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A QUASILINEARIZATION APPROACH FOR
TWO POINT NONLINEAR BOUNDARY
VALUE PROBLEMS ON TIME SCALES

ELVAN AKIN-BOHNER AND FERHAN MERDIVENCI ATICI

ABSTRACT. In this paper the quasilinearization method
is used in an approach to the unique solution of the sepa-
rated boundary value problem on time scales from below and
above by monotone convergent sequences of upper and lower
solutions. The rate of convergence is also determined.

1. Introduction. In this paper we consider the separated boundary
value problems (SBVPs)

−(p(t)x∆)∆ + q(t)xσ = f(t, xσ) + g(t, xσ), t ∈ [a, b]κ
2

(1)
x(a) = A, x(b) = B(2)

and

−(p(t)x∆)∇ + q(t)x = f(t, x) + g(t, x), t ∈ [a, b](3)
x(ρ(a)) = A, x(σ(b)) = B.(4)

In Section 2 we give some preliminary results with respect to the
calculus on time scales which can also be found in the books by
Bohner and Peterson [7] and Kaymakçalan, Lakshmikantham, and
Sivasundaram [12]. In Section 3 we introduce the theory of the method
of lower and upper solutions for the SBVP (1) (2). Under certain
assumptions on f and g we prove existence theorems for solutions of
the SBVP (1) (2) on a time scale T. Then, in Section 4, the idea
of the quasilinearization method is used for the SBVP (1) (2) on T
for which f and g are k-hyperconvex and k-hyperconcave functions,
respectively. This method has been studied by Cabada and Nieto [8],
Lakshmikantham and Vatsala [13], Mohapatra, Vajravelu and Yin [14]
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for ordinary differential equations. The method of upper and lower
solutions for the SBVPs has recently been developed by Akın [3] on
T. Then the quasilinearization method is applied by Eloe [9] for the
SBVP (1) (2) when p = 1, q = g = 0 and f is 1-hyperconvex on a
compact time scale. We also prove that the order of convergence of
sequences of lower and upper solutions is k. In Section 5 we again use
the idea of quasilinerization method for the SBVP (3) (4) where f and
g are respectively k-hyperconvex and k-hyperconcave functions on T.
This method is also used by Merdivenci Atıcı, Eloe and Kaymakçalan
[5] for the SBVP (3) with periodic boundary conditions when p = 1, f
and g are 1-hyperconvex and 1-hyperconcave functions on T. We also
determine the order of convergence of sequences of lower and upper
solutions similarly as in Section 4. In Section 6, we emphasize that
the sequences of lower and upper solutions are not unique in the main
result of this paper.

2. Calculus on time scales. The theory of time scales was
initiated by Stefan Hilger in his Ph.D. dissertation [11] in 1988 in
order to unify continuous and discrete analysis. Some recent paper
concerning dynamic equations on time scales include Agarwal, Bohner
and O’Reagan [2] and Akın-Bohner and Bohner [4]. A time scale T
is an arbitrary nonempty closed subset of real numbers R. For our
purposes, we let T be a time scale, [a, b] be the closed and bounded
interval in T, i.e., [a, b] := {t ∈ T : a ≤ t ≤ b} and a, b ∈ T.

Obviously a time scale T may or may not be connected. Therefore we
have the concept of forward and backwards jump operators as follows.
Define σ, ρ : T �→ T by

σ(t) = inf{s ∈ T : s > t} and ρ(t) = {s ∈ T : s < t}.
If σ(t) = t, σ(t) > t, ρ(t) = t, ρ(t) < t, then t ∈ T is called right-
dense (rd), right-scattered, left-dense, left-scattered, respectively. We
also define the graininess function µ : T �→ [0,∞) as µ(t) = σ(t) − t.
The sets Tκ, Tκ which are derived from T are as follows: If T has a left-
scattered maximum t1, then Tκ = T−{t1}, otherwise Tκ = T. If T has
a right-scattered minimum t2, then Tκ = T−{t2}, otherwise Tκ = T.
If f : T �→ R is a function, we define the functions fσ : Tκ �→ R by
fσ(t) = f(σ(t)) for all t ∈ Tκ, fρ : Tκ �→ R by fρ(t) = f(ρ(t)) for all
t ∈ Tκ and σ0(t) = ρ0(t) = t. If f : T �→ R is a function and t ∈ Tκ,
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then the delta-derivative of f at a point t is defined to be the number
f∆(t), provided it exists, with the property that for each ε > 0 there
is a neighborhood of U1 of t such that

|[f(σ(t)) − f(s)] − f∆(t)[σ(t) − s]| ≤ ε|σ(t) − s|,

for all s ∈ U1. If t ∈ Tκ, then we define the nabla derivative of f at a
point t to be the number f∇(t), provided it exists, with the property
that for each ε > 0 there is a neighborhood of U2 of t such that

|[f(ρ(t)) − f(s)] − f∇(t)[ρ(t) − s]| ≤ ε|ρ(t) − s|,

for all s ∈ U2.

Remark 2.1. If T = R, then f∆(t) = f∇(t) = f ′(t), and if
T = Z, then f∆(t) = ∆f(t) = f(t + 1) − f(t) and f∇(t) = ∇f(t) =
f(t) − f(t − 1).

In the next two theorems we give some important properties of delta-
derivative and nabla-derivative.

Theorem 2.1. Assume f : T �→ R is a function and let t ∈ Tκ.
Then we have the following:

(i) If f is delta-differentiable at t, then f is continuous at t.

(ii) If f is continuous at t and t is right-scattered, then f is delta-
differentiable at t with

f∆(t) =
fσ(t) − f(t)

µ(t)
.

(iii) If f is delta-differentiable and t is right-dense, then

f∆(t) = lim
s→t

f(t) − f(s)
t − s

.

(iv) If f is delta-differentiable at t, then

fσ(t) = f(t) + µ(t)f∆(t).
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The product and quotient rules are given by

(fg)∆(t) = f∆(t)g(t) + fσ(t)g∆(t)

and (
f

g

)∆

(t) =
f∆(t)g(t) − f(t)g∆(t)

g(t)gσ(t)

where f and g are two delta-differentiable functions such that ggσ �= 0.

