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A THEOREM OF KREIN REVISITED

TIMUR OIKHBERG AND VLADIMIR G. TROITSKY

ABSTRACT. M. Krein proved in [9] that if T is a contin-
uous operator on a normed space leaving invariant an open
cone, then its adjoint T ∗ has an eigenvector. We present gen-
eralizations of this result as well as some applications to C∗-
algebras, operators on l1, operators with invariant sets, con-
tractions on Banach lattices, the Invariant Subspace Problem,
and von Neumann algebras.

1. Introduction. M. Krein proved in [9, Theorem 3.3] that if T is
a continuous operator on a normed space leaving invariant a nonempty
open cone, then its adjoint T ∗ has an eigenvector. Krein’s result has
an immediate application to the Invariant Subspace problem because
of the following observation. If T is a bounded operator on a Banach
space and not a multiple of the identity, and T ∗f = λf , then the kernel
of f is a closed nontrivial subspace of codimension 1 which is invariant
under T . Moreover, Range (λI − T ) is a closed nontrivial subspace
which is proper (it is contained in the kernel of f) and hyperinvariant
for T ; that is, it is invariant under every operator commuting with T .

Several proofs and modifications of Krein’s theorem appear in the
literature, see, e.g. [3, Theorems 6.3 and 7.1] and [12, p. 315]. We prove
yet another version of Krein’s theorem: if T is a positive operator on an
ordered normed space in which the unit ball has a dominating point,
then T ∗ has a positive eigenvector. We deduce the original Krein’s
version of the theorem from this, as well as several applications and
related results.

In particular, we show that if a bounded operator T on a Banach space
satisfies any of the following conditions, then T ∗ has an eigenvector.
Moreover, if the condition holds for a commutative family of operators,
then the family of the adjoint operators has a common eigenvector.
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• T leaves invariant a cone with an interior point;

• T is a positive operator on a unital C∗-algebra;

• T is an operator on l1 such that entries of its matrix satisfy
tkk ± tkj ≥ ∑

i �=k |tik ± tij | for some k and for all j �= k;

• T leaves invariant a convex set whose interior is non-void and
doesn’t contain zero;

• T is a contraction with a fixed point;

• T is a positive contraction on a Banach lattice and Te > e for some
e > 0.

We also show that under the last condition T has a closed invariant
order ideal. Finally, we prove a noncommutative version of this result
for rearrangement invariant operator spaces arising from von Neumann
algebras.

Throughout the paper X denotes a real or complex normed space,
X∗ the dual of X, T a bounded linear operator on X, and BX the
closed unit ball of X.

Definition 1. We call a subset K of a normed space X a cone if
K is closed under addition and nonnegative scalar multiplication, and
there exists a nonzero vector x ∈ K such that −x /∈ K.

Our definition of a cone is a most general one. In the literature such
objects are sometimes called wedges, while for a cone it is often assumed
in addition that x ∈ K implies −x /∈ K for every nonzero x. This
additional condition ensures that the relation on X defined via “x ≤ y
if and only if y−x ∈ K” is a linear order relation, and, vice versa, every
linear order relation defines a cone satisfying this condition, namely, the
cone X+ of all nonnegative elements. We will still use the symbol “≤,”
even though in our case x > 0 and x < 0 may happen simultaneously.
However, this does not create any problems, and, naturally, everything
we do is still valid for the more restrictive definitions of a cone. See [9]
for a discussion on definitions and properties of cones.

Given a closed cone K in a normed space X, we will call X an ordered
normed space with respect to the (semi)order relation determined by K.
Notice that K coincides with the cone X+ of all nonnegative elements
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of X. A linear operator is said to be positive if T (X+) ⊆ X+. For
f ∈ X∗ we write f ≥ 0 or f ∈ X∗

+ if f(x) ≥ 0 whenever x ≥ 0. Clearly,
X∗

+ is a w∗-closed cone in X∗. It can be easily verified that if T is a
positive bounded operator on X then T ∗ is a positive operator on X∗,
that is, T ∗(X∗

+) ⊆ X∗
+. It is known (see, e.g. [9]) that if K is a closed

cone, then K and −K can be (nonstrictly) separated by a continuous
functional, or, equivalently, there exists a nontrivial positive functional
in X∗.

