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THE C∗-ALGEBRAS OF ARBITRARY GRAPHS

D. DRINEN AND M. TOMFORDE

ABSTRACT. To an arbitrary directed graph we associate a
row-finite directed graph whose C∗-algebra contains the C∗-
algebra of the original graph as a full corner. This allows
us to generalize results for C∗-algebras of row-finite graphs
to C∗-algebras of arbitrary graphs: the uniqueness theorem,
simplicity criteria, descriptions of the ideals and primitive
ideal space, and conditions under which a graph algebra is AF
and purely infinite. Our proofs require only standard Cuntz-
Krieger techniques and do not rely on powerful constructs such
as groupoids, Exel-Laca algebras, or Cuntz-Pimsner algebras.

1. Introduction. Since they were first introduced in 1947 [17], C∗-
algebras have become important tools for mathematicians working in
many areas. Because of the immensity of the class of all C∗-algebras,
however, it has become important to identify and study special types
of C∗-algebras. These special types of C∗-algebras (e.g., AF-algebras,
Bunce-Deddens algebras, AH-algebras, irrational rotation algebras,
group C∗-algebras, and various crossed products) have provided great
insight into the behavior of more general C∗-algebras. In fact, it is fair
to say that much of the development of operator algebras in the last
20 years has been based on a careful study of these special classes.

One important and very natural class of C∗-algebras comes from
considering C∗-algebras generated by partial isometries. There are
a variety of ways to construct these C∗-algebras, but typically any
such construction will involve having the partial isometries satisfy
relations that describe how their initial and final spaces are related.
Furthermore, one finds that in practice it is convenient to have an
object (e.g., a matrix, a graph, etc.) that summarizes these relations.

In 1977 Cuntz introduced a class of C∗-algebras that became known
as Cuntz algebras [4]. For each n = 2, 3, . . . ,∞ the Cuntz algebra On

is generated by n isometries satisfying certain relations. The Cuntz
algebras were important in the development of C∗-algebras because

AMS Mathematics Subject Classification. 46L55.
Received by the editors on June 3, 2002, and in revised form on July 2, 2002.

Copyright c©2005 Rocky Mountain Mathematics Consortium

105



106 D. DRINEN AND M. TOMFORDE

they provided the first examples of C∗-algebras whose K-theory has
torsion. In 1980 Cuntz and Krieger considered generalized versions of
the Cuntz algebras [5]. Given an n×n matrix A with entries in {0, 1},
the Cuntz-Krieger algebra OA is defined to be the C∗-algebra generated
by partial isometries satisfying relations determined by A. A study of
the Cuntz-Krieger algebras was made in the seminal paper [5] where it
was shown that they arise naturally in the study of topological Markov
chains. It was also shown that there are important parallels between
these C∗-algebras and certain kinds of dynamical systems (e.g., shifts
of finite type).

In 1982 Watatani noticed that by considering a {0, 1}-matrix as the
adjacency matrix of a directed graph, one could view Cuntz-Krieger
algebras as C∗-algebras associated to certain finite directed graphs [19].
Although Watatani published some papers using this graph approach
[10, 19], his work went largely unnoticed. It was not until 1997
that Kumjian, Pask, Raeburn, and Renault rediscovered C∗-algebras
associated to directed graphs.

This theory of C∗-algebras associated to graphs was developed in
[13, 12] and [2]. In these papers the authors were able to define
and work with C∗-algebras associated to finite graphs as well as C∗-
algebras associated to infinite graphs that are row-finite, i.e., all vertices
emit a finite number of edges. By allowing all finite graphs as well
as certain infinite graphs, these graph algebras included many C∗-
algebras that were not Cuntz-Krieger algebras. Furthermore, it was
found that the graph not only described the relations for the generators,
but also many important properties of the associated C∗-algebra could
be translated into graph properties. Thus the graph provides a tool
for visualizing many aspects of the associated C∗-algebra. In addition,
because graph algebras consist of a wide class of C∗-algebras whose
structure can be understood, other areas of C∗-algebra theory have
benefited nontrivially from their study.

Despite these successes, many people were still unsatisfied with the
condition of row-finiteness and wanted a theory of C∗-algebras for
arbitrary graphs. This desire was further fueled by the fact that in
his original paper [4] Cuntz defined a C∗-algebra O∞, which seemed
as though it should be the C∗-algebra associated to a graph with one
vertex and a countably infinite number of edges. Despite many people’s
desire to extend the definition of graph algebras to arbitrary graphs,
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it was unclear exactly how to make sense of the defining relations in
the non row-finite case. It was not until 2000 that Fowler, Laca, and
Raeburn were finally able to extend the definition of graph algebras to
arbitrary directed graphs [8]. These graph algebras now included the
Cuntz algebra O∞, and as expected it arises as the C∗-algebra of the
graph with one vertex and infinitely many edges.

In the time since C∗-algebras associated to arbitrary graphs were
defined, there have been many attempts to extend results for row-finite
graph algebras to arbitrary graph algebras. However, because many of
the proofs of the fundamental theorems for C∗-algebras of row-finite
graphs make heavy use of the row-finiteness assumption, it has often
been unclear how to proceed. In most cases where results have been
generalized, the proofs have relied upon sophisticated techniques and
powerful machinery such as groupoids, the Exel-Laca algebras of [7],
and the Cuntz-Pimsner algebras of [15].

In this paper we describe an operation called desingularization that
transforms an arbitrary graph into a row-finite graph with no sinks.
It turns out that this operation preserves Morita equivalence of the
associated C∗-algebra as well as the loop structure and path space of
the graph. Consequently, it is a powerful tool in the analysis of graph
algebras because it allows one to apply much of the machinery that
has been developed for row-finite graph algebras to arbitrary graph
algebras.

Desingularization was motivated by the process of “adding a tail to a
sink” that is described in [2]. In fact, this process is actually a special
case of desingularization. The difference is that now we not only add
tails at sinks, but we also add (more complicated) tails at vertices that
emit infinitely many edges. Consequently, we shall see that vertices
that emit infinitely many edges will often behave similarly to sinks in
the way that they affect the associated C∗-algebra. In fact for some
of our results, such as conditions for simplicity, one can take the result
for row-finite graphs and replace the word “sink” by the phrase “sink
or vertex that emits infinitely many edges” to get the corresponding
result for arbitrary graphs.

We begin in Section 2 with the definition of desingularization. This
is our main tool for dealing with C∗-algebras associated to arbitrary
graphs. It gives the reader who is comfortable with C∗-algebras of
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row-finite graphs a great deal of intuition into the structure of non
row-finite graph algebras. This is accomplished by providing a method
for easily translating questions about arbitrary graph algebras to the
row-finite setting. After the definition of desingularization, we describe
a correspondence between paths in the original graph and paths in
the desingularization. We then show that desingularization preserves
loop structure of the graph as well as Morita equivalence of the C∗-
algebra. This allows us to obtain easy proofs of several known results.
In particular, we prove the uniqueness theorem of [8] and give necessary
and sufficient conditions for a graph algebra to be simple, purely
infinite, and AF.

In Section 3 we describe the ideal structure of graph algebras. Here
we will see that our solution is more complicated than what occurs in
the row-finite case. The correspondence with saturated hereditary sets
described in [2] no longer holds. Instead we have a correspondence
of the ideals with pairs (H,S), where H is a saturated hereditary set
and S is a set containing vertices that emit infinitely many edges, only
finitely many of which have range outside of H.

We conclude in Section 4 with a description of the primitive ideal
space of a graph algebra. Our result will again be more complicated
than the corresponding result for the row-finite case, which involves
maximal tails [2]. For arbitrary graphs we will need to account for
vertices that emit infinitely many edges, and our description of the
primitive ideal space will include both maximal tails and special vertices
that emit infinitely many edges known as “breaking vertices”.

