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DEGENERATE ELLIPTIC SYSTEMS

S.K. AFYAN

ABSTRACT. We solve the Riemann-Hilbert boundary value
problem for a linearly elliptic system of two second order dif-
ferential equations in a simply connected domain in the plane,
which is degenerate on the whole boundary of the domain
and reduced to a simple (canonical) form, whose characteris-
tic equation has simple roots (to within low order terms).

1. Introduction. Degenerate elliptic equations and systems have
extensive applications in mechanics. Such systems play a significant
role in the theory of small bending surfaces and the membrane theory
of shells with variable curvature [16].

The degenerate equations also occur in the study of magnetohydro-
dynamic streams, when the velocity exceeds the velocity of sound, as
well as in the study of the motion of water in an open channel, when
the stream velocity is greater than the velocity of the spreading surface
waves [8, 14].

Such elliptic systems are reasonably well understood. It is known
that the Dirichlet problem is Fredholm for one elliptic equation (this
means that the homogeneous problem and the corresponding conjugate
problem have the same finite number of linearly independent solutions),
but this is not true for elliptic systems. For example, the Dirichlet
problem for Bitsadze’s system

uxx − uyy − 2vyy = 0, 2uxy + vxx − vyy = 0

is neither Fredholm nor Noetherian (the given problem is called Noethe-
rian if the reciprocal conjugate homogeneous problem has a finite num-
ber of linearly independent solutions) [7].

The main question in this context is: For what kind of boundary
conditions will the problem be Noetherian for the degenerate elliptic
system?
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To decide which are the right boundary conditions, we shall reduce
the system to a canonical form, to be defined later.

In this paper we consider the equation

(0.1) L(u) = A(z)uxx+B(z)uxy+C(z)uyy+a(z)ux+b(z)uy +c(z)u = 0,

where A(z), B(z), C(z), a(z), b(z) and c(z) are given 2 × 2-dimension
matrices on a simply connected domain D in the z = x+ iy plane from
class C1(D)∩Cα(D) and D is closing of D, 0 < α ≤ 1, and u = (u1, u2)
is an unknown column.

We suppose that detA(z) �= 0 in D and that the characteristic
equation

(0.2) detN (z, λ) ≡ det[A(z)λ2 +B(z)λ+ C(z)] = 0

has no real roots in D and has real roots at Γ, which is the boundary
of D. This means that equation (0.1) is elliptic in D and degenerates
at Γ.

We assume that the equation (0.2) has only simple roots.

That the setting of any boundary conditions is essentially connected
with the type and character of degeneration was pointed out by Keldish
and Bitsadze.

It is, in particular, important whether the determinant of the matrix
N (z, λ(z)), where λ(z) is the characteristic root, is zero or not. To
simplify the computation of this determinant, we reduce the equation
(0.1) to some canonical form

∂

∂ζ1

(
∂v

∂ζ2
− r(z)

∂v

∂ζ2

)
+ P (v) +Q(v̄) = 0,(0.3)

or

∂

∂ζ1

(
∂v

∂ζ2
− r(z)

∂v

∂ζ2

)
+ P (v) +Q(v̄) = 0,(0.4)

where |r(z)| < 1 in D, |r(z)| = 1 on Γ, P (v), Q(v̄) are first order linear
differential operators,

∂

∂ζ1
=

∂

∂x
− λ1(z)

∂

∂y
,

∂

∂ζ2
=

∂

∂x
− λ2(z)

∂

∂y
,
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and λ1(z) �= λ2(z) are continuous differentiable roots of equation (0.2).

For the sake of simplicity we consider the case in which P (v),
Q(v̄) = 0.

The case λ1(z) = λ2(z) = i and P (v), Q(v̄) �= 0 was considered in [2,
3]. In the general case we can obtain analogously a similar result.

Thus for the equation

(0.5)
∂

∂ζ1

(
∂v

∂ζ2
− r(z)

∂v

∂ζ2

)
= 0

we consider the following Riemann-Hilbert problem. To find a solution
of equation (0.5) of class C1

α(D) ∩ C2(D) satisfying the boundary
condition

(0.6) Re [µ(t)v] = f(t), t ∈ Γ,

where µ(t) and f(t) are given functions of class Cα(Γ).

1. Reducing of system 0.1 to a canonical form. Assume that
the characteristic equation (0.3) has only simple roots.

Lemma 1. If λ1 ∈ C1(D), Imλ1(z) > 0, is a simple root of (0.3)
and

(1.1) |ImM11(z)M21(z)| + |ImM12(z)M22(z)| �= 0,

in D where Mjk(z) are elements of the matrix M(z) = N (z, λ1(z)).
Then the system (0.1) is equivalent to the equation

(1.2)
[
∂

∂x
− λ1(z)

∂

∂

][
d11(z)

∂u1

∂x
+ d21(z)

∂u1

∂y
+ d12(z)

∂u2

∂x

+ d22(z)
∂u2

∂y

]
+ L1(u1) + L2(u2) = 0,

where the functions djk(z) are from the class C1(D) and L1, L2 are first
order linear differential operators.

Proof. Since λ1(z) is a simple root of (0.3), we have

rankM(z) = rankN (z, λ1(z)) ≤ 1.
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Using (1.1) we obtain rankM(z) = 1. Hence the system of equations

(1.3)
α1(z)M11(z) + α2(z)M21(z) = 0,
α1(z)M12(z) + α2(z)M22(z) = 0

has a nontrivial, continuous differentiable solution (α1(z), α2(z)). For
definiteness, we assume that α1(z) �= 0. With

k1(z) :=
M21(z)
α1(z)

, k2(z) :=
M22(z)
α1(z)

,

we have from (1.3)

M11(z) = −k1(z)α2(z), M21(z) = k1(z)α1(z),
M12(z) = −k2(z)α2(z), M22(z) = k2(z)α1(z).