Lemma 2. Suppose that X is a real normed space and e ∈ X with
‖e‖ = 1. If f ∈ X∗ then f(e) = ‖f‖ if and only if f(x) ≤ f(e) for all
x ∈ BX .

Proof. If f(e) = ‖f‖, then f(x) ≤ |f(x)| ≤ ‖f‖‖x‖ = f(e) whenever
‖x‖ = 1. Conversely, suppose f(x) ≤ f(e) for all x of norm one. Since
−f(x) = f(−x) ≤ f(e), we have |f(x)| ≤ f(e), so that ‖f‖ ≤ f(e).
Finally, f(e) = |f(e)| ≤ ‖f‖.

Definition 3. If X is an ordered normed space and e ∈ BX , we say
that e dominates the unit ball of X if x ≤ e for all x ∈ BX . We then
write BX ≤ e.

In this case it follows immediately from Lemma 2 that every positive
functional attains its norm on e. In the proof of the following theorem
we use techniques developed in the proof of a special case of Krein’s
theorem in [2, 3].

Theorem 4. Suppose that X is an ordered real normed space and
e ∈ X such that ‖e‖ = 1 and BX ≤ e. If T is a positive operator on X
then T ∗ has a positive eigenvector. Moreover, if Γ is a commutative
family of positive operators on X, then their adjoints have a common
positive eigenvector.

Proof. Let S={f ∈X∗
+ : f(e)=1}. Since S=X∗

+∩{f ∈X∗ : f(e)=1}
then S is w∗-closed. Furthermore, if f ∈ S then ‖f‖ = f(e) = 1 by
Lemma 2, so that S ⊆ BX , hence is w∗-compact. For T ≥ 0 and f ∈ S
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we define

(1) FT (f) =
f + T ∗f

[f + T ∗f ](e)
=

f + T ∗f
1 + (T ∗f)(e)

.

Since T ∗ ≥ 0 then FT (f) ≥ 0. Clearly,
[
FT (f)

]
(e) = 1, so that

FT (f) ∈ S; hence FT :S → S.

It can be easily verified that FT is w∗-to-w∗-continuous. Indeed, if
fα

w∗
→ f , then for all x ∈ X we have

(2)

[FT (fα)] (x) =
fα(x)+(T ∗fα)(x)

1 + (T ∗fα)(e)
→ f(x)+(T ∗f)(x)

1 + (T ∗f)(e)
= [FT (f)] (x)

because T ∗ is w∗-to-w∗-continuous.

By the Fixed Point theorem there exists h ∈ S such that FT (h) = h,
i.e., (h + T ∗h)/

(
1 + (T ∗h)(e)

)
= h so that T ∗h =

(
(T ∗h)(e)

)
h; hence,

h is an eigenvector of T ∗.

Let Γ be a commutative family of positive operators on X. For T ∈ Γ
denote AT the set of the fixed points of FT in S. It can be easily
verified that f ∈ S belongs to AT if and only if f is an eigenvector
of T ∗. Clearly, AT is w∗-closed, hence w∗-compact. We claim that
{AT }T∈Γ has the finite intersection property; this would imply that it
has nonempty intersection, and, therefore, the family {T ∗}T∈Γ has a
common eigenvector in S. We prove the claim by induction on the size
of the set. Suppose that

⋂
T∈Γ0

AT �= ∅ for every n-element subset
Γ0 ⊆ Γ. Let Γ0 be an n-element subset of Γ and S ∈ Γ, show that⋂

T∈Γ0∪{S} AT �= ∅. Pick f ∈ ⋂
T∈Γ0

AT ; then for each T in Γ0 there
exists λT ≥ 0 such that T ∗f = λT f . Let CT = ker(λT I −T ∗)∩S, then
CT is a convex w∗-closed subset of AT , hence w∗-compact. It follows
that C =

⋂
T∈Γ0

CT is convex and w∗-compact. Furthermore, C �= ∅

as f ∈ C. If T ∈ Γ0 and h ∈ CT , then

(3) T ∗FS(h) =
T ∗h + T ∗S∗h
1 + (S∗h)(e)