We thank Iain Raeburn for making us aware of the related papers by
Szymański [18] and Paterson [14], and we thank both Iain Raeburn
and Dana Williams for their comments on the first draft of this paper.
After this work was completed, it was brought to our attention that our
description of the primitive ideal space in Section 4 had been obtained
independently in the preprint [1]. Although the results in [1] are similar
to some of our results in Section 4, one should note that the methods
used in the proofs are very different. In addition, we mention that we
have adopted their term “breaking vertex” to provide consistency for
readers who look at both papers.
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2. The desingularized graph. We closely follow the notation
established in [12] and [2]. A (directed) graph E = (E0, E1, r, s)
consists of countable sets E0 of vertices and E1 of edges, and maps
r, s : E1 → E0 describing the source and range of each edge. We let
E∗ denote the set of finite paths in E, and we let E∞ denote the set
of infinite paths. The maps r, s extend to E∗ in the obvious way and s
extends to E∞.

A vertex v is called a sink if |s−1(v)| = 0, and v is called an infinite-
emitter if |s−1(v)| = ∞. If v is either a sink or an infinite-emitter, we
call it a singular vertex. A graph E is said to be row-finite if it has no
infinite-emitters.

Given any graph (not necessarily row-finite), a Cuntz-Krieger E-
family consists of mutually orthogonal projections {pv | v ∈ E0} and
partial isometries {se | e ∈ E1} with orthogonal ranges satisfying the
Cuntz-Krieger relations:

1. s∗ese = pr(e) for every e ∈ E1;

2. ses
∗
e ≤ ps(e) for every e ∈ E1;

3. pv =
∑

{e | s(e)=v} ses
∗
e for every v ∈ E0 that is not a singular

vertex.

The graph algebra C∗(E) is defined to be the C∗-algebra generated by
a universal Cuntz-Krieger E-family. For the existence of such a C∗-
algebra, one can either modify the proofs in [11, Theorem 2.1] or [12,
Theorem 1.2], or one can appeal to more general constructions such as
[3] or [15].

Given a graph E we shall construct a graph F , called a desingular-
ization of E, with the property that F has no singular vertices and
C∗(E) is isomorphic to a full corner of C∗(F ). Loosely speaking, we
will build F from E by replacing every singular vertex v0 in E with its
own infinite path, and then redistributing the edges of s−1(v0) along
the vertices of the infinite path. Note that if v0 happens to be a sink,
then |s−1(v0)| = 0 and there are no edges to redistribute. In that case
our procedure will coincide with the process of adding an infinite tail
to a sink described in [2].

Definition 2.1. Let E be a graph with a singular vertex v0. We add
a tail to v0 by performing the following procedure. If v0 is a sink, we
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add a graph of the form

(2.1) v0
e1 �� v1

e2 �� v2
e3 �� v3

e4 �� · · ·

1

as described in [2]. If v0 is an infinite emitter we first list the edges
g1, g2, g3, . . . of s−1(v0). Then we add a graph of the form shown in
(2.1), remove the edges in s−1(v0), and for every gj ∈ s−1(v0) we draw
an edge fj from vj−1 to r(gj).

For any j we shall also define αj to be the path αj := e1e2 · · · ej−1fj

in F .

Note that different orderings of the edges of s−1(v0) may give rise to
nonisomorphic graphs via the above procedure.

Definition 2.2. If E is a directed graph, a desingularization of E
is a graph F obtained by adding a tail at every singular vertex of E.

Example 2.3. Suppose we have a graph E containing this fragment:
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where the double arrow labeled ∞ denotes a countably infinite num-
ber of edges from v0 to w4. Let us label the edges from v0 to w4 as
{g4, g5, g6, . . . }. Then a desingularization of E is given by the following
graph F .



C∗-ALGEBRAS OF ARBITRARY GRAPHS 111

Example 2.4. If E is the O∞ graph (one vertex with infinitely many
loops), a desingularization F looks like this:

. ��
�� . ��
�� . ��
 . ��
�� . ��
�� · · ·��

Example 2.5. The following graph was mentioned in [8, Remark
11]:

· · · �� . �� . �� v0
∞ �� . �� . �� · · ·

A desingularization of it is:

· · · �� . �� . �� v0 ��

��

. �� . �� · · ·
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����������
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��

�����������������������

...

��																												

It is crucial that desingularizing a graph preserves connectivity, path
space, and loop structure in the appropriate senses, and this will
turn out to be the case. We make these ideas precise with the next
three lemmas: Lemma 2.6 describes how the path spaces of E and
F are related, Lemma 2.7 shows that desingularization preserves loop
structure, and Lemma 2.8 describes the relationship between cofinality
of a graph and cofinality of its desingularization.

We first review some notation. If E is a directed graph and S1, S2 ⊆
E0 we say S1 connects to S2, denoted S1 ≥ S2, if for every v ∈ S1 there
exists w ∈ S2 and α ∈ E∗ with s(α) = v and r(α) = w. Frequently one
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or both of the Sis will contain a single vertex v, in which case we write
v rather than {v}. If λ is a finite or infinite path in E, we write S ≥ λ

to mean S ≥ {s(λi)}|λ|i=1. Finally, a graph E is said to be cofinal if for
every infinite path λ we have E0 ≥ λ.

Lemma 2.6. Let E be a graph and let F be a desingularization of
E.

(a) There are bijective maps

φ : E∗ −→ {β ∈ F ∗ | s(β), r(β) ∈ E0}
φ∞ : E∞ ∪ {α ∈ E∗ | r(α) is a singular vertex}

−→ {λ ∈ F∞ | s(λ) ∈ E0}.
The map φ preserves source and range, and hence φ preserves loops,
and the map φ∞ preserves source.

(b) The map φ∞ preserves ≥ in the following sense. For every v ∈ E0

and λ ∈ E∞ ∪ {α ∈ E∗ | r(α) is a singular vertex}, we have v ≥ λ in
E if and only if v ≥ φ∞(λ) in F .

Proof. First define a map φ′ : E1 → F ∗. If e ∈ E1, then e will have
one of two forms: either s(e) is not a singular vertex, in which case
e ∈ F 1, or else s(e) is a singular vertex, in which case e = gj for some
j. We define φ′ by

φ′(e) =
{
e if s(e) is not singular;
αj if e = gj for some j,

where αj := e1 · · · ej−1fj is the path described in Definition 2.1.
Since φ′ preserves source and range, it extends to a map on the
finite path space E∗. In particular, for α = α1 · · ·αn ∈ E∗ define
φ(α) = φ′(α1)φ′(α2) . . . φ′(α|α|). It is easy to check that φ is injective,
that it preserves source and range, and that it is onto the set {β ∈
F ∗ | s(β), r(β) ∈ E0}. We define φ∞ similarly. In particular, if λ =
λ1λ2 · · · ∈ E∞, define φ∞(λ) = φ′(λ1)φ′(λ2) · · · . If α is a finite path
whose range is a singular vertex v0, we define φ∞(α) = φ(α)e1e2 · · · ,
where e1e2, . . . is the tail in F added to v0.

To show that φ∞ is a bijection, we construct an inverse ψ∞ : {λ ∈
F∞ | s(λ) ∈ E0} → E∞ ∪ {α ∈ E∗ | r(α) is a singular vertex}. Notice
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that every λ ∈ F∞ either returns to E infinitely often or it ends up in
one of the added infinite tails. More precisely, λ has one of two forms:
either λ = a1a2 · · · or λ = a1a2 · · · ane1e2e3 · · · , where each ak is either
an edge of E or an αj . We define ψ′ by

ψ′(ak) :=
{
ak if ak ∈ E1;
gj if ak = αj for some j,

and we define

ψ∞(λ) :=
{
ψ′(a1)ψ′(a2) · · · if λ = a1a2 · · · ;
ψ′(a1) · · ·ψ′(an) if λ = a1 · · · ane1e2 · · · .

It is easy to check that φ∞ and ψ∞ are inverses, and we have established
(a).

To prove (b), let λ ∈ E∞ ∪ {α ∈ E∗ | r(α) is a singular vertex} and
v ≥ λ in E. Then there exists a finite path α in E such that s(α) = v
and r(α) = w for some w ∈ E0 lying on the path λ. Note that the
vertices of E that are on the path φ∞(λ) are exactly the same as the
vertices on the path λ. Hence w must also be a vertex on the path
φ∞(λ). Now, because φ preserves source and range, φ(α) is a path
that starts at v and ends at w, which is a vertex on φ∞(λ). Thus
v ≥ φ∞(λ).