Theorem 2.2. Assume f : T �→ R is a function and let t ∈ Tκ.
Then we have the following:

(i) If f is nabla-differentiable at t, then f is continuous at t.

(ii) If f is continuous at t and t is left-scattered, then f is nabla-
differentiable at t with

f∇(t) =
fρ(t) − f(t)

ρ(t) − t
.

(iii) If f is nabla-differentiable and t is left-dense, then

f∇(t) = lim
s→t

f(t) − f(s)
t − s

.

(iv) If f is nabla-differentiable at t, then

fρ(t) = f(t) + (ρ(t) − t)f∇(t).

The product and quotient rules are given by

(fg)∇(t) = f∇(t)g(t) + fρ(t)g∇(t)

and (
f

g

)∇
(t) =

f∇(t)g(t) − f(t)g∇(t)
g(t)gρ(t)

where f and g are two nabla-differentiable functions such that ggρ �= 0.
Notice that, in general,

f∆(ρ(t0)) �= f∇(t0) and f∇(σ(t0)) �= f∆(t0).
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However if σ(ρ(t0)) = t0 for any t0 ∈ Tκ, then f∆(ρ(t0)) = f∇(t0) and
while if ρ(σ(t0)) = t0 for any t0 ∈ Tκ, then f∇(σ(t0)) = f∆(t0).

Definition 2.1. Let f : T �→ R be a function. We say that f is
rd-continuous provided f is continuous at each right-dense point in T
and lims→t− f(s) exists as a finite number for all left-dense points in
T. The set of rd-continuous functions f : T �→ R will be denoted in
this paper by Crd = Crd(T).

A function F : Tκ �→ R is called a delta-antiderivative of f : T �→ R
provided F∆(t) = f(t) holds for all t ∈ Tκ. In this case we define the
integral of f by ∫ t

a

f(s)∆s = F (t) − F (a)

for all a, t ∈ T. A function G : Tκ �→ R is called a nabla-antiderivative
of f : T �→ R provided G∇(t) = f(t) holds for all t ∈ Tκ. In this case
we define the integral of f by

∫ t

a

f(s)∇s = G(t) − G(a)

for all a, t ∈ T.

Remark 2.2. If T = R, then

∫ b

a

f(t)∆t =
∫ b

a

f(t)∇t =
∫ b

a

f(t)dt,

and if T = Z, then

∫ b

a

f(t)∆t =
b−1∑
k=a

f(k)

and ∫ b

a

f(t)∇t =
b∑

k=a+1

f(k).
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We also need the following fundamental result which is proved in the
article by Merdivenci Atıcı and Guseinov [6]. We refer the readers to
[6] for further results for the nabla-derivative.

Theorem 2.3. If f : T �→ R is delta-differentiable on Tκ and if f∆

is continuous on Tκ, then f is nabla-differentiable on Tκ and

f∇(t) = f∆(ρ(t))

for all t ∈ Tκ.

3. The method of upper and lower solutions. We consider
the SBVP (1) (2) with real-valued functions f, g ∈ C([a, b]κ

2 ×R) and
p, q ∈ Crd([a, b]κ

2
) such that p(t) > 0 and q(t) ≥ 0 on [a, b]κ

2
. We

define

D1 := {x ∈ B : x∆ is continuous and px∆ is delta-differentiable

on [a, b]κ and(px∆)∆ is rd-continuous on [a, b]κ
2},

where the Banach space B = C([a, b]) is equipped with the norm || · ||
defined by

||x|| = max
t∈[a,b]

|x(t)|.

A function x is called a solution of the equation −(p(t)y∆)∆+q(t)yσ = 0
on [a, b]κ

2
if x ∈ D1 and the equation −(px∆)∆(t)+q(t)xσ(t) = 0 holds

for all t ∈ [a, b]κ
2
. Next we define for any u, v ∈ D1 the sector [u, v]1

by
[u, v]1 := {w ∈ D1 : u ≤ w ≤ v}.

Definition 3.1. We call α ∈ D1 a lower solution of the SBVP
(1) (2) on [a, b] provided

−(pα∆)∆(t) + q(t)ασ(t) ≤ f(t, ασ(t))+ g(t, ασ(t)) for all t ∈ [a, b]κ
2

and
α(a) ≤ A, α(b) ≤ B.
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Similarly, β ∈ D1 is called an upper solution of the SBVP (1) (2) on
[a, b] provided

−(pβ∆)∆(t) + q(t)βσ(t) ≥ f(t, βσ(t)) + g(t, βσ(t)) for all t ∈ [a, b]κ
2

and
β(a) ≥ A, β(b) ≥ B.

The following fundamental result from the calculus on time scales is
very crucial in the proof of some results in the next section. A special
case of the following lemma is proved by Akın [3].

Lemma 3.1. Assume h ∈ D1. Suppose there exists c ∈ (a, b) such
that

h(c) = max{h(t) : t ∈ [a, b]}
and

h(t) < h(c) for t ∈ (c, b].

Then
h∆(c) ≤ 0 and (ph∆)∆(ρ(c)) ≤ 0.

Proof. There are four cases as follows:

(i) ρ(c) = c < σ(c);

(ii) ρ(c) < c < σ(c);

(iii) ρ(c) < c = σ(c);

(iv) ρ(c) = c = σ(c).

As is shown in the proof of [7, Theorem 6.54], one can show that the
first case is impossible and in the other cases h∆(c) and (ph∆)∆(ρ(c))
are nonpositive. However, we only show the last case. From Case (iii)
we have h∆(c) ≤ 0. If h∆(c) < 0, then

lim
t→c−

h∆(t) = h∆(c) < 0.

This implies that there exists δ > 0 such that h∆(t) < 0 on (c − δ, c].
Hence h is strictly decreasing on (c−δ, c]. But this contradicts the way
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c was chosen. Therefore h∆(c) = 0. If (ph∆)∆(ρ(c)) = (ph∆)∆(c) > 0,
then

lim
t→c+

(ph∆)∆(t) = (ph∆)∆(c) > 0.

This implies that there exists δ > 0 such that (ph∆)∆(t) > 0 on [c, c+δ).
Hence ph∆ is strictly increasing on [c, c+δ). But h∆(c) = 0, and hence
p(c)h∆(c) = 0. So (ph∆)(t) > 0 on (c, c + δ) and therefore h∆(t) > 0
on (c, c+ δ). This implies that h is strictly increasing on (c, c+ δ). But
this contradicts the way c was chosen. Therefore (ph∆)∆(c) ≤ 0.