=
λT h + S∗(λT h)
1 + (S∗h)(e)

= λT FS(h),

so that FS(h) ∈ CT . It follows that FS(CT ) ⊆ CT , so that FS(C) ⊆ C.
The Fixed Point theorem implies that FS has a fixed point in C; hence
AS ∩ C �= ∅. Since C ⊆ ⋂

T∈Γ0
AT , this proves the claim.
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Theorem 5. If T is a continuous operator on a real normed space,
leaving invariant a cone with an interior point, then T ∗ has a positive
eigenvector. Moreover, a commutative collection of such operators has
a common positive eigenvector.

Proof. Let Γ be a commutative family of bounded operators on
X, C a cone in X such that T (C) ⊆ C for each T ∈ Γ, and e an
interior point of C. Without loss of generality, C is closed, ‖e‖ > 1
and e + BX ⊆ C. Let C0 be the cone spanned by e + BX , that is,
C0 = {α(e + x) : α ≥ 0, ‖x‖ ≤ 1}. Put W = (C0 − e) ∩ (e − C0).

Note that e + BX ⊆ C0 so that BX ⊂ C0 − e. Also, BX = −BX ⊆
e − C0, so that BX ⊆ W . Furthermore, W is bounded. Indeed, if
w ∈ W then w = α1(e + x1) − e = e − α2(e + x2) for some α1, α2 > 0
and x1, x2 ∈ BX . It follows that α1x1 +α2x2 =

(
2−(α1+α2)

)
e. Thus,∣∣2 − (α1 + α2)

∣∣‖e‖ = ‖α1x1 + α2x2‖ ≤ α1 + α2. If α1 + α2 > 2 then(
(α1 +α2)−2

)‖e‖− (α1 +α2) ≤ 0, so that α1 +α2 ≤ (2‖e‖)/(‖e‖−1).
It follows that α1 ≤ α1+α2 ≤ max

{
2, (2‖e‖)/(‖e‖−1)

}
. Finally, since

‖w‖ ≤ α1(‖e‖ + 1) + ‖e‖, it follows that W is bounded. Thus, W is
the unit ball of a norm, which is equivalent to the original norm of X.
In the new norm, e will be of norm one. Finally, e dominates W with
respect to the order defined by C. Now apply Theorem 4.

Remark 6. One can easily see that Theorem 5 is equivalent to the
original theorem of Krein. Indeed, if T leaves invariant a nonempty
open cone, then Theorem 5 states that T ∗ has an eigenvector.

Conversely, suppose that T leaves invariant a cone with an interior
point. Let x be an interior point of the cone; then f(x+Tx) ≥ f(x) > 0
for every positive functional f �= 0, so that x + Tx is again an interior
point of the cone. It follows that I + T leaves invariant the interior of
the cone, so that (I +T )∗ has an eigenvector by Krein’s theorem. This
yields the existence of an eigenvector for T ∗.

Next, we discuss some applications of Theorems 4 and 5.

Recall that an element e in a Banach lattice E is called a strong
unit if for every positive x ∈ E there exists a natural number n such
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that x ≤ ne. It is known (see [4, p. 188] for details) that a Banach
lattice with a strong unit is an AM-space with unit up to an equivalent
norm. But in an AM-space the unit dominates the unit ball. Therefore,
Theorem 4 yields the following result.

Corollary 7. The adjoint of a positive operator on a Banach lattice
with a strong unit has a positive eigenvector.

In particular, the adjoint of a positive operator on a C(Ω) space,
where Ω is a compact Hausdorff space, has a positive eigenvector. A
direct proof of this fact can also be found in [2].

The case of complex normed spaces can often be reduced to the
real case as follows. Suppose that Xc is a complexification of a real
ordered normed space X, every element of Xc can be written in the
form x+ iy for some x, y ∈ X. If T is a positive operator on X, then its
complexification Tc: Xc → Xc defined by Tc(x+ iy) = Tx+ iTy will be
referred to as a positive operator on Xc. Notice that T coincides with
the restriction of Tc to X. Suppose that T ∗f = λf for some f ∈ X∗

and λ ∈ R, then we can extend f to a continuous linear functional fc

on Xc via fc(x + iy) = f(x) + if(y). Then T ∗
c fc = λfc. Indeed,

(4)
[T ∗

c fc](x+iy) = fc

(
Tc(x+iy)

)
= fc(Tx+iTy) = f(Tx)+if(Ty)

= (T ∗f)(x)+i(T ∗f)(y) = λf(x)+iλf(y) = λfc(x+iy).