For the converse let λ ∈ E∞ ∪ {α ∈ E∗ | r(α) is a singular vertex}
and v ∈ E0, and suppose that v ≥ φ∞(λ) in F . Then there exists a
finite path β in F with s(β) = v and r(β) = w for some vertex w on
the path φ∞(λ). Notice that if r(β) is a vertex on one of the added
infinite tails, then φ∞(λ) must have passed through v0, and so must
have β. Thus we may assume r(β) ∈ E0 ⊆ F 0. Now β is a finite path
in F that starts and ends in E0, so it can be pulled back to a path
φ−1(β) ∈ E∗ with source v and range r(β). Since r(β) lies on the path
φ∞(λ), it lies on the path λ, and thus φ−1(β) is a path from v to some
vertex of λ. Hence v ≥ λ in E.

A loop in a graph E is a finite path α = α1α2 · · ·α|α| with s(α) =
r(α). The vertex s(α) = r(α) is called the base point of the loop. A
loop is said to be simple if s(αi) = s(α1) implies i = 1. Therefore a
simple loop is one that does not return to its base point more than
once. An exit for a loop α is an edge f such that s(f) = s(αi) for some
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i, and f �= αi. A graph E is said to satisfy Condition(L) if every loop
has an exit and E is said to satisfy Condition (K) if no vertex in E is
the base point of exactly one simple loop.

Lemma 2.7. Let E be a graph and let F be a desingularization of
E. Then

(a) E satisfies Condition (L) if and only if F satisfies Condition (L).

(b) E satisfies Condition (K) if and only if F satisfies Condition (K).

Proof. If α is a loop in E with no exits, then all the vertices on α emit
exactly one edge. Hence none of these vertices are singular vertices, and
φ(α) is a loop in F with no exits. If α is a loop in F with no exits, then
we claim that none of the singular vertices of E can appear in the loop.
To see this, note that if v0 is a sink in E, then it cannot be a part of a
loop in F ; and if v0 is an infinite-emitter in E, then v0 is the source of
two edges, which would necessarily create an exit for any loop. Since
none of the singular vertices of E appear in α, it follows that φ−1(α)
is a loop in E with no exits. This establishes part (a).

Now suppose v ∈ E0 is the base of exactly one simple loop α in E.
Then φ(α) is a simple loop in F . If there were another simple loop β in
F based at v, then φ−1(β) would be simple loop in E based at v that
is different from α. Thus if F satisfies Condition (K), then E satisfies
Condition (K).

Now suppose E satisfies Condition (K). Let v ∈ F 0 be the base of
a simple loop α in F . If v ∈ E0, then φ−1(α) is a simple loop in E
based at v. Since E satisfies Condition (K), there is a simple loop β
in E different from φ−1(α). Certainly, φ(β) is a simple loop in F and,
because φ is injective, φ(β) must be different from α.

Now suppose v is on an added infinite tail; that is, v = vn for some
n ≥ 1. Then αmust have the form α′e1e2 · · · en for some α′ ∈ F ∗. Now,
e1e2 · · · enα

′ is a simple loop in F based at v0 and hence φ−1(e1 · · · enα
′)

is a simple loop in E based at v0. Since E satisfies Condition (K), there
must be another simple loop β in E based at v0. Now φ(β) will be a
simple loop in F based at v0. If vn is not a vertex on φ(β), then
α′φ(β)e1 · · · en will be another simple loop based at vn that is different
from α. On the other hand, if vn is a vertex of φ(β), then φ(β) has
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the form e1 · · · enβ
′, where β ∈ F ∗. Since φ(β) is a simple loop based

at v0, we know that s(βi) �= v0 for 1 ≤ i ≤ |β′|. Hence vn is not a
vertex on the path β′. Therefore β′e1 · · · en is a simple loop based at
vn. Furthermore, it is different from the loop α = α′e1 · · · en, because
if they were equal then we would have α′ = β′, which contradicts the
fact that α = α′e1 · · · en and φ(β) = β′e1 · · · en are distinct. Thus F
satisfies Condition (K).

Lemma 2.8. Let E be a graph and let F be a desingularization of
E. Then the following are equivalent:

(1) F is cofinal;

(2) E is cofinal and for every singular vertex v0 ∈ E0 we have
E0 ≥ v0.

Proof. Assume F is cofinal and fix v ∈ E0. Suppose λ ∈ E∞. Because
F is cofinal, v ≥ φ∞(λ) in F . Thus by Lemma 2.6(b), v ≥ λ in E.
Now let v0 ∈ E0 be any singular vertex. Then φ∞(v0) is the infinite
tail e1e2 · · · added to v0. By cofinality of F , v connects to e1e2 · · · , and
since any path that connects to e1e2 · · · connects to v0, we know that
there is a path α ∈ F ∗ from v to v0. But then φ−1(α) is a path from
v to v0 in E. Hence E0 ≥ v0.

Now assume E is cofinal and for every singular vertex v0 we have
E0 ≥ v0. If E has a sink v0, then since E is cofinal it follows that
E∞ = ∅. Furthermore, since E0 ≥ v0 it must be the case that v0 is
the only sink in E. Hence F is obtained from E by adding a single
tail at v0. Now if λ ∈ F∞, then since E∞ = ∅ we must have that λ
eventually ends up in the tail. If w ∈ F 0, then either w is in the tail or
w ∈ E0. Since E0 ≥ v0 this implies that in either case w ≥ λ. Hence
F is cofinal.

Now assume that E has no sinks. Let λ ∈ F∞ and v ∈ F 0. We must
show that v ≥ λ in F . We will first show that it suffices to prove this
for the case when s(λ) ∈ E0 and v ∈ E0. If v = vn, a vertex in one of
the added infinite tails, then because E has no sinks, vn must be the
source of some edge fj with r(fj) ∈ E0 and we see that r(fj) ≥ λ in
F implies vn ≥ λ in F . Likewise, if s(λ) = vn, a vertex in the infinite
tail added to v0, then v ≥ e1e2 · · · enλ in F implies v ≥ λ in F . Thus we
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may replace λ by e1e2 · · · enλ. Hence we may assume that s(λ) ∈ E0

and v ∈ E0.

Since λ is a finite path in F whose source is in E0, Lemma 2.6(a)
implies that λ = φ∞(µ), where µ is either an infinite path in E or a
finite path in E ending at a singular vertex. If µ is an infinite path,
then cofinality of E implies that v ≥ µ and Lemma 2.6(b) implies that
v ≥ φ∞(µ) = λ. If µ is a finite path ending at a singular vertex, then
v ≥ µ by assumption and so v ≥ φ∞(µ) = λ. Thus F is cofinal.

The next two lemmas will be used to prove Theorem 2.11, which
states that C∗(E) is isomorphic to a full corner of C∗(F ). Lemma 2.9
says, roughly speaking, that a Cuntz-Krieger F -family contains a
Cuntz-Krieger E-family; and Lemma 2.10 says that we can extend a
Cuntz-Krieger E-family to obtain a Cuntz-Krieger F -family.

Lemma 2.9. Suppose E is a graph and let F be a desingularization
of E. If {Te, Qv} is a Cuntz-Krieger F -family, then there exists a
Cuntz-Krieger E-family in C∗({Te, Qv}).

Proof. For every vertex v in E, define Pv := Qv. For every edge e in
E with s(e) not a singular vertex, define Se := Te. If e is an edge in E
with s(e) = v0 a singular vertex, then e = gj for some j, and we define
Se := Tαj . The fact that {Se, Pv | e ∈ E1, v ∈ E0} is a Cuntz-Krieger E-
family follows immediately from the fact that {Te, Qv | e ∈ F 1, v ∈ F 0}
is a Cuntz-Krieger F -family.