Remark 3.1. The smoothness requirements on α and β can be
weakened in the following way as in [7, Theorem 6.54].

Theorem 3.1. Assume that there exist a lower solution α and an
upper solution β of the SBVP (1) (2) such that

α(t) ≤ β(t) for all t ∈ [a, b].

Then the SBVP (1) (2) has a solution x ∈ [α, β]1 on [a, b].

We need one final fundamental result concerning the method of upper
and lower solutions.

Theorem 3.2. Assume that f is strictly decreasing and g is decreas-
ing in x for t ∈ [a, b]κ

2
. Moreover, assume that α and β are lower and

upper solutions of the SBVP (1) (2), respectively. Then

α(t) ≤ β(t) for all t ∈ [a, b].

Proof. Define h := α − β. For the sake of contradiction assume that
the result is not true. Hence there exists t1 ∈ [a, b] with h(t1) > 0.
Since h(a) ≤ 0 and h(b) ≤ 0, we can choose t0 ∈ (a, b) so that

h(t0) = max{h(t) : t ∈ [a, b]} > 0

and
h(t) < h(t0) for all t ∈ (t0, b].
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Then by Lemma 3.1,
(ph∆)∆(ρ(t0)) ≤ 0.

On the other hand, we have, note that σ(ρ(t0)) = t0 as the first case
in Lemma 3.1 cannot occur,

(ph∆)∆(ρ(t0)) = (pα∆)∆(ρ(t0)) − (pβ∆)∆(ρ(t0))
≥ −f(ρ(t0), α(t0)) − g(ρ(t0), α(t0)) + f(ρ(t0), β(t0))

+ g(ρ(t0), β(t0)) + q(ρ(t0))[α(t0) − β(t0)] > 0,

where we used the definition of upper and lower solutions, the mono-
tonicity conditions of f and g, and the sign condition on q.

Theorem 3.2 gives another approach for proving the uniqueness of
solutions of the SBVP (1) (2). The proof of the following theorem
follows from the fact that every solution of the SBVP is also a lower
and an upper solution.

Theorem 3.3. Assume that the conditions on f , g, α and β hold
as in Theorem 3.2. Then the SBVP (1) (2) has a unique solution on
[a, b].

4. The quasilinearization method. In this section we let
f (i)(t, x) be the ith derivative of f with respect to x for i ≥ 1, and
f (0)(t, x) = f(t, x). Note that these are the usual partial derivatives in
R. In this section we also assume that the point b is right dense.

Definition 4.2. A function f ∈ Ck+1([a, b]κ
2 × R) is called k-

hyperconvex if f (k+1)(t, x) ≥ 0, k ∈ N. Analogously, f is called k-
hyperconcave if the inequality is reversed.

When k = 1, 1-hyperconvex (1-hyperconcave) function is the usual
convex (concave) function.

Here we prove our main result when k = 3.

Theorem 4.1. Assume that α0 and β0 are respectively lower and
upper solutions of the SBVP (1) (2) on [a, b] and f, g ∈ C4([a, b]κ

2 ×
[α0, β0]1). If
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(i) f is 3-hyperconvex such that f (1)(t, x) < 0 and f (i)(t, x) ≤ 0 on
[a, b]κ

2 × [α0, β0]1 for i = 2, 3, and

(ii) g is 3-hyperconcave such that g(i)(t, x) ≤ 0 on [a, b]κ
2 × [α0, β0]1

for i = 1, 2, 3,

then there exist monotone sequences {αn} and {βn} converging uni-
formly in [α0, β0]1 on [a, b] to the unique solution x of the SBVP
(1) (2).

Proof. Define H and L by

H(t, xσ; α0, β0) = (f + g)(t, ασ
0 ) + (f + g)(1)(t, ασ

0 )(xσ − ασ
0 )

+
1
2!

(f + g)(2)(t, ασ
0 )(xσ − ασ

0 )2

+
1
3!

[
f (3)(t, ασ

0 ) + g(3)(t, βσ
0 )

]
(xσ − ασ

0 )3

and

L(t, xσ; α0, β0) = (f + g)(t, βσ
0 ) + (f + g)(1)(t, βσ

0 )(xσ − βσ
0 )

+
1
2!

(f + g)(2)(t, βσ
0 )(xσ − βσ

0 )2

+
1
3!

[
f (3)(t, ασ

0 ) + g(3)(t, βσ
0 )

]
(xσ − βσ

0 )3.

We now consider two SBVPs in addition to the SBVP (1) (2) as
follows:

(5) −(p(t)x∆)∆ + q(t)xσ = H(t, xσ; α0, β0), t ∈ [a, b]κ
2

with the boundary conditions (2) and

(6) −(p(t)x∆)∆ + q(t)xσ = L(t, xσ; α0, β0), t ∈ [a, b]κ
2

with the boundary conditions (2). First of all, we will show that α0

and β0 are lower and upper solutions of the SBVPs (5) (2) and (6) (2).
Since

H(t, ασ
0 ; α0, β0) = (f + g)(t, ασ

0 ) ≥ −(pα∆
0 )∆ + qασ

0 ,
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α0 is trivially a lower solution of the SBVP (5) (2). Applying Taylor’s
theorem, we obtain

H(t, βσ
0 ; α0, β0) = (f + g)(t, ασ

0 ) + (f + g)(1)(t, ασ
0 )(βσ

0 − ασ
0 )

+
1
2!

(f + g)(2)(t, ασ
0 )(βσ

0 − ασ
0 )2

+
1
3!

[
f (3)(t, ασ

0 ) + g(3)(t, βσ
0 )

]
(βσ

0 − ασ
0 )3

= f(t, βσ
0 ) − 1

4!
f (4)(t, ξ)(βσ

0 − ασ
0 )4 + g(t, βσ

0 )

− 1
3!

g(3)(t, ν)(βσ
0 − ασ

0 )3 +
1
3!

g(3)(t, βσ
0 )(βσ

0 − ασ
0 )3

≤ (f + g)(t, βσ
0 )+

1
3!