Thus, Theorems 4 and 5 are applicable to complex normed spaces.

For example, we can apply our technique to positive operators on
C∗-algebras. A C∗-algebra A can be viewed as the complexification of
the real Banach space Asa of its self-adjoint elements. Recall that a
self-adjoint element a in A is positive if σ(a) ⊂ R+. If A has unit e and
x is a self-adjoint element of A such that ‖x‖ ≤ 1, then the Spectral
Mapping theorem implies that σ(e−x) ⊆ [0, 2]; hence x ≤ e. It follows
that e dominates the unit ball of Asa. Theorem 4 immediately yields
the following result.

Corollary 8. If T is a positive operator on a unital C∗-algebra, then
T ∗ has a positive eigenvector.
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Let (ej)∞j=1 denote the standard unit basis of X = �1, while (e∗i )
∞
i=1

stands for the dual basis of X∗. Recall that every bounded operator T
on �1 can be written as an infinite matrix with entries tij = 〈e∗i , T ej〉.

Theorem 9. Suppose that T is a bounded operator on �1 with matrix
(tij), and suppose that there exists an index k such that

(5) tkk ± tkj ≥
∑
i �=k

|tik ± tij |

for each j �= k. Then T ∗ has a positive eigenvector.

Proof. Without loss of generality k = 1. Let K be the cone spanned
by e1 +BX . It is easy to see that K is spanned by the set {e1 ± ei}∞i=2.
We claim that K = {(xi) | x1 ≥ ∑∞

i=2 |xi|}. Indeed, it is easy
to see that the later set is closed under addition and positive scalar
multiplication; hence it is a cone. Furthermore, it contains e1 ± ei for
each i ≥ 2, so that it contains K. Finally, if a nonzero sequence (xi)
satisfies x1 ≥ ∑∞

i=2 |xi| then x/x1 − e1 ∈ BX , so that (xi) is contained
in K. Clearly, e1 dominates the unit ball of X with respect to the order
induced by K. The condition t11 ± t1j ≥ ∑∞

i=2 |ti1 ± tij | means that

(6)
T (e1 ± ej) = Te1 ± Tej = (the 1st column of T )

± (the j-th column of T ) ∈ K

for every j ≥ 2; it follows that T (K) ⊆ K. Theorem 4 finishes the
proof.

Example 10. Let K be as in the preceding proof, and let C be the
set of all operators on �1 preserving K. Clearly, the adjoint of every
operator in C has an eigenvector. By construction, C is itself a cone
and a multiplicative semi-group in L(�1). It is easy to see that C is
closed in the strong operator topology (and, being a convex set, it is
also closed in the weak operator topology). Finally, we claim that C
has nonempty interior with respect to the norm topology of L(�1). For
example, put S = (sij) such that sij equals 1 if i = j = 1 and 0
otherwise. We claim that S is an interior point of C. Indeed, suppose
that R = (rij) such that ‖R‖ < 1/5, and let T = S + R. Show that
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T ∈ C. Note that
∑∞

i=1 |rij | = ‖Rej‖ < 1/5 for every j ≥ 1. It follows
that t11 ± t1j = 1 + r11 ± r1j ≥ 1 − 1/5 − 1/5 = 3/5 for every j > 1.
On the other hand,

(7)
∞∑

i=2

|ti1 ± tij | =
∞∑

i=2

|ri1 ± rij | ≤
∞∑

i=2

|ri1| +
∞∑

i=2

|rij | <
2
5
.

Hence, T satisfies (5) and, therefore, T ∈ C.

Corollary 11. If T is an operator on a real Banach space leaving
invariant a convex set whose interior is nonvoid and doesn’t contain
zero, then T ∗ has an eigenvector. Moreover, a commutative collection
of such operators has a common eigenvector.