Lemma 2.10. Let E be a graph and let F be a desingularization of
E. For every Cuntz-Krieger E-family {Se, Pv | e ∈ E1, v ∈ E0} on a
Hilbert space HE , there exists a Hilbert space HF = HE ⊕ HT and a
Cuntz-Krieger F -family {Te, Qv | e ∈ F 1, v ∈ F 0} on HF satisfying:

• Pv = Qv for every v ∈ E0;

• Se = Te for every e ∈ E1 such that s(e) is not a singular vertex;

• Se = Tαj for every e = gj ∈ E1 such that s(e) is a singular vertex;

• ∑
v/∈E0 Qv is the projection onto HT .
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Proof. We prove the case where E has just one singular vertex v0.
If v0 is a sink, then the result follows from [2, Lemma 1.2]. Therefore
let us assume that v0 is an infinite-emitter. Given a Cuntz-Krieger
E-family {Se, Pv} we define R0 := 0 and Rn :=

∑n
j=1 Sgj

S∗
gj

for each
positive integer n. Note that the Rns are projections because the Sgj

s
have orthogonal ranges. Furthermore, Rn ≤ Rn+1 < Pv0 for every n.

Now for every integer n ≥ 1 define Hn := (Pv0 −Rn)HE and set

HF := HE ⊕
∞⊕

n=1

Hn.

For every v ∈ E0 define Qv = Pv acting on the HE component of
HF and zero elsewhere. That is, Qv(ξE , ξ1, ξ2, . . . ) = (PvξE, 0, 0, . . . ).
Similarly, for every e ∈ E1 with s(e) �= v0 define Te = Se on the
HE component. For each vertex vn on the infinite tail define Qvn

to be the projection onto Hn. That is, Qvn
(ξE , ξ1, . . . , ξn, . . . ) =

(0, 0, . . . , ξn, 0, . . . ). Now note that because the Rns are nondecreasing,
Hn ⊆ Hn−1 for each n. Thus for each edge of the form en we can define
Ten

to be the inclusion of Hn into Hn−1 (where H0 is taken to mean
Pv0HE). More precisely,

Ten
(ξE, ξ1, ξ2, . . . ) = (0, 0, . . . , 0, ξn, 0, . . . ),

where the ξn is in the Hn−1 component.

Finally, for each edge gj and for each ξ ∈ HE we have Sgj
ξ ∈

Hj−1. To see this recall that Hj−1 = (Pv0 − Rj−1)HE , and thus
(Pv0 −Rj−1)Sgj

ξ = Sgj
ξ. Therefore we can define Tfj

by

Tfj
(ξE, ξ1, ξ2, . . . ) = (0, . . . , 0, Sgj

ξE , 0, . . . ),

where the nonzero term appears in the Hj−1 component.

We will now check that the collection {Te, Qv} is a Cuntz-Krieger F -
family. It follows immediately from definitions and the Cuntz-Krieger
relations on E that T ∗

e Te = Qr(e) for every e that is not of the form
fj or en, and that Qv =

∑
s(e)=v TeT

∗
e for every v not on the infinite

tail. Furthermore, it is easy to check using the definitions that the Qvs
are mutually orthogonal and that T ∗

en
Ten

= Qr(en) for every edge en
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on the infinite tail. Now note that for every fj ,

T ∗
fj
Tfj

(ξE , ξ1, ξ2, . . . ) = T ∗
fj

(0, . . . , 0, Sgj
ξE, 0, . . . )

= (S∗
gj
Sgj

ξE , 0, 0, . . . )

= (Pr(ej)ξE , 0, 0, . . . )
= Qr(ej)(ξE , ξ1, ξ2, . . . ).

Finally, let vn be a vertex on the infinite tail. The edges emanating
from vn are en+1 and fn+1, and we have

Ten+1T
∗
en+1

(ξE, ξ1, . . . ) = (0, . . . , 0, (Pv0 −Rn+1)ξn, 0, . . . ),

where the nonzero term is in the Hn component. Also

Tfn+1T
∗
fn+1

(ξE, ξ1, . . . ) = (0, . . . , 0, Sgn+1S
∗
gn+1

ξn, 0, . . . ),

where the nonzero term is again in the Hn component. We then have
the following:

(Ten+1T
∗
en+1

+ Tfn+1T
∗
fn+1

)(ξE, ξ1, . . . )

= (0, . . . , 0, (Pv0 −Rn+1 + Sgn+1S
∗
gn+1

)ξn, 0, . . . )

= (0, . . . , 0, (Pv0 −Rn)ξn, 0, . . . )
= (0, . . . , 0, ξn, 0, . . . )
= Qvn

(ξE, ξ1, . . . ).

Thus
∑

{e:s(e)=vn} TeT
∗
e = Ten+1T

∗
en+1

+ Tfn+1T
∗
fn+1

= Qvn
= Qr(en)

and we have established that {Te, Qv} is a Cuntz-Krieger F -family. It
is easy to verify that the bulleted points in the statement of the lemma
are satisfied.

Theorem 2.11. Let E be a graph and let F be a desingularization of
E. Then C∗(E) is isomorphic to a full corner of C∗(F ). Consequently,
C∗(E) and C∗(F ) are Morita equivalent.

Proof. Again for simplicity we assume that E has only one singular
vertex v0. Let {te, qv | e ∈ F 1, v ∈ F 0} denote the canonical set of
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generators for C∗(F ) and let {se, pv | e ∈ E1, v ∈ E0} denote the
Cuntz-Krieger E-family in C∗(F ) constructed in Lemma 2.9. Define
B := C∗({se, pv}) and p :=

∑
v∈E0 qv. To prove the proposition, we

will show that C∗(E) ∼= B ∼= pC∗(F )p is a full corner in C∗(F ).

Since B is generated by a Cuntz-Krieger E-family, in order to show
that B ∼= C∗(E) it suffices to prove that B satisfies the universal
property of C∗(E). Let {Se, Pv | e ∈ E1, v ∈ E0} be a Cuntz-Krieger E-
family on a Hilbert space HE . Then by Lemma 2.10 we can construct
a Hilbert space HF and a Cuntz-Krieger F -family {Te, Qv | e ∈ F 1, v ∈
F 0} on HF such that Qv = Pv for every v ∈ E0, Te = Se for every
e ∈ F 1 with s(e) �= v0, and Sgj

= Tαj for every edge gj in E whose
source is v0. Now by the universal property of C∗(F ), we have a
homomorphism π from C∗(F ) onto C∗({Te, Qv | e ∈ F 1, v ∈ F 0}) that
takes te to Te and qv to Qv.

For any v ∈ E0 we have pv = qv, so π(pv) = Qv = Pv. Let e ∈ E1.
If s(e) �= v0, then se = te and π(se) = Te = Se. Finally, if s(e) = v0
then e = gj for some j, and se = tαj so that π(sgj

) = Tαj = Sgj
. Thus

π|B is a representation of B on HE that takes generators of B to the
corresponding elements of the given Cuntz-Krieger E-family. Therefore
B satisfies the universal property of C∗(E) and C∗(E) ∼= B.

We now show that B ∼= pC∗(F )p. Just as in [2, Lemma 1.2(c)], we
have that

∑
v∈E0 qv converges strictly in M(C∗(F )) to a projection p

and that for any µ, ν ∈ F ∗ with r(µ) = r(ν),

ptµt
∗
νp =

{
tµt

∗
ν if s(µ), s(ν) ∈ E0;

0 otherwise.

Therefore the generators of B are contained in pC∗(F )p and B ⊆
pC∗(F )p. To show the reverse inclusion, let µ and ν be finite paths
in F with r(µ) = r(ν). We need to show that ptµt∗νp ∈ B. If either
µ or ν does not start in E0, then ptµt

∗
νp = 0 by the above formula.

Hence we may as well assume that both µ and ν start in E0. Now,
if r(µ) = r(ν) ∈ E0 as well, there will exist unique µ′, ν′ ∈ E0 with
φ(µ′) = µ and φ(ν′) = ν. In this case, tµ = sµ′ and tν = sν′ , so

ptµt
∗
νp = tµt

∗
ν = sµ′s∗ν′ ∈ B.