[
g(3)(t, βσ

0 ) − g(3)(t, ν)
]
(βσ

0 −ασ
0 )3

≤ (f + g)(t, βσ
0 )

≤ −(pβ∆
0 )∆ + qβσ

0 ,

where ασ
0 ≤ ξ, ν ≤ βσ

0 and we used the facts that g is 3-hyperconcave
and f is 3-hyperconvex. Therefore β0 is an upper solution of the SBVP
(5) (2). Theorem 3.1 assures the existence of a solution α1 of the SBVP
(5) (2) such that

α0(t) ≤ α1(t) ≤ β0(t) for all t ∈ [a, b].

Similarly, β0 is an upper solution of the SBVP (6) (2) and α0 is a lower
solution of the SBVP (6) (2) since

L(t, βσ
0 ; α0, β0) = (f + g)(t, βσ

0 ) ≤ −(pβ∆
0 )∆ + qβσ

0

and

L(t, ασ
0 ; α0, β0) = (f + g)(t, βσ

0 ) + (f + g)(1)(t, βσ
0 )(ασ

0 − βσ
0 )

+
1
2!

(f + g)(2)(t, βσ
0 )(ασ

0 − βσ
0 )2

+
1
3!

[
f (3)(t, ασ

0 ) + g(3)(t, βσ
0 )

]
(ασ

0 − βσ
0 )3
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= f(t, ασ
0 ) − 1

3!
f (3)(t, ξ)(ασ

0 − βσ
0 )3

+
1
3!

f (3)(t, ασ
0 )(ασ

0 − βσ
0 )3

+ g(t, ασ
0 ) − 1

4!
g(4)(t, ν)(ασ

0 − βσ
0 )4

≥ (f + g)(t, ασ
0 )+

1
3!

[
f (3)(t, ασ

0 )−f (3)(t, ξ)
]
(ασ

0 −βσ
0 )3

≥ (f + g)(t, ασ
0 )

≥ −(pα∆
0 )∆ + qασ

0 ,

where ασ
0 ≤ ξ, ν ≤ βσ

0 and we used Taylor’s theorem and the facts that
f is 3-hyperconvex and g is 3-hyperconcave. Applying Theorem 3.1,
there exists a solution β1 of the SBVP (6) (2) such that

α0(t) ≤ β1(t) ≤ β0(t) for all t ∈ [a, b].

Next, we show that

(7) α1(t) ≤ β1(t) for all t ∈ [a, b].

To see this, we apply Taylor’s theorem

−(pα∆
1 )∆ + qασ

1 = H(t, ασ
1 ; α0, β0)

= (f + g)(t, ασ
0 ) + (f + g)(1)(t, ασ

0 )(ασ
1 − ασ

0 )

+
1
2!

(f + g)(2)(t, ασ
0 )(ασ

1 − ασ
0 )2

+
1
3!

[
f (3)(t, ασ

0 ) + g(3)(t, βσ
0 )

]
(ασ

1 − ασ
0 )3

= f(t, ασ
1 ) − 1

4!
f (4)(t, ξ)(ασ

1 − ασ
0 )4 + g(t, ασ

1 )

− 1
3!

g(3)(t, ν)(ασ
1 − ασ

0 )3

+
1
3!

g(3)(t, βσ
0 )(ασ

1 − ασ
0 )3

≤ (f + g)(t, ασ
1 )+

1
3!

[
g(3)(t, βσ

0 ) − g(3)(t, ν)
]
(ασ

1 −ασ
0 )3

≤ (f + g)(t, ασ
1 ),
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where ασ
0 ≤ ξ, ν ≤ ασ

1 and we used the facts that f is 3-hyperconvex
and g is 3-hyperconcave. Hence, α1 is a lower solution of the SBVP
(1) (2). Again we apply Taylor’s theorem to obtain

−(pβ∆
1 )∆ + qβσ

1 = L(t, βσ
1 ; α0, β0)

= (f + g)(t, βσ
0 ) + (f + g)(1)(t, βσ

0 )(βσ
1 − βσ

0 )

+
1
2!

(f + g)(2)(t, βσ
0 )(βσ

1 − βσ
0 )2

+
1
3!

[
f (3)(t, ασ

0 ) + g(3)(t, βσ
0 )

]
(βσ

1 − βσ
0 )3

= f(t, βσ
1 ) − 1

3!
f (3)(t, ξ)(βσ

1 − βσ
0 )3

+
1
3!

f (3)(t, ασ
0 )(βσ

1 − βσ
0 )3

+ g(t, βσ
1 ) − 1

4!
g(4)(t, ν)(βσ

1 − βσ
0 )4

≥ (f + g)(t, βσ
1 )+

1
3!

[
f (3)(t, ασ

0 )−f (3)(t, ξ)
]
(βσ

1 −βσ
0 )3

≥ (f + g)(t, βσ
1 ),

where βσ
1 ≤ ξ, ν ≤ βσ

0 and we used the facts that f is 3-hyperconvex
and g is 3-hyperconcave. Therefore β1 is an upper solution of the
SBVP (1) (2). Applying Theorem 3.2, we have the inequality in (7).
Continuing this process by induction, we obtain sequences {αn}n∈N0

and {βn}n∈N0 with

αn(t) ≤ αn+1(t) ≤ βn+1(t) ≤ βn(t) for all t ∈ [a, b], n ∈ N0

where for each n ∈ N0, αn+1 and βn+1 satisfy the SBVPs

−(p(t)x∆)∆ + q(t)xσ = H(t, xσ; αn, βn), t ∈ [a, b]κ
2

and

−(p(t)x∆)∆ + q(t)xσ = L(t, xσ; αn, βn), t ∈ [a, b]κ
2

with the boundary conditions (2), respectively.
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Since [a, b] is compact and the convergence is monotone and bounded,
{αn} converges uniformly to some function x. Erbe and Peterson [10]
have constructed the Green’s function G(t, s) associated with the SBVP
(1) (2) and shown the positivity property of G(t, s). We employ G(t, s)
to solve nonlinear dynamic equations through the following observation:
x is a solution of the SBVP (1) (2) satisfying

(8) x(t) = z1(t) +
∫ ρ(b)

a

G(t, s)(f + g)(s, xσ(s))∆s, t ∈ [a, b],

where z1 is the solution of the SBVP

{−(p(t)z∆
1 )∆ + q(t)z1

σ = 0, t ∈ [a, b]κ
2

z1(a) = A, z1(b) = B.