Proof. Apply Theorem 5 to the cone generated by the invariant set.

Krein’s theorem gives a natural insight and provides a simple solution
to Exercise 7.5.10 of [7], even though at first glance the statement seems
to have no connection to order structures.

Proposition 12. [7, Exercise 7.5.10]. If ‖T‖ = 1 and T has a
nonzero fixed point, then T ∗ has an eigenvector.

Proof. Suppose that ‖T‖ = 1 and Te = e for some e of norm one.
Then the set e + BX is invariant under T and so is the cone generated
by this set. Clearly, this cone is proper and has a nonvoid interior.
Now apply Theorem 5.

This approach can be generalized as follows.

Definition 13. If X is an ordered normed space, we say that it has
monotone norm if 0 ≤ x ≤ y implies ‖x‖ ≤ ‖y‖.
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Theorem 14. Suppose that T is a positive operator on an ordered
normed space with monotone norm such that ‖T‖ = 1 and Te ≥ e for
some e > 0. Then T ∗ has a positive eigenvector.

Proof. Without loss of generality we can assume ‖e‖ = 1. Since the
norm is monotone, we have (e + X+) ∩ B◦

X = ∅, where B◦
X stands for

the open unit ball of X. Hence, X+ ∩ (B◦
X − e) = ∅, so that the two

sets can be separated by a positive functional f . Then f is nonnegative
on e − BX . Let K be the closed cone generated by X+ and e − BX .
Since f is nonnegative on K, it is, indeed, a proper cone.

If x ∈ BX then e−x ∈ K, so that e dominates BX in the (semi)order
induced on X by K. It is given that T (X+) ⊆ X+ ⊆ K. Furthermore,
if x ∈ BX then Tx ∈ BX , and we have T (e−x) = (Te−e)+(e−Tx) ∈
X++(e−BX) ⊆ K, so that T (e−BX) ⊆ K. It follows that T (K) ⊆ K.
Now apply Theorem 4 to the order induced by K.

Notice that the condition ‖T‖ = 1 in Proposition 12 cannot be
dropped. Indeed, for any α > 1, let T be α times the left shift on
�p, 1 ≤ p < ∞, that is, T (x1, x2, x3, . . . ) = (αx2, αx3, . . . ). Then
‖T‖ = α and (1, α−1, α−2, . . . ) is a fixed point of T . Nevertheless, T ∗

clearly has no eigenvectors.

It follows immediately that under the hypothesis of Theorem 14 the
operator T has an invariant subspace of codimension one. In fact, we
will show that if Te > e then there is a closed face of the positive cone of
X which is invariant under T . Recall that E ⊂ X+ (X+ is the positive
cone of X) is called a face of X+ if E is itself a closed cone, and, for
x1, x2 ∈ X+, x1 + x2 ∈ E implies x1, x2 ∈ E. One can easily see that a
closed cone E ⊂ X+ is a face of X+ if and only if it is hereditary, that
is, x ∈ E whenever 0 ≤ x ≤ y and y ∈ E.

Theorem 15. Suppose that X is an ordered normed space with
monotone norm and T is a positive operator on X such that ‖T‖ = 1
and Te > e for some e > 0. Then there exists a nontrivial closed face
E of the positive cone of X which is invariant under T . Moreover,
if X is a Banach lattice, then E − E is closed nontrivial ideal in X,
invariant under T .
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Proof. Without loss of generality, ‖e‖ = 1. Let

(8) E = {x ≥ 0 : lim
α→0+

(‖e + αx‖ − 1)/α = 0}.

Note that if x ∈ E and 0 ≤ y ≤ x then y ∈ E. Note also that E is
nontrivial as the positive vector Te − e ∈ E because, for α ∈ (0, 1),

(9)
1 = ‖e‖ ≤ ‖e + α(Te−e)‖ ≤ ‖(1−α)e + αTe‖
≤ (1−α)‖e‖ + α‖Te‖ = 1.

Furthermore, E is T -invariant. Indeed, suppose α > 0 and x ∈ E.
Then

(10) ‖e + αTx‖ ≤ ‖Te + αTx‖ ≤ ‖e + αx‖.