On the other hand, if r(µ) = r(ν) �∈ E0 then r(µ) = r(ν) = vn for some
n. We shall prove that ptµt∗νp ∈ B by induction on n. Suppose that
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ptµ′t∗ν′p ∈ B for any paths µ′ and ν′ with r(µ′) = r(ν′) = vn−1. Then
if r(µ) = r(ν) = vn we shall write µ = µ′en, ν = ν′en for finite paths µ′

and ν′ with r(µ′) = r(ν′) = vn−1. Now there are precisely two edges,
en and fn with source vn−1. Thus

ptµt
∗
νp = ptµ′ten

t∗en
t∗ν′p

= ptµ′(qvn−1 − tfn
t∗fn

)t∗ν′p

= ptµ′t∗ν′p− ptµ′fn
t∗ν′fn

p,

which is in B. Hence pC∗(F )p ⊆ B. Finally, we note that pC∗(F )p
is full by an argument identical to the one given in [2, Lemma 1.2(c)].

Theorem 2.11 allows us to get easy proofs of several known results by
passing to a desingularization and using the corresponding result for
row-finite graphs.

Corollary 2.12. Suppose E is a graph in which every loop has an
exit, and that {Se, Pv} and {Te, Qv} are two Cuntz-Krieger E-families
in which all the projections Pv and Qv are non-zero. Then there is an
isomorphism φ : C∗({Se, Pv}) → C∗({Te, Qv}) such that φ(Se) = Te

for all e ∈ E1 and φ(Pv) = Qv for all v ∈ E0.

Proof. Let F be a desingularization of E. Use Lemma 2.10 to con-
struct F -families from the given E-families. Then apply [2, Theorem
3.1] to get an isomorphism between the C∗-algebras generated by the
F -families that will restrict to an isomorphism between C∗({Se, Pv})
and C∗({Te, Qv}).

Corollary 2.13. Let E be a graph. Then C∗(E) is an AF-algebra if
and only if E has no loops.

Proof. This follows from [12, Theorem 2.4] and the fact that the class
of AF-algebras is closed under stable isomorphism (see [6, Theorem
9.4]).
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Corollary 2.14. Let E be a graph. Then C∗(E) is purely infinite if
and only if every vertex in E connects to a loop and every loop in E
has an exit.

Proof. By [2, Proposition 5.3] and the fact that pure infiniteness is
preserved by passing to corners, every vertex connects to a loop and
every loop has an exit implies pure infiniteness. For the converse we
note that the proof given in [12, Theorem 3.9] works for arbitrary
graphs.

The following result generalizes [8, Theorem 3] and [9, Corollary 4.5]
and it was proven independently in [18] and [14].

Corollary 2.15. Let E be a graph. Then C∗(E) is simple if and
only if

(1) every loop in E has an exit;

(2) E is cofinal;

(3) for every singular vertex v0 ∈ E0, E0 ≥ v0.

Proof. Letting F denote a desingularization of E, we have

C∗(E) is simple ⇐⇒ C∗(F ) is simple (by Theorem 2.11)
⇐⇒ F is cofinal and every loop in F has an exit

(by [2, Proposition 5.1])
⇐⇒ E satisfies (1),(2), and (3)

(by Lemmas 2.7 and 2.8).

Remark 2.16. We see from the results above that the dichotomy
described in [2, Remark 5.6] holds for arbitrary graphs: If C∗(E) is
simple, then it is either AF or purely infinite. For if E has no loops
then Corollary 2.13 shows that C∗(E) is AF. If E does have loops, then
Corollary 2.15 says that they all have exits and that E is cofinal; thus,
every vertex connects to every loop and Corollary 2.14 applies.
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3. Ideal structure. Let E be a directed graph. A set H ⊆ E0 is
hereditary if whenever v ∈ H and v ≥ w, then w ∈ H. A hereditary
set H is called saturated if every vertex that is not a singular vertex
and that feeds only into H is itself in H, that is, if

v not singular and {r(e) | s(e) = v} ⊆ H implies v ∈ H.

If E is row-finite this definition reduces to the one given in [2]. It
was shown in [2, Theorem 4.4] that if E is row-finite and satisfies
Condition (K), then every saturated hereditary subset H of E0 gives
rise to exactly one ideal IH := the ideal generated by {pv | v ∈ H} in
C∗(E). If E is a graph that is not row-finite, it is easy to check that
with the above definition of saturated [2, Lemma 4.2] and [2, Lemma
4.3] still hold. Consequently, H → IH is still injective, just as in the
proof of [2, Theorem 4.1]. However, it is no longer true that this map
is surjective; that is, there may exist ideals in C∗(E) that are not of
the form IH for some saturated hereditary set H. The reason the
proof for row-finite graphs no longer works is that if I is an ideal, then
{se + I, pv + I} will not necessarily be a Cuntz-Krieger E \ H-family
for the graph E \H defined in [2, Theorem 4.1]. It turns out that to
describe an arbitrary ideal in C∗(E) we need a saturated hereditary
subset and one other descriptor. Loosely speaking, this descriptor tells
us how close {se + I, pv + I} is to being a Cuntz-Krieger E \H-family.

Given a saturated hereditary subset H ⊆ E0, define

BH := {v ∈ E0 | v is an infinite-emitter and
0 < |s−1(v) ∩ r−1(E0 \H)| <∞}.

Therefore BH is the set of infinite-emitters that point to only a finite
number of vertices not in H. Since H is hereditary, BH is disjoint from
H. Now fix a saturated hereditary subset H and let S be any subset of
BH . Let {se, pv} be the canonical generating Cuntz-Krieger E-family
and define

I(H,S) := the ideal in C∗(E) generated by {pv | v ∈ H} ∪ {pH
v0

| v0 ∈ S},

where
pH

v0
:= pv0 −

∑
s(e)=v0
r(e)/∈H

ses
∗
e.
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Note that the definition of BH ensures that the sum on the right is
finite.

Our goal is to show that the correspondence (H,S) → I(H,S) is a
lattice isomorphism, so we must describe the lattice structure on

{(H,S) |H is a saturated hereditary subset of E0 and S ⊆ BH}.

We say (H,S) ≤ (H ′, S′) if and only if H ⊆ H ′ and S ⊆ H ′ ∪ S′.
With this definition, the reader who is willing to spend a few minutes
can check using nothing more than basic set theory that the following
equations define a greatest lower bound and least upper bound:

(H1, S1) ∧ (H2, S2) :=
(
(H1 ∩H2), (H1 ∪H2 ∪ S1 ∪ S2) ∩BH1∩H2

)

(H1, S1) ∨ (H2, S2) :=
( ∞⋃

n=0

Xn , (S1 ∪ S2) ∩B⋃∞
n=0

Xn

)

where Xn is defined recursively as X0 := H1 ∪ H2 and Xn+1 :=
Xn ∪ {v ∈ E0 | 0 < |s−1(v)| < ∞ and {r(e) | s(e) = v} ⊆ Xn} ∪ {v ∈
E0 | v ∈ S1 ∪ S2 and {r(e) | s(e) = v} ⊆ Xn}. The reason for this
strange definition of the Xns is the following: If Y0 is a hereditary
subset, then the saturation of Y0 may be defined as the increasing union
of Yn+1 := Yn∪{v ∈ E0 | 0 < |s−1(v)| <∞ and {r(e) | s(e) = v} ⊆ Yn}.
In theXns above we need not only these elements, but also at each stage
we must include the infinite emitters in S1 ∪S2 that only feed into Xn.