Now, {αn} converges monotonically and uniformly to some function x
and

αn+1(t) = z1(t) +
∫ ρ(b)

a

G(t, s)H(s, ασ
n+1(s); αn, βn)∆s, t ∈ [a, b].

Note that

H(s, ασ
n+1; αn, βn) −→ (f + g)(s, xσ)

and the convergence is uniform on [a, b] since [a, b] is compact. It is
now straightforward to show that (8) holds. A similar argument can
be used for {βn}. The conclusion of the theorem follows from the fact
that the SBVP (1) (2) has a unique solution, namely by Theorem 3.3.

Corollary 4.1. The convergence of each sequence {αn} and {βn} is
cubic.

Proof. First we show that the convergence of {αn} is cubic. There
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exists n0 ∈ N such that
−(p(x − αn+1)∆)∆ + q(xσ − ασ

n+1)
= (f + g)(t, xσ) − H(t, ασ

n+1; αn, βn)

= (f + g)(t, xσ) − (f + g)(t, ασ
n) − (f + g)(1)(t, ασ

n)(ασ
n+1 − ασ

n)

− 1
2!

(f + g)(2)(t, ασ
n)(ασ

n+1 − ασ
n)2

− 1
3!

[
f (3)(t, ασ

n) + g(3)(t, βσ
n)

]
(ασ

n+1 − ασ
n)3

= (f + g)(t, ασ
n) + (f + g)(1)(t, ασ

n)(xσ − ασ
n)

+
1
2!

(f + g)(2)(t, ασ
n)(xσ − ασ

n)2

+
1
3!

f (3)(t, ασ
n)(xσ − ασ

n)3 +
1
4!

f (4)(t, ξ)(xσ − ασ
n)4

+
1
3!

g(3)(t, ν)(xσ − ασ
n)3

− (f + g)(t, ασ
n) − (f + g)(1)(t, ασ

n)(ασ
n+1 − ασ

n)

− 1
2!

(f + g)(2)(t, ασ
n)(ασ

n+1 − ασ
n)2

− 1
3!

[
f (3)(t, ασ

n) + g(3)(t, ν)
]
(ασ

n+1 − ασ
n)3

= (f + g)(1)(t, ασ
n)(xσ − ασ

n+1)

+
1
2!

(f + g)(2)(t, ασ
n)

[
(xσ − ασ

n)2 − (ασ
n+1 − ασ

n)2
]

+
1
3!

f (3)(t, ασ
n)

[
(xσ − ασ

n)3 − (ασ
n+1 − ασ

n)3
]

+
1
4!

f (4)(t, ξ)(xσ − ασ
n)4 +

1
3!

g(3)(t, ν)(xσ − ασ
n)3

− 1
3!

g(3)(t, βσ
n)(ασ

n+1 − ασ
n)3

= (f + g)(1)(t, ασ
n)(xσ − ασ

n+1)

+
1
2!

(f + g)(2)(t, ασ
n)(xσ − 2ασ

n + ασ
n+1)(x

σ − ασ
n+1)

+
1
3!

f (3)(t, ασ
n)

( 2∑
j=0

(xσ − ασ
n)2−j(ασ

n+1 − ασ
n)j

)
(xσ − ασ

n+1)

+
1
3!

g(3)(t, ν)(xσ − ασ
n)3 − 1

3!
g(3)(t, βσ

n)(ασ
n+1 − ασ

n)3

+
1
4!

f (4)(t, ξ)(xσ − ασ
n)4

≤ − 1
3!

g(3)(t, βσ
n)(ασ

n+1 − ασ
n)3 +

1
4!

f (4)(t, ξ)(xσ − ασ
n)4
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≤
(
− 1

3!
g(3)(t, βσ

n) +
1
4!

f (4)(t, ξ)
)

(xσ − ασ
n)3

≤ M3(xσ − ασ
n)3,

for all n ≥ n0, where ασ
n ≤ ν, ξ ≤ xσ, −(1/3!)g(3)(t, βσ

n)+(1/4!)f (4)(t, ξ)
≤ M3 and we used Taylor’s theorem and the sign conditions (i) and (ii)
of Theorem 4.1. Since αn+1(a) = x(a) and αn+1(b) = x(b), we have

(x − αn+1)(t) =
∫ ρ(b)

a

G(t, s)[− (
p(x − αn+1)∆

)∆

+ (q(x − αn+1)
σ)](s)∆s, t ∈ [a, b].

It follows that

0 ≤ (x − αn+1)(t) ≤ L1M3||x − αn||3, t ∈ [a, b]

where

L1 := max
t∈[a,b]

∫ ρ(b)

a

G(t, s)∆s.

For the cubic convergence of {βn}, we apply Taylor’s theorem

−(p(βn+1 − x)∆)∆ + q(βσ
n+1 − xσ)

= L(t, βσ
n+1; αn, βn) − (f + g)(t, xσ)

= (f + g)(t, βσ
n) + (f + g)(1)(t, βσ

n)(βσ
n+1 − βσ

n)

+
1
2!

(f + g)(2)(t, βσ
n)(βσ

n+1 − βσ
n)2

+
1
3!

[
f (3)(t, ασ

n) + g(3)(t, βσ
n)

]
(βσ

n+1 − βσ
n)3 − (f + g)(t, xσ)

= (f + g)(t, βσ
n) + (f + g)(1)(t, βσ

n)(βσ
n+1 − βσ

n)

+
1
2!

(f + g)(2)(t, βσ
n)(βσ

n+1 − βσ
n)2

+
1
3!

[
f (3)(t, ασ

n) + g(3)(t, βσ
n)

]
(βσ

n+1 − βσ
n)3 − (f + g)(t, βσ

n)

− (f + g)(1)(t, βσ
n)(xσ − βσ

n) − 1
2!

(f + g)(2)(t, βσ
n)(xσ − βσ

n)2

− 1
3!

g(3)(t, βσ
n)(xσ − βσ

n)3 − 1
4!

g(4)(t, ν)(xσ − βσ
n)4
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− 1
3!

f (3)(t, ξ)(xσ − βσ
n)3

= (f + g)(t, βσ
n)(βσ

n+1 − xσ)

+
1
2!