Therefore,

(11) lim
α→0+

(‖e + αTx‖ − 1)/α ≤ lim
α→0+

(‖e + αx‖ − 1)/α = 0.

It is easy to see that E is a cone. Indeed, if x, y ∈ E, then cx ∈ E for
c > 0, and

(12) ‖e + α(x + y)/2‖−1 ≤ 1
2
(
(‖e + αx‖−1)+(‖e + αy‖−1)

)
= o(α)

as α approaches 0. Thus, x + y ∈ E.

To show that E is closed, suppose xi is a sequence of positive elements
in E, converging to x in norm. We shall show that x ∈ E. Fix
ε > 0. It suffices to prove that, whenever α > 0 is sufficiently
small, the inequality ‖e + αx‖ ≤ 1 + εα is satisfied. Find i for which
‖x − xi‖ < ε/2. There exists α0 such that ‖e + αxi‖ ≤ 1 + εα/2
whenever 0 < α < α0. Thus, for α ∈ (0, α0),

(13) ‖e + αx‖ ≤ ‖e + αxi‖+α‖x − xi‖ ≤ (1+εα/2)+εα/2 = 1+εα.

Finally, e /∈ E; hence E is a nontrivial face of the positive cone of X.

Next, suppose that X is a Banach lattice, and put F = E−E. Clearly,
F is an order ideal, that is, F is a linear subspace such that x ∈ F and
|y| ≤ |x| imply y ∈ F . Show that F is closed. Suppose z ∈ F , and
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(xi), (yi) are sequences in E such that limi ‖z − (xi − yi)‖ = 0. Then
limi ‖z+ − (xi − yi)+‖ = 0. Let ai = (xi − yi)+ ∧ z+. By the above,
limi ‖ai − z+‖ = 0. Note that

(14) 0 ≤ ai ≤ (xi − yi)+ ≤ |xi| + |yi| ∈ E,

hence ai ∈ E. But E is closed, thus z+ ∈ E. Similarly, z− ∈ E, and
therefore, z ∈ F .

Finally we prove that F is nontrivial. More precisely, we show that
e /∈ F . Indeed, suppose there exist x, y ∈ E such that ‖e − (x − y)‖ ≤
1/3. Then (x − y)+ ≤ |x| + |y| ∈ E, so (x − y)+ ∈ E.

Pick α > 0 for which ‖e + α(x − y)+‖ ≤ 1 + α/3. Then

(15)

1 + α = ‖e + αe‖ =
∥∥e + α(x−y)+ + α

(
e − (x−y)+

)∥∥
≤ ∥∥e + α(x−y)+

∥∥ + α
∥∥e − (x−y)+

∥∥
≤ 1 +

α

3
+ α

∥∥e − (x−y)
∥∥ = 1 +

2α

3
,

a contradiction.

Similar results hold for rearrangement invariant operator spaces, aris-
ing from von Neumann algebras. For the benefit of the reader, we give
a brief introduction into this natural noncommutative generalization of
Banach lattices.

Suppose N is a von Neumann algebra on a Hilbert space H, equipped
with a faithful normal semifinite trace τ . Following [11], we say that
a closed, densely defined linear operator x on H is affiliated with N if
u∗xu = x for every unitary u ∈ N ′ (the commutant of N). An operator
x is called τ -measurable if, for every ε > 0 there exists a (self-adjoint)
projection p ∈ N such that p(H) ⊂ D(x) and τ (1 − p) < ε (1 is the
identity in N). The set of all τ -measurable operators is denoted by Ñ .

Following [8], we introduce for x ∈ Ñ the generalized eigenvalue
function µ(·, x) : [0,∞) → [0,∞), defined by

(16) µ(t, x) = inf{s ≥ 0 : τ (χ(s,∞)(|x|)) ≤ t}.
Equivalently (see [8]), we have

(17) µ(t, x) = inf{‖xp‖ : p ∈ N a projection, τ (1 − p) ≤ t}.



