2

(n + 2)!2
(b − a)2n+4.

Proof. The proof follows immediately from the above considerations
and Theorem 5.

4. An inequality of Ostrowski-Grüss type. Let (X, 〈·, ·〉) be a
real inner product space and e ∈ X, ‖e‖ = 1. Let γ, ϕ, Γ, Φ be real
numbers and x, y ∈ X such that the conditions

(40) 〈Φe − x, x − ϕe〉 ≥ 0 and 〈Γe − y, y − γe〉 ≥ 0

hold. In [4] we can find the inequality

(41) |〈x, y〉 − 〈x, e〉 〈y, e〉| ≤ 1
4
|Φ − ϕ| |Γ − γ| .

We also have

(42) |〈x, y〉−〈x, e〉 〈y, e〉| ≤
(
‖x‖2−〈x, e〉2

)1/2 (
‖y‖2−〈e, y〉2

)1/2

.
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Let X = L2(Ω) and e = 1/(b − a). If we define

(43)

T (f, g) =
1

(b−a)2

b∫
a

b∫
a

f(t, s)g(t, s) dt ds

− 1
(b−a)4

b∫
a

b∫
a

f(t, s) dt ds

b∫
a

b∫
a

g(t, s) dt ds

then from (40) and (41) we get the Grüss inequality in L2(Ω),

(44) |T (f, g)| ≤ 1
4
(Γ − γ)(Φ − ϕ),

if
γ ≤ f(x, y) ≤ Γ, ϕ ≤ g(x, y) ≤ Φ, (x, y) ∈ Ω.

From (42) we get the pre-Grüss inequality

(45) T (f, g)2 ≤ T (f, f)T (g, g).

Theorem 7. Under the assumptions of Theorem 5 we have

(46)
∣∣∣∣

b∫
a

b∫
a

f(t, s) dt ds +
n∑

i=0

Ĵi+1 −
n∑

i=0

K̂i+1

− (b−a)2n+4

(n + 2)!2
[v(b, b) − v(b, a) − v(a, b) + v(a, a)]

∣∣∣∣
≤ M2n+2 − m2n+2

2(n + 1)!2
(b − a)2n+4

[
1

(2n + 3)2
− 1

(n + 2)4

]1/2

,

where v(x, y) = ∂2nf(x, y)/∂xn∂yn and Ĵi+1, K̂i+1 are defined in
Theorem 6, while

m2n+2 = min
(x,y)∈Ω

∂2n+2f(x, y)
∂tn+1∂sn+1

, M2n+2 = max
(x,y)∈Ω

∂2n+2f(x, y)
∂tn+1∂sn+1

.
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Proof. We have, see Theorems 5 and 6,

b∫
a

b∫
a

f(t, s) dt ds = −
n∑

i=0

Ĵi+1 +
n∑

i=0

K̂i+1 + În+1.

We add the terms

L̂n+1 = ± 1
(b − a)2

b∫
a

b∫
a

P̂n+1(t, s) dt ds

b∫
a

b∫
a

∂2n+2f(t, s)
∂tn+1∂sn+1

dt ds

= ± (b − a)2n+2

(n + 2)!2
[v(b, b) − v(b, a) − v(a, b) + v(a, a)]

to the above relation. Then we get

b∫
a

b∫
a

f(t, s) dt ds +
n∑

i=0

Ĵi+1 −
n∑

i=0

K̂i+1 − L̂n+1 = În+1 − L̂n+1.

Hence, we have

În+1 − L̂n+1 = (b − a)2T
(

P̂n+1(t, s),
∂2n+2f(t, s)
∂tn+1∂sn+1

)

where T (·, ·) is defined by (43) and

∣∣∣În+1 − L̂n+1

∣∣∣ ≤ (b − a)2T
(

∂2n+2f(t, s)
∂tn+1∂sn+1

,
∂2n+2f(t, s)
∂tn+1∂sn+1

)1/2

× T
(
P̂n+1(t, s), P̂n+1(t, s)

)1/2

,

since (45) holds.

We also have

T

(
∂2n+2f(t, s)
∂tn+1∂sn+1

,
∂2n+2f(t, s)
∂tn+1∂sn+1

)1/2

≤ 1
2
(M2n+2 − m2n+2)
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by the Grüss inequality and

T
(
P̂n+1(t, s), P̂n+1(t, s)

)
=

1
(b−a)2

b∫
a

b∫
a

P̂n+1(t, s)2 dt ds

− 1
(b−a)4

( b∫
a

b∫
a

P̂n+1(t, s) dt ds

)2

=
(b−a)4n+4

(n + 1)!4

[
1

(2n + 3)2
− 1

(n + 2)4

]
.

From the above relations we see that (46) holds.
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7. M. Matić, J. Pečarić and N. Ujević, Improvement and further generalization
of some inequalities of Ostrowski-Grüss type, Comput. Math. Appl. 39, (2000),
161 175.

8. , Generalizations of weighted version of Ostrowski’s inequality and some
related results, J. Inequal. Appl. 5 (2000), 639 666.

9. , Weighted version of multivariate Ostrowski type inequalities, Rocky
Mountain J. Math 31 (2001), 511 538.
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