(f + g)(2)(t, βσ
n)

[
(βσ

n+1 − βσ
n)2 − (xσ − βσ

n)2
]

+
1
3!

g(3)(t, βσ
n)

[
(βσ

n+1 − βσ
n)3 − (xσ − βσ

n)3
]

+
1
3!

f (3)(t, ασ
n)(βσ

n+1 − βσ
n)3

− 1
3!

f (3)(t, ξ)(xσ − βσ
n)3 − 1

4!
g(4)(t, ν)(xσ − βσ

n)4

= (f + g)(1)(t, βσ
n)(βσ

n+1 − xσ)

+
1
2!

(f + g)(2)(t, βσ
n)(βσ

n+1 − 2βσ
n + xσ)(βσ

n+1 − xσ)

+
1
3!

g(3)(t, βσ
n)

[ 2∑
j=0

(βn+1 − βσ
n)2−j(xσ − βσ

n)j

]
(βσ

n+1 − xσ)

+
1
3!

f (3)(t, ασ)(βσ
n+1 − βσ

n)3 − 1
3!

f (3)(t, ξ)(xσ − βσ
n)3

− 1
4!

g(4)(t, ν)(xσ − βσ
n)4

≤ [(f + g)(1)(t, βσ
n) +

1
2!

(f + g)(2)(t, βσ
n)(βσ

n+1 − 2βσ
n + xσ)

+
1
3!

g(3)(t, βσ
n)Cn](βσ

n+1 − xσ) − 1
3!

f (3)(t, ασ
n)(βσ

n − βσ
n+1)

3

− 1
4!

g(4)(t, ν)(βσ
n − xσ)4

≤ [(f + g)(1)(t, βσ
n) +

1
2!

(f + g)(2)(t, βσ
n)(βσ

n+1 − 2βσ
n + xσ)

+
1
3!

g(3)(t, βσ
n)Cn](βσ

n+1 − xσ)

−
[

1
3!

f (3)(t, ασ
n) +

1
4!

g(4)(t, ν)
]
(βσ

n − xσ)3

≤ [(f + g)(1)(t, βσ
n) +

1
2!

(f + g)(2)(t, βσ
n)(βσ

n+1 − 2βσ
n + xσ)

+
1
3!

g(3)(t, βσ
n)Cn](βσ

n+1 − xσ) + N3(βσ
n − xσ)3,

where Cn =
∑2

j=0(β
σ
n+1 − βσ

n)2−j(xσ − βσ
n)j , −(1/3!)f (3)(t, ασ

n) −
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(1/4!)g(4)(t, ν) ≤ N3, xσ ≤ ξ, ν ≤ βσ
n and we used the fact that

f (3)(t, x) ≤ 0. It follows that

−(p(βn+1 − x)∆)∆ + Qn(βσ
n+1 − xσ) ≤ N3(βσ

n − xσ)3,

where Qn = q − (f + g)(1)(t, βσ
n)− (1/2!)(f + g)(2)(t, βσ

n)(βσ
n+1 − 2βσ

n +
xσ) − (1/3!)g(3)(t, βσ

n)Cn. Since βn converges to x uniformly, (i) and
(ii) imply that there exist n0 ∈ N and Q ≥ 0 such that Qn(t) ≥ Q for
all n ≥ n0. Hence, there exists a continuous function hn ≤ 0 on [a, b]
such that

−(p(βn+1 − x)∆)∆ + Q(βσ
n+1 − xσ) = N3(βσ

n − xσ)3 + hn,

(βn − x)(a) = 0, (βn+1 − x)(b) = 0

holds and it is equivalently,

(βn+1 − x)(t) =
∫ ρ(b)

a

G(t, s, Q)(N3(βσ
n − xσ)3 + hn)(s)∆s

for every t ∈ [a, b]. And for any n ≥ n0 we have that

0 ≤ (βn+1 − x)(t) ≤ L∗
1N3 max

t∈[a,b]
{βn(t) − x(t)}3,

where L∗
1 := maxt∈[a,b]

∫ ρ(b)

a
G(t, s, Q)∆s. Therefore

||βn+1 − x||∞ ≤ L∗
1N3||βn − x||3∞, for all n ≥ n0.

Remark 4.1. If g = 0, then the order of convergence of {αn} is 4.

Remark 4.2. In [14] the main result has one monotone sequence
converging from below to the unique solution of the SBVP when T = R.
Here Theorem 4.1 gives an improvement to their result. The method
developed here provides that the lower and upper solutions serve as
bounds of solutions of the nonlinear problem in a traditional way.

We generalize Theorem 4.1 and Corollary 4.1 where f and g are k-
hyperconvex and k-hyperconcave functions, respectively.
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Theorem 4.2. Assume that α0 and β0 are respectively lower and
upper solutions of the SBVP (1) (2) on [a, b] and assume that f, g ∈
Ck+1([a, b]κ

2 × [α0, β0]1), k ∈ N. If

(i) f is k-hyperconvex such that f (1)(t, x) < 0 and f (i)(t, x) ≤ 0 on
[a, b]κ

2 × [α0, β0]1 for 2 ≤ i ≤ k, and

(ii) g is k-hyperconcave such that g(i)(t, x) ≤ 0 on [a, b]κ
2 × [α0, β0]1

for 1 ≤ i ≤ k,

then there exist monotone sequences {αn} and {βn} converging uni-
formly in [α0, β0]1 on [a, b] to the unique solution x of the SBVP
(1) (2).

Proof. We define

H(t, xσ; α0, β0) =
k−1∑
i=0

(f + g)(i)(t, ασ
0 )(xσ − ασ

0 )i

+
1
k!

[
f (k)(t, ασ

0 ) + g(k)(t, βσ
0 )

]
(xσ − ασ

0 )k

and

L(t, xσ; α0, β0) =
k−1∑
i=0

(f + g)(i)(t, βσ
0 )(xσ − βσ

0 )i

+ (−1)k+1 1
k!

[
f (k)(t, ασ

0 ) + g(k)(t, βσ
0 )

]
(xσ − βσ

0 )k.

The proof is similar to that of Theorem 4.1 and hence is omitted.