206 T. OIKHBERG AND V.G. TROITSKY

Following [6], we call a linear manifold G ⊂ Ñ , equipped with the
norm ‖·‖, a (normed) rearrangement invariant operator space, (r.i.o.s.,
for short), if whenever x ∈ G, y ∈ Ñ , and µ(t, y) ≤ µ(t, x) for every
t, then y ∈ G and ‖y‖ ≤ ‖x‖. E is called symmetric if, in addition,
‖y‖ ≤ ‖x‖ whenever

(18)
∫ a

0

µ(t, y) dt ≤
∫ a

0

µ(t, x) dt

for every a > 0.

To underscore the connections between r.i.o.s. and Banach lattices,
consider the commutative case of N = L∞(I), where I is an interval
(0, a), a ∈ (0,∞]. By Proposition 2.a.8 of [10], any r.i.o.s. G which
satisfies

(∗) L1(I) ∩ L∞(I) ⊂ G ⊂ L1(I) + L∞(I)

is symmetric. We say that G has the Fatou property if, whenever f ∈G,
(fn) is a sequence of nonnegative elements of G, and fn(ω) ↗ f(ω),
then ‖fn‖ → ‖f‖.

Suppose N is a von Neumann algebra with a normal faithful semi-
finite trace τ , and G is as in the previous paragraph, with I = (0, τ (1)).

Following [6], we define the space G(N) = {x ∈ Ñ |µ(·, x) ∈ G},
equipped with the norm ‖x‖G(N) = ‖µ(·, x)‖G. If G satisfies (∗), then
N ∩ N∗ ⊂ G(N) ⊂ N + N∗. We identify L∞(N) with N itself, and
L1(N) with N∗, the predual of N . If, in addition, G has Fatou property,
then G(N) is norm closed (see Proposition 1.7 and Corollary 2.4 of [6]).

If G ⊂ N + N∗ is a r.i.o.s., we denote by G+ the set of positive
elements in G, i.e. G ∩ Ñ+. Then every self-adjoint element in G can
be represented as a difference of two positive ones (see [5] and [6]).
Moreover, every element x ∈ G can be written as x = x1−x2+i(x3−x4),
with xj ∈ G+. Finally, the trace τ extends naturally to (N + N∗)+ by
setting τ (x) =

∫ ∞
0

µ(t, x) dt for x ≥ 0.

Theorem 16. Suppose N is a von Neumann algebra with a faithful
normal semifinite trace τ , G is a norm closed symmetric rearrangement
invariant subspace of Ñ satisfying N ∩ N∗ ⊂ G ⊂ N + N∗, and
T : G → G is a positive contraction such that Te > e for some positive
e ∈ G.
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Then T has an invariant nontrivial face E of the positive cone of G
Moreover, E−E is a nontrivial closed subspace of G, invariant under
T .

To prove the theorem, we need to collect some facts related to
conditional expectations on von Neumann algebras. Suppose N is a
von Neumann algebra equipped with a normal faithful semifinite trace
τ , and M is a Neumann subalgebra of N such that the restriction
of τ to M is semifinite. Then (see Proposition 5.2.36 of [13]), there
exists a positive contractive projection Φ from N onto M such that
Φ(abc) = aΦ(b)c and τ (Φ(ab)) = τ (aΦ(b)) whenever a, c ∈ N∗ and
b ∈ N . Moreover, it follows from the proof that, for any x ∈ N ∩ N∗,
Φ(x) ∈ M ∩M∗ and ‖Φ(x)‖M∗ ≤ ‖x‖N∗ . Since N ∩N∗ (or M ∩M∗) is
dense in N∗, respectively, M∗, Φ can be extended to a contraction from
N∗ to M∗. Thus, Φ can be thought of as an operator from N + N∗ to
M +M∗ respectively, which maps N to M and N∗ to M∗ contractively.

Lemma 17. Suppose N , M and τ are as above, and G is a symmetric
r.i.o.s. with N ∩N∗ ⊂ G ⊂ N + N∗. Then Φ maps G into G∩ M̃ , and
‖Φ(x)‖G ≤ ‖x‖G for any x ∈ G.

Proof. As noted above, Φ acts contractively from N to M and from
N∗ to M∗. For x ∈ G we have, by Theorem 4.7 of [6],

∫ a

0
µ(t, Φ(x)) dt

≤ ∫ a

0
µ(t, x) dt for any a > 0. Thus, Φ(x) ∈ G, and ‖Φ(x)‖ ≤ ‖x‖.