We now describe a correspondence between pairs (H,S) as above
and saturated hereditary subsets of vertices in a desingularization of
E. Suppose that E is a graph and let F be a desingularization
of E. Also let H be a saturated hereditary subset of E0 and let
S ⊆ BH . We define a saturated hereditary subset HS ⊆ F 0. First
set H̃ := H ∪ {vn ∈ F 0 | vn is on a tail added to a vertex in H}. Now
for each v0 ∈ S let Nv0 be the smallest nonnegative integer such that
r(ej) ∈ H for all j ≥ Nv0 . The numberNv0 exists since v0 ∈ BH implies
that there must be a vertex on the tail added to v0 beyond which each
vertex points only to the next vertex on the tail and into H. Define
Tv0 := {vn | vn is on the infinite tail added to v0 and n ≥ Nv0} and
define

HS := H̃ ∪ ⋃
v0∈S Tv0 .
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Note that for v0 ∈ BH we have v0 /∈ HS . Furthermore, the tail attached
to v0 will eventually be inside HS if and only if v0 ∈ S. It is easy to
check that HS is hereditary, and choosing Nv0 to be minimal ensures
that HS is saturated.

Example 3.1. Suppose E is the following graph:

w

��

∞
��



























x

v

��

∞

���������

�������

w

��

�� w1 ��

��

w2 ��

����
��

��
��

w3 ��

������������������ w4 ��

		 · · ·

x �� x1 �� x2 �� x3 �� · · ·

v

��

�� v1 ��

��

v2 ��

����������
v3 ��

������������������
v4 ��

�������������������������� · · ·

A desingularization F is given by

The only saturated hereditary (proper) subset in E is the set H =
{x}. In this case BH = {v, w}. There are four subsets of BH and there
are four saturated hereditary (proper) subsets in the desingularization.
In particular, if S = ∅, then HS consists of only the tail added to x; if
S contains w, then HS also includes {w2, w3, . . . }; and if S contains v,
then HS also includes {v2, v3, . . . }.

The proof of the following lemma is straightforward.

Lemma 3.2. Let E be a graph and let F be a desingularization of
E. The map (H,S) → HS is an isomorphism from the lattice

{(H,S) | H is a saturated hereditary subset of E0 and S ⊆ BH}

onto the lattice of saturated hereditary subsets of F .
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Suppose E is a graph that satisfies Condition (K) and F is a desin-
gularization of E. Because C∗(E) is isomorphic to the full corner
pC∗(F )p, we have that C∗(E) and C∗(F ) are Morita equivalent via
the imprimitivity bimodule pC∗(F ). It then follows from [16, Proposi-
tion 3.24] that the Rieffel correspondence between ideals in C∗(F ) and
ideals in C∗(E) is given by the map I → pIp.

Proposition 3.3. Let E be a graph satisfying Condition (K), and let
F be a desingularization of E. Let H be a saturated hereditary subset of
E0 and let S ⊆ BH . If {te, qv} is a generating Cuntz-Krieger F -family
and p =

∑
v∈E0 qv, then pIHS

p = I(H,S).

Proof. That pIHS
p ⊆ I(H,S) is immediate from (2.2). We show the

reverse inclusion by showing that the generators of I(H,S) are in pIHS
p.

Letting {se, pv} denote the Cuntz-Krieger E-family defined in the proof
of Lemma 2.9, the generators for I(H,S) are {pv | v ∈ H}∪{pH

v0
| v0 ∈ S}.

Clearly for v ∈ H, we have pv = qv = pqvp ∈ pIHS
p, so all that remains

to show is that for every v0 ∈ S we have pH
v0

∈ pIHS
p.

Let v0 ∈ S and n := Nv0 . Then

qv0 = te1t
∗
e1

+ tf1t
∗
f1

= te1qv1t
∗
e1

+ tf1t
∗
f1

= te1(te2t
∗
e2

+ tf2t
∗
f2

)t∗e1
+ tf1t

∗
f1

= te1e2qv2t
∗
e1e2

+ te1f2t
∗
e1f2

+ tf1t
∗
f1

...

= te1···en
t∗e1···en

+
n∑

j=1

tαj t∗αj

Now since r(en) = vn ∈ HS we see that qvn
∈ IHS

and hence
ten

= ten
t∗en
ten

= ten
qvn

∈ IHS
. Consequently, te1···en

t∗e1···en
∈ IHS

.
Similarly, whenever r(αj) ∈ H, then tαj t∗αj ∈ IHS

. Now, by definition,
every αj with r(αj) /∈ H has j < n. Therefore the above equation
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shows us that

pH
v0

= pv0 −
∑

s(gj)=v0
r(gj)/∈H

sgj
s∗gj

= qv0 −
∑

s(αj)=v0

r(αj)/∈H

tαj t∗αj

=
∑

r(αj)∈H
j<n

tαj t∗αj + te1···en
t∗e1···en

which is an element of IHS
by the previous paragraph. Hence IHS

⊆
IH,S .

Corollary 3.4. Let E be a graph satisfying Condition (K), and let
F be a desingularization of E. If H is a saturated hereditary subset of
E0 and S ⊆ BH , then I(H,S) is a primitive ideal in C∗(E) if and only
if IHS

is a primitive ideal in C∗(F ).

We now have the following:

{(H,S) |H saturated, hereditary
in E and S ⊆ BH}

��

�� ideals in C∗(E)

saturated, hereditary
subsets of F

�� ideals in C∗(F ).

��

The map on the left is (H,S) → HS , which is a lattice isomorphism
by Lemma 3.2. The lattice isomorphism H → IH across the bottom
comes from [2, Theorem 4.4]. The map on the right is IHS

→ I(H,S) and
is an isomorphism because it agrees with the Rieffel correspondence,
Proposition 3.3. Composing the three yields the following:

Theorem 3.5. Let E be a graph that satisfies Condition (K). Then
the map (H,S) → I(H,S) is a lattice isomorphism from the lattice

{(H,S) | H is a saturated hereditary subset of E0 and S ⊆ BH}
onto the lattice of ideals in C∗(E).
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4. Primitive ideal space. The following definition generalizes that
in [2, Proposition 6.1].

Definition 4.1. Let E be a graph. A nonempty subset γ ⊆ E0 is
called a maximal tail if it satisfies the following conditions:

(a) for every w1, w2 ∈ γ there exists z ∈ γ such that w1 ≥ z and
w2 ≥ z;

(b) for every v ∈ γ that is not a singular vertex, there exists an edge
e with s(e) = v and r(e) ∈ γ;

(c) v ≥ w and w ∈ γ imply v ∈ γ.

Given a graph E we denote by ΛE the set of all maximal tails in E.
Note that if v0 is a sink, then the set λv0 := {v ∈ E0 | v ≥ v0} is a
maximal tail according to Definition 4.1 but was not considered to be a
maximal tail in [2, Section 6]. In addition, when v0 is an infinite-emitter
λv0 := {v ∈ E0 | v ≥ v0} is a maximal tail.

Definition 4.2. If E is a graph, then a breaking vertex is an element
v ∈ E0 such that |s−1(v)| = ∞ and 0 < |{e ∈ E1 | s(e) = v and
r(e) ≥ v}| < ∞. We denote the set of breaking vertices of E by
BV (E).

Remark 4.3. Notice that if H is a hereditary subset in a graph E
and v0 ∈ BH , then v0 is a breaking vertex if and only if there exists
an edge e ∈ E1 with s(e) = v0 and r(e) ≥ v0. Also note that if H is a
saturated hereditary subset in a graph E and E0 \ H = λv0 for some
singular vertex v0, then v0 ∈ BH if and only if v0 is a breaking vertex.

We let ΞE := ΛE ∪BV (E) denote the disjoint union of the maximal
tails and the breaking vertices. We shall see that the elements of ΞE

correspond to the primitive ideals in C∗(E).

Lemma 4.4. If E is a graph and γ is a maximal tail in E, then γ =
{v ∈ E0 | v≥α} for some α ∈E∞∪{α ∈ E∗ | r(α) is a singular vertex}.
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Proof. It is straightforward to see that if α ∈ E∞ ∪ {α ∈
E∗ | r(α) is a singular vertex}, then {v ∈ E0 | v ≥ α} is a maximal
tail [2, Remark 6.4].