Corollary 4.2. The order of convergence of each sequence {αn} and
{βn} is k.

Corollary 4.3. If g = 0, then the order of convergence of {αn} is
k + 1.

In the following examples we will apply Theorem 4.2 when k = 2.
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Example 4.1. Consider the conjugate BVP

(9)

{
− (

σ(t)x∆
)∆ + (1/t)xσ = −xσ (xσ + 1) , t ∈ [1, 2]κ

2

x(1) = 1/2, x(2) = 1/4,

where f(t, x) = −x and g(t, x) = −x2. Since

0 = − (
σ(t)α∆

0

)∆
+

1
t

ασ
0 ≤ 0

on [1, 2]κ
2

and α0(1) ≤ 1/2, α0(2) ≤ 1/4, α0(t) ≡ 0 is a lower solution
of the SBVP (9) on [1, 2]. Similarly, β0(t) ≡ 1

t is an upper solution of
SBVP (9) on [1, 2] since

0 = −(σ(t)β∆
0 )∆ +

1
t

βσ
0 ≥ − 1

σ(t)

(
1

σ(t)
+ 1

)

on [1, 2]κ
2

and β0(1) = 1 ≥ 1/2, β0(2) = 1/2 ≥ 1/4. By Theorem 3.1,
we conclude that there is a solution in [0, 1

t ]1 for t ∈ [1, 2]. Moreover,
since f and g satisfy the conditions (i) and (ii) in Theorem 4.2, we also
conclude that there are monotone sequences {αn} and {βn} converging
uniformly in [0, 1

t ]1 on [1, 2] to the unique solution of the SBVP (9).

Example 4.2. Consider the SBVP

(10)
{−x∆∆ + xσ = 4 sin ((2π/3)xσ) − (xσ)3 , t ∈ [a, b]κ

2

x(a) = 1, x(b) = 3/2,

where f(t, x) = 4 sin ((2π/3)x) and g(t, x) = −x3. Since

1 = −α∆∆
0 + ασ

0 ≤ 2
√

3 − 1

on [a, b]κ
2

and α0(a) = 1, α0(b) ≤ 3/2, α0(t) ≡ 1 is a lower solution of
the SBVP (10) on [a, b]. Similarly, β0(t) ≡ 3/2 is an upper solution of
the SBVP (10) on [a, b] since

3
2

= −β∆∆
0 + βσ

0 ≥ −27
8
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on [a, b]κ
2

and β0(a) ≥ 1, β0(b) ≡ 3/2. By Theorem 3.1, we conclude
that there is a solution in [1, 3/2]1 for t ∈ [a, b]. Moreover, since f and g
satisfy the conditions (i) and (ii) in Theorem 4.2, we also conclude that
there are monotone sequences {αn} and {βn} converging uniformly in
[1, 3/2]1 on [a, b] to the unique solution of the SBVP (10).

5. Mixed derivative. In this section, we are concerned with the
SBVP (3) (4), where p, q ∈ C([a, b]) such that p(t) > 0 and q(t) ≥ 0
for each t ∈ [a, b] and f, g ∈ C([a, b] × R) with respect to the standard
topology on T × R. We shall only state results for this SBVP whose
proofs can be obtained using analogous arguments.

We define the set

D2 :=
{
x ∈ B : x∆ is continuous on [ρ(a), b],

px∆ is nabla-differentiable on [a, b]
and (px∆)∇ is continuous on [a, b]

}
where B is the Banach space B = C([ρ(a), σ(b)]) of all real-valued, in
the topology of T, functions x defined on [ρ(a), σ(b)] with the norm

‖x‖ = max
t∈[ρ(a),σ(b)]

|x(t)|.

A function x : [a, b] �→ R is said to be a solution of the equation
−(p(t)y∆)∇ + q(t)y = 0 on [a, b] provided x ∈ D2 and the equation
−(px∆)∇(t) + q(t)x(t) = 0 holds for all t ∈ [a, b]. For any u, v ∈ D2,
we define the sector [u, v]2 by

[u, v]2 := {w ∈ D2 : u ≤ w ≤ v}.

Definition 5.1. Real valued functions α, β ∈ D2 on [ρ(a), σ(b)] are
called lower and upper solutions for the SBVP (3) (4) if

−(pα∆)∇(t) + q(t)α(t) ≤ f(t, α(t)) + g(t, α(t)) for all t ∈ [a, b],

α(ρ(a)) ≤ A, α(σ(b)) ≤ B

and

−(pβ∆)∇(t) + q(t)β(t) ≥ f(t, β(t)) + g(t, β(t)) for all t ∈ [a, b],

β(ρ(a)) ≥ A, β(σ(b)) ≥ B
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hold, respectively.

Next we define

L2 := max
t∈[ρ(a),σ(b)]

∫ b

ρ(a)

G(t, s)∇s,

where G(t, s) is the Green’s function for the SBVP

{−(p(t)x∆)∇ + q(t)x = 0, t ∈ [a, b],
x(ρ(a)) = 0, x(σ(b)) = 0.

The positivity property of this Green’s function has been obtained in
[6].

Some results concerning monotone methods and the method of quasi-
linearization for second order dynamic equations require the use of
second derivative test. The next lemma deals with the sign of the
delta and the delta-nabla derivatives of a function at a point of local
maximum. The proof of the lemma follows from Lemma 3.1 and
Theorem 2.3 which gives the relationship between delta and nabla
derivatives.

Lemma 5.1. Assume h ∈ D2. Suppose there exists c ∈ (a, b) such
that

h(c) = max{h(t) : t ∈ [a, b]} and h(t) < h(c) for t ∈ (c, b].

Then
h∆(c) ≤ 0 and (ph∆)∇(c) ≤ 0.

The proof of the following theorem follows from Schauder fixed point
theorem.

Theorem 5.1. If M > 0 satisfies M ≥ max{|A|, |B|} and L2Q ≤ M
where Q > 0 satisfies

Q ≥ max||x||≤2M |f(t, x) + g(t, x)|, t ∈ [a, b],
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then the SBVP (3) (4) has a solution.

Theorem 5.2. Assume that α and β are lower and upper solutions
for the SBVP (3) (4) such that α(t) ≤ β(t) for all t ∈ [ρ(a), σ(b)].
Then the SBVP (3) (4) has a solution x ∈ [α, β]2 on [ρ(a), σ(b)].