Proof of Theorem 16. Suppose e ∈ G+, ‖e‖ = 1, and T : G → G is a
positive operator such that Te > e.

Let

(19) E = {x ≥ 0 : lim
α→0+

(‖e + αx‖ − 1)/α = 0}.

As in the proof of Theorem 15, we can show that E is a closed nontrivial
face of G+ (E is nonempty, and e /∈ E). Moreover, E is invariant under
T . Therefore the closed linear span of E is invariant under T . It remains
to show that e does not belong to the closed linear span of E. It suffices
to show that, whenever x1, x2 ∈ E, we have ‖e + x1 − x2‖ ≥ 1/6.
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First suppose that either τ (1) < ∞, or limt→∞ µ(t, e) = 0. Then
there exists a commutative von Neumann algebra M such that e ∈ M̃
and the restriction of τ to M is semifinite. Indeed, if τ (1) < ∞, we can
consider the von Neumann algebra generated by projections χ(a,∞)(e),
where a > 0. If limt→∞ µ(t, e) = 0, observe that τ (χ(a,∞)(e)) < ∞ for
any a > 0, and let p = supa>0

χ(a,∞)(e). Use Zorn’s lemma to find
mutually orthogonal projections (pi) ∈ N such that τ (pi) < ∞ and∑

i pi = 1 − p. Then let M be the von Neumann algebra generated by
projections χ(a,∞)(e) and pi. Clearly M satisfies our conditions.

Let Φ be the conditional expectation from N onto M . By Lemma 17,
Φ acts as a contraction from G to G1 = G ∩ M̃ . Then G1 can be
regarded as a Banach lattice.

Let

(20) E1 = {x ∈ G1 : x ≥ 0, lim
α→0+

(‖e + αx‖ − 1)/α = 0}.

As in the proof of Theorem 15, ‖e + x − y‖ ≥ 1/3 whenever x, y ∈ E1.

However, Φ(E) ⊂ E1, and therefore

(21) ‖e + x − y‖ ≥ ‖e + Φ(x) − Φ(y)‖ ≥ 1
3

whenever x, y ∈ E.

The case of a = limt→∞ µ(t, e) > 0 is more complicated. Note
that ‖a1‖G ≤ ‖e‖ = 1, hence ‖x‖G ≤ ‖x‖N‖1‖G ≤ ‖x‖N/a for any
x ∈ N . Let k = �6/a�, pi = χ[ia/k,(i+1)a/k)(e) for 0 ≤ i ≤ k − 1,
pk = χ[(k−1)a/k,a](e), and e1 = χ(a,∞)(e)e +

∑k
i=1(i/k)api. Then

e ≥ e1, e − e1 ∈ N , and

(22) ‖e − e1‖G ≤ ‖e − e1‖N/a ≤ 1/6.

By definition, µ(t, e) = µ(t, e1) for any t. Moreover, a projection pi

can be represented as pi =
∑

j qij , where projections qij are mutually
orthogonal and τ (qij) < ∞. Note also that τ (χ(b,∞)(e)) < ∞ whenever
b > a, and χ(a,∞)(e) = supb>a

χ(b,∞)(e).

Consider the (commutative) von Neumann algebra M , generated by
projections qij and χ(b,∞)(e), b > a. Then e1 ∈ G1 = G ∩ M̃ . Let

(23) E1 = {x ∈ G1 : x ≥ 0, lim
α→0+

(‖e1 + αx‖ − 1)/α = 0}.
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As above, we show that ‖e1 + x − y‖ ≥ 1/3 if x, y ∈ E1. However,
Φ(e) ≥ e1 (since Φ is positive), and therefore, ‖e1 + Φ(x)‖ ≤ ‖e + x‖
for any x ∈ G. Thus, Φ(E) ∈ E1 and, for any x, y ∈ E, we have
(24)

‖e+x−y‖ ≥ ‖Φ(e) + Φ(x) − Φ(y)‖ ≥ ‖e1 + Φ(x) − Φ(y)‖ − ‖e−e1‖
≥ 1

3
− 1

6
.

The proof is complete.
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