Conversely, suppose that γ is a maximal tail. We shall create a path
in E inductively. Begin with an element w ∈ γ. If there exists an
element w′ ∈ γ for which w′ � w, then we may use property (a) of
maximal tails to choose a path β1 with s(β1) = w and w′ ≥ r(β1).
Now having chosen βi, we do one of two things: if w′ ≥ r(βi) for all
w′ ∈ γ, we stop. If there exists w′ ∈ γ such that w′ � r(βi), then
we choose a path βi+1 with s(βi+1) = r(βi) and w′ ≥ r(βi+1). We
then continue in this manner to produce a path β := β1β2 · · · , which
may be either finite or infinite. Note that since γ has either a finite
or countable number of elements, we may choose β in such a way that
w ≥ β for all w ∈ γ.

Now if β is an infinite path we define α := β. On the other hand,
if β is a finite path then one of two things must occur. Either r(β)
is a singular vertex or there is an edge e1 ∈ E1 with s(e1) = r(β)
and r(e1) ∈ γ. Continuing in this way, we see that having chosen
ei, either r(e) is a singular vertex or there exists ei+1 ∈ E1 with
s(ei+1) = r(ei) and r(ei+1) ∈ γ. Using this process we may extend
β to a path α := βe1e2 · · · that is either infinite or is finite and ends
at a singular vertex.

Now since every vertex on α is an element of γ we certainly have
{v ∈ F 0 | v ≥ α} ⊆ γ. Also, for every element v ∈ γ there exists an i
such that v ≥ r(βi) ≥ α so we have γ ⊆ {v ∈ F 0 | v ≥ α}.

Theorem 4.5. Let E be a graph. An ideal I in C∗(E) is a primitive
ideal if and only if one of the following two statements holds:

1. I = I(H,S), where E0 \H is a maximal tail and S = BH ; or

2. I = I(H,S), where E0 \H = λv0 for some breaking vertex v0 and
S = BH \ {v0}.

Proof. It follows from Theorem 3.5 that any ideal in C∗(E) has
the form I(H,S) for some saturated hereditary set H ⊆ E0 and some
S ⊆ BH . Let F be a desingularization of E. It follows from
Corollary 3.4 that I(H,S) is primitive if and only if IHS

is primitive.
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Now suppose that I(H,S), and hence IHS
, is primitive. It follows from

[2, Proposition 6.1] that F 0 \ HS is a maximal tail in F . Thus by
Lemma 4.4 we have F 0 = {w ∈ F 0 |w ≥ α} for some α ∈ F∞. Now
φ−1
∞ (α) is either an infinite path in E or a finite path in E ending at

a singular vertex. In either case γ := {w ∈ E0 |w ≥ φ−1
∞ (α)} is a

maximal tail in E. Furthermore,

v ∈ E0 \H ⇐⇒ v /∈ H ⇐⇒ v /∈ HS ⇐⇒ v ≥ α in F
⇐⇒ v ≥ φ−1

∞ (α) in E ⇐⇒ v ∈ γ.

Therefore E0 \H = γ is a maximal tail.

Now if S = BH , then we are in the case described in part (1) of
the theorem and the claim holds. Let us therefore suppose that there
exists v0 ∈ BH \ S. If we define Tv0 := {v0, v1, v2, . . . } to be the
vertices on the tail added to v0, then we see that v0 /∈ S implies that
Tv0 ⊆ F 0 \ HS = {w ∈ F 0 |w ≥ α}. Now for each vertex vi with
i ≥ Nv0 there are two edges, ei+1 and fi+1, with source vi. Since
r(fi+1) ∈ HS and r(ei+1) = vi+1, it must be the case that α has the
form α = α′e1e2e3 · · · for some finite path α′ in F . Consequently,
φ−1
∞ (α) is a finite path in E ending at v0, and γ = λv0 . Now let
X := {e ∈ E1 | s(e) = v0 and r(e) ≥ v0}. Note that if s(e) = v0 and
r(e) ≥ v0, then r(e) /∈ H since H is hereditary. Because v0 ∈ BH it
follows that we must have |X| <∞. Furthermore, since v0 ∈ BH there
exists e ∈ E1 with s(e) = v0 and r(e) /∈ H. But then r(e) ∈ γ
and r(e) ≥ φ−1

∞ (α) and hence r(e) ≥ v0. Thus |X| > 0, and by
definition v0 is a breaking vertex. All that remains is to show that
S = BH \ {v0}. Let us suppose that w0 ∈ BH . If w0 /∈ S, then
Tw0 ⊆ F 0 \ HS = {w ∈ F 0 |w ≥ α}. But because the wis for
i ≥ Nw0 can only reach elements of H and Tw0 , the only way to have
wi ≥ α = α′e1e2 · · · for all i is if we have w0 = v0. Hence v0 is the only
element of BH \ S and S = BH \ {v0}. Thus we have established all of
the claims in part (2).

For the converse let E0 \H be a maximal tail. Consider the following
two cases.

Case I. S = BH . We shall show that F 0 \ HS is a maximal tail in
F . Since HS is a saturated hereditary subset of F 0, the set F 0 \ HS

certainly satisfies (b) and (c) in the definition of maximal tail. We
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shall prove that (a) also holds. Let w1, w2 ∈ F 0 \HS . If it is the case
that w1, w2 ∈ E0, then we must also have w1, w2 ∈ E0 \H, and hence
there exists z ∈ E0 \H such that w1 ≥ z and w2 ≥ z in E. But then
z ∈ F 0 \HS and w1 ≥ z and w2 ≥ z in F .

On the other hand, if one of the wis is not in E0, then it must be
on an infinite tail Tv0 . Because wi /∈ HS and S = BH , we must have
wi ≥ z for some z ∈ E0 \H. Thus we can replace wi with z and reduce
to the case when wi ∈ E0.

Hence F 0 \HS also satisfies (a) and is a maximal tail. Consequently,
IHS

is a primitive ideal by [2, Proposition 6.1], and I(H,S) is a primitive
ideal by Corollary 3.4.

Case II. E0\H = λv0 for some breaking vertex v0 and S = BH \{v0}.
As in Case I, it suffices to show that F 0\HS satisfies (a) in the definition
of maximal tail. To see this, let w ∈ F 0 \HS . If w ∈ E0, then we must
have w ∈ E0 \ H = λv0 and w ≥ v0. If w /∈ E0, then w must be on
one of the added tails in F . Since S = BH \ {v0} we must have that
w is an element on Tv0 = {v0, v1, v2, . . . }. In either case we see that w
can reach an element of Tv0 in F . Consequently, F 0 \ HS ≥ Tv0 and
F 0 \HS clearly satisfies (a).

Definition 4.6. Let E be a graph that satisfies Condition (K). We
define a map φE : ΞE → PrimC∗(E) as follows. For γ ∈ ΛE let
H(γ) := E0 \ γ and define φE(γ) := I(H(γ),BH(γ)). For v0 ∈ BV (E) we
define φE(v0) := I(H(λv0),BH(λv0 )\{v0}). The previous theorem shows
that φE is a bijection.

We now wish to define a topology on ΞE that will make φE a
homeomorphism. As usual our strategy will be to translate the problem
to a desingularized graph and make use of the corresponding results in
[2]. In particular, if E is any graph and F is a desingularization of E,
then we have the following picture:

ΞE

φE

��

h �� ΞF

φF

��

PrimC∗(E)
ψ

�� PrimC∗(F ),
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where ψ is the Rieffel correspondence restricted to the primitive ideal
space. If we use the topology on ΞF = ΛF defined in [2, Theorem 6.3],
then φF is a homeomorphism. To define a topology on ΞE that
makes φE a homeomorphism we will simply use the composition h :=
φ−1

F ◦ψ ◦φE to pull the topology on ΞF back to a topology on ΞE . We
start with a proposition that describes the map h.

Proposition 4.7. Let E be a graph satisfying Condition (K) and let
F be a desingularization of E.

1. If α ∈ E∞ ∪ {α ∈ E∗ | r(α) is a singular vertex} and γ = {v ∈
E0 | v ≥ α} ∈ ΛE, then h(γ) = {v ∈ F 0 | v ≥ φ∞(α)}.

2. If v0 is a breaking vertex, then h(v0) = {v ∈ F 0 | v ≥ e1e2 · · · },
where e1e2 · · · is the path on the tail added to v0.