Theorem 5.3. Assume that

(i) α and β are lower and upper solutions of the SBVP (3) (4) on
[ρ(a), σ(b)];

(ii) f is strictly decreasing in x for t ∈ [a, b] and;

(iii) g is decreasing in x for t ∈ [a, b].

Then α(t) ≤ β(t) for all t ∈ [ρ(a), σ(b)].

Corollary 5.1. Under the hypotheses of Theorem 5.3, solutions of
the SBVP (3) (4) are unique.

Theorem 5.4. Assume that α0 and β0 are respectively lower and
upper solutions of the SBVP (3) (4) on [ρ(a), σ(b)] and assume that
f, g ∈ Ck+1([a, b] × [α0, β0]2), k ∈ N. If

(i) f is k-hyperconvex such that f (1)(t, x) < 0 and f (i)(t, x) ≤ 0 on
[a, b] × [α0, β0]2 for 2 ≤ i ≤ k, and

(ii) g is k-hyperconcave such that g(i)(t, x) ≤ 0 on [a, b] × [α0, β0]2
for 1 ≤ i ≤ k,

then there exist monotone sequences {αn} and {βn} converging uni-
formly in [α0, β0]2 on [ρ(a), σ(b)] to the unique solution of the SBVP
(3) (4).

Corollary 5.2. The order of convergence of each sequence {αn} and
{βn} is k.

6. Remark. The following proof of the next theorem shows that we
can define H and L different than the ones in the proof of Theorem 4.2.
So this implies that there exist other sequences of lower and upper
solutions converging to unique solution of SBVP (1) (2).
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Theorem 6.1. Assume that α0 and β0 are respectively lower and
upper solutions of the SBVP (1) (2) on [a, b] and assume that f, g ∈
Ck+1([a, b]κ

2 × [α0, β0]1), k ∈ N. If

(i) f is k-hyperconvex such that f (1)(t, x) < 0 and f (i)(t, x) ≤ 0 on
[a, b]κ

2 × [α0, β0]1 for 2 ≤ i ≤ k, and

(ii) g is k-hyperconcave such that g(i)(t, x) ≤ 0 on [a, b]κ
2 × [α0, β0]1

for 1 ≤ i ≤ k,

then there exist monotone sequences {αn} and {βn} converging uni-
formly in [α0, β0]1 on [a, b] to the unique solution x of the SBVP
(1) (2).

Proof. For any (t, x), (t, y) ∈ [a, b]κ
2 × [α0, β0]1 with x ≥ y we obtain

that

f(t, x) ≥
k∑

i=0

f (i)(t, y)(x − y)i(11)

and

g(t, x) ≥
k−1∑
i=0

g(i)(t, y)(x − y)i + g(k)(t, x)(x − y)k,(12)

which follow from the assumptions (i) and (ii) and we used the mean
value theorem. We now define

H(t, xσ; α0, β0) =
k−1∑
i=0

(f + g)(i)(t, ασ
0 )(xσ − ασ

0 )i

+ [f (k)(t, ασ
0 ) + g(k)(t, βσ

0 )](xσ − ασ
0 )k

and

L(t, xσ; α0, β0) = (f + g)(t, βσ
0 ) −

k−1∑
i=1

(f + g)(i)(t, βσ
0 )(βσ

0 − xσ)i

− [f (k)(t, ασ
0 ) + g(k)(t, βσ

0 )](βσ
0 − xσ)k.

The proof is similar to that of Theorem 4.1 and hence is omitted.
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Corollary 6.1. The convergence of each sequence {αn} and {βn} is
quadratic when k = 2.

Proof. Set un = x−αn and vn = βn −x, where x denotes the unique
solution of the SBVP (1) (2). We only show that the convergence of
{βn} is quadratic. Similarly, the quadratic convergence of {αn} can be
seen. Note that vn ≥ 0 follows from the monotone convergence of {βn}
to x. Applying mean value theorem, we obtain

−(pv∆
n+1)

∆+qvσ
n+1 = −(pβ∆

n+1)
∆ + (px∆)∆ + qβσ

n+1 − qxσ

= L(t, βσ
n+1; αn, βn) − (f + g)(t, xσ)

= (f + g)(t, βσ
n) + (f + g)(1)(t, βσ

n)(βσ
n+1 − βσ

n)

− [f (2)(t, ασ
n) + g(2)(t, βσ

n)](βσ
n+1 − βσ

n)2

− (f + g)(t, xσ)

= (f + g)(1)(t, ξ)(βσ
n − xσ)

− (f + g)(1)(t, βσ
n)(βσ

n+1 − βσ
n)

−
[
f (2)(t, ασ

n) + g(2)(t, βσ
n)

]
(βσ

n+1 − βσ
n)2

≤
[
(f + g)(1)(t, ξ) − (f + g)(1)(t, βσ

n)
]
(βσ

n − xσ)

−
[
f (2)(t, ασ

n) + g(2)(t, βσ
n)

]
(βσ

n+1 − βσ
n)2

= (f + g)(2)(t, ν)(ξ − βσ
n)(βσ

n − xσ)

−
[
f (2)(t, ασ

n) + g(2)(t, βσ
n)

]
(βσ

n+1 − βσ
n)2

≤ −(f + g)(2)(t, ν)(βσ
n − xσ)2

−
[
f (2)(t, ασ

n) + g(2)(t, βσ
n)

]
(βσ

n+1 − xσ)2

≤ (M + N)||vn||2,

where xσ ≤ ξ, ν ≤ βσ, |f (2)(t, x)| ≤ M/2, |g(2)(t, x)| ≤ N/2 for
(t, x) ∈ [a, b]κ

2 × [α0, β0]1. Since vn+1(a) = βn+1(a) − x(a) = 0 and
vn+1(b) = βn+1(b) − x(b) = 0, we have

vn+1(t) =
∫ ρ(b)

a

G(t, s)[−(pv∆
n+1)

∆(s) + (qvσ
n+1)(s)]∆s, t ∈ [a, b].
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It follows that

0 ≤ vn+1(t) ≤ L1(M + N)||vn||2, t ∈ [a, b].
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