Proof. To prove part (1), let H := E0 \ γ and S := BH . Then using
Proposition 3.3 we have h(γ) = φ−1

F ◦ ψ ◦ φE(γ) = φ−1
F ◦ ψ(I(H,S)) =

φ−1
F (IHS

) = F 0 \ HS . We shall show that F 0 \ HS = {v ∈ F 0 | v ≥
φ∞(α)}. To begin, if v ∈ E0 then

v ∈ F 0 \HS ⇐⇒ v ∈ E0 \H ⇐⇒ v ∈ γ

⇐⇒ v ≥ α in E ⇐⇒ v ≥ φ∞(α) in F.

where the last step follows from Lemma 2.6. On the other hand,
suppose v ∈ F 0 \ E0. Then since S = BH every vertex v ∈ F 0 \ HS

must connect to some vertex w ∈ E0 \H. So we may replace v with w
and repeat the above argument. Thus we have proven (1).

For part (2), let v0 be a breaking vertex and set λv0 := {w ∈ E0 |w ≥
v0} and S := B(E0\λv0 ) \ {v0}. Then h(v0) = φ−1

F ◦ ψ ◦ φE(v0) =
φ−1

F ◦ ψ(I(H,S)) = φ−1
F (IHS

) = F 0 \ HS . An argument similar to the
one above shows that F 0 \HS = {v ∈ F 0 | v ≥ e1e2 · · · }.

Definition 4.8. Let E be a graph and let S ⊆ E0. If γ is a maximal
tail, then we write γ → S if γ ≥ S. If v0 is a breaking vertex in E,
then we write v0 → S if the set {e ∈ E0 | s(e) = v0, r(e) ≥ S} contains
infinitely many elements.
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Lemma 4.9. Let δ ∈ ΞE and let P ⊆ ΞE. Then δ → ⋃
λ∈P λ in E

if and only if h(δ) ≥ ⋃
λ∈P h(λ) in F .

Proof. If δ is a maximal tail, then from Lemma 4.4 we have δ = {v ∈
E0 | v ≥ α} for some α ∈ E∞ ∪ {α ∈ E∗ | r(α) is a singular vertex}.
Similarly, for each λ ∈ P ∩ΛE we may write λ = {v ∈ E0 | v ≥ αλ} for
some αλ ∈ E∞ ∪ {α ∈ E∗ | r(α) is a singular vertex}. Now

δ −→
⋃

λ∈P

λ

⇐⇒ α ≥
⋃

λ∈P∩ΛE

{r(αλ
i )}|αλ|

i=1 ∪
⋃

v0∈P∩BV (E)

v0

⇐⇒ φ∞(α)≥
⋃

λ∈P∩ΛE

{r(φ∞(αλ)i)}|α
λ|

i=1 ∪
⋃

v0∈P∩BV (E)

φ∞(v0)

⇐⇒ {v ∈ F 0 | v ≥ φ∞(α)}
≥

⋃
λ∈P∩ΛE

{v ∈ F 0 | v ≥ φ∞(αλ
i )}

∪
⋃

v0∈P∩BV (E)

{v ∈ F 0 | v ≥ ev0
1 e

v0
2 · · · }

⇐⇒ h(δ) ≥
⋃

λ∈P

h(λ)

So the claim holds when δ is a maximal tail.

Now let us consider the case when δ = v0 is a breaking vertex.
It follows from Lemma 4.7 that h(v0) = {v ∈ F 0 | v ≥ e1e2 · · · },
where e1e2 · · · is the path on the tail added to v0. Now suppose that
v0 → ∪λ∈Pλ. Fix v ∈ h(δ). Note that either v ≥ v0 in F or v is on the
infinite tail added to v0 in F . Because v0 → ∪λ∈Pλ, there are infinitely
many edges in E from v0 to vertices that connect to ∪λ∈Pλ. Thus no
matter how far out on the tail v happens to be, there must be an edge
in F whose source is a vertex further out on the tail than v and whose
range is a vertex that connects to a vertex w ∈ λ for some λ ∈ P . Since
w ∈ λ we must have w ∈ h(λ) and thus v ≥ ∪λ∈Ph(λ).

Now assume that h(v0) ≥ ∪λ∈Ph(λ). Then every vertex on the
infinite tail attached to v0 connects to a vertex in ∪λ∈Ph(λ). In fact it
is true that every vertex on the infinite tail attached to v0 connects to a



C∗-ALGEBRAS OF ARBITRARY GRAPHS 133

vertex in ∪λ∈Ph(λ)∩E0, which implies that every vertex on the infinite
tail connects to a vertex in ∪λ∈Pλ. But this implies that there must be
infinitely many edges from v0 to vertices that connect to ∪λ∈Pλ. Thus
v0 → ∪λ∈Pλ.

Theorem 4.10. Let E be a graph satisfying Condition (K). Then
there is a topology on ΞE such that for S ⊆ ΞE,

S :=
{
δ ∈ ΞE | δ →

⋃
λ∈S

λ
}
,

and the map φE given in Definition 4.6 is a homeomorphism from ΞE

onto PrimC∗(E).

Proof. Since h is a bijection, we may use h to pull the topology
defined on ΞF = ΛF in [2, Theorem 6.3] back to a topology on ΞE .
Specifically, if S ⊆ ΞE then S = h−1(P ) for some P ⊆ ΞF , and we
define S := h−1(P ). But from Lemma 4.9 we see that this is equivalent
to defining S = {δ ∈ ΞE | δ → ⋃

λ∈S λ}. Now with this topology h, and
consequently φE , is a homeomorphism.

5. Concluding remarks. When we defined a desingularization of
a graph in Section 2, for each singular vertex v0 we chose an ordering
of the edges s−1(v0) and then redistributed these edges along the
added tail in such a way that every vertex on the tail was the source
of exactly one of these edges. Another way we could have defined
a desingularization would be to instead redistribute a finite number
of edges to each vertex on the added tail. Thus if v0 is a singular
vertex, we could choose a partition of s−1(v0) into a countable collection
Sv0

0 , Sv0
1 , Sv0

2 , . . . of finite (or empty) disjoint sets. Having done this,
we add a tail to E by first adding a graph of the form

v0
e1 �� v1

e2 �� v2
e3 �� v3

e4 �� · · ·
We then remove the edges in s−1(v0) and for each i and each g ∈ Sv0

i

we draw an edge from vi to r(g). More formally, if the elements
of Sv0

i are listed as {g1
i , g

2
i , . . . , g

mi
i } we define F 0 := E0 ∪ {vi}∞i=1,

F 1 := (E1 \ s−1(v0)) ∪ {ei}∞i=1 ∪ {f j
i | 1 ≤ i ≤ ∞ and 1 ≤ j ≤ mi},

and extend r and s by s(ei) = vi−1, r(ei) = vi, s(f
j
i ) = vi, and

r(f j
i ) = r(gj

i ).
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If we add tails in this manner, then we can define a desingularization
of E to be the graph F formed by adding a tail to each singular
vertex in E. Here a choice of partition Sv0

0 , Sv0
1 , Sv0

2 , . . . must be made
for each singular vertex, and different choices will sometimes produce
nonisomorphic graphs.

With this slightly more general definition of desingularization, all
of the results of this paper still hold and the proofs of those results
remain essentially the same. We avoided using this broader definition
only because the partitioning and the use of double subscripts in the
f j

i s creates very cumbersome notation, and we were afraid that this
would obscure the main points of this article. However, we conclude by
mentioning this more general method of desingularization because we
believe that in practice there may be situations in which it is convenient
to use. For example, if H is a saturated hereditary subset of E0, then
for each v0 ∈ BH one may wish to choose a partition of s−1(v) with
Sv0

0 := {e ∈ E1 | s(e) = v0 and r(e) /∈ H}. Then a desingularization
created using this partition will have the property that every vertex on
a tail added to v0 will point only to the next vertex on the tail and
elements of H.
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