Using these expressions, inequality (1.1) can be written as

(|k1(z)|2 + |k2(z)|2) Imα1(z)α2(z) �= 0.

Since |k1(z)|2 + |k2(z)|2 �= 0, we have

(1.4) Imα1(z)α2(z) �= 0.

Using (1.4) it is easy to see that the equation (0.1) is equivalent to

(1.5) α1(z)[L11(u1) + L12(u2)] + α2(z)[L21(u1) + L22(u2)] = 0,

where

Ljk(uk) = Ajkukxx +Bjkukxy + Cjkukyy + ajkukx + bjkuky + Cjkuk.

Substituting Ljk into (1.5), we obtain

(1.6)

A1(z)
∂2u1

∂x2
+B1(z)

∂2u1

∂x∂y
+ C1(z)

∂2u1

∂y2
+A2(z)

∂2u2

∂x2
+B2(z)

∂2u2

∂x∂y

+ C2(z)
∂2u2

∂y2
+ L1(u1) + L2(u2) = 0,



DEGENERATE ELLIPTIC SYSTEMS 5

where L1, L2 are differential operators of first order and

Aj(z) = α1A1j + α2A2j , Bj(z) = α1B1j + α2B2j ,

Cj(z) = α1C1j + α2C2j , j = 1, 2.

From (1.3) it follows that λ1(z) is a solution of the equations

α1(z)N1j(z, λ) + α2(z)N2j(z, λ) = 0, j = 1, 2,

and so

(1.7) α1(z)N1j(z, λ) + α2(z)N2j(z, λ)
= [λ− λ1(z)][d1j(z)λ+ d2j(z)] = 0, j = 1, 2,

where

d1j(z) = Aj(z), d2j(z) = λ1(z)Aj(z) +Bj(z), j = 1, 2.

Therefore, equation (1.6) has the representation (1.2). This establishes
the following.

Lemma 2. If λ1(z) �= λ2(z), Imλj(z) > 0, j = 1, 2, are continuous
differentiable solutions of characteristic equation (0.3) and the condi-
tion (1.1) is valid, then the system (0.1) reduces, by means of a linearly
nondegenerate transformation

(1.8) v = β2(z)u1 − β1(z)u2

to a (complex) canonical form

∂

∂ζ1

(
∂v

∂ζ2
− r(z)

∂v

∂ζ2

)
+ P (v) +Q(v̄) = 0,(1.9)

or

∂

∂ζ1

(
∂v

∂ζ2
− r(z)

∂v

∂ζ2

)
+ P (v) +Q(v̄) = 0,(1.10)
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where |r(z)| < 1 in D, |r(z)| = 1 on Γ and P,Q are first order linear
differential operators and

(1.11)
∂

∂ζ1
=

∂

∂x
− λ1(z)

∂

∂y
,

∂

∂ζ2
=

∂

∂x
− λ2(z)

∂

∂y

are generalized differential operators.

Proof. Arguing as in the proof of Lemma 1, we get rankN (z, λj(z)) =
1, j = 1, 2. Under the condition (1.4) we have that the matrix

ω(z) =
∥∥∥α1(z) α1(z)
α2(z) α2(z)

∥∥∥
is nondegenerate everywhere in D. Therefore,

(1.12) rankω(z)N (z, λ2(z)) = 1.

Since the coefficients of the square trinomial Njk(z, λ) are real, using
(1.7), (1.12) and λ1 �= λ2, λ1 �= λ̄2, we obtain

(1.13) rank

∥∥∥∥∥
d11(z)λ2(z) + d21(z) d12(z)λ2(z) + d22(z)

d11(z)λ2(z) + d21(z) d12(z)λ2(z) + d22(z)

∥∥∥∥∥ = 1.

Hence, there exists a nonzero vector (β1(z), β2(z)) in D such that

(1.14)

d11(z)λ2(z) + d21(z) = d1(z)β2(z),
d12(z)λ2(z) + d22(z) = −d1(z)β1(z),

d11(z)λ2(z) + d21(z) = d2(z)β2(z),

d12(z)λ2(z) + d22(z) = −d2(z)β1(z),

where |d1(z)|2 + |d2(z)|2 �= 0 in D. From (1.11) it follows that

(1.15)

∂

∂x
=

1
λ2(z) − λ2(z)

[
λ2(z)

∂

∂ζ2
− λ2(z)

∂̄

∂ζ2

]
,

∂

∂y
=

1
λ2(z) − λ2(z)

[
∂

∂ζ2
− ∂̄

∂ζ2

]
.
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In (1.2), replacing ∂u/∂x, ∂u/∂y by ∂u/∂ζ2, ∂u/∂ζ2 and using (1.14),
we obtain

(1.16)
∂

∂ζ1

[
d̄2

λ̄2 − λ2

∂v

∂ζ2
− d1

λ̄2 − λ2

∂v

∂ζ2

]
+ L3(v) + L4(v̄) = 0,

where v is as in (1.8).

We now show that nondegeneracy of (1.8), that is, for any z ∈ D, we
have

(1.17)

∣∣∣∣∣
β1(z) β2(z)

β1(z) β2(z)

∣∣∣∣∣ �= 0.

Suppose this is not true, i.e., that this determinant vanishes at some
z0. Since (β1(z0), β2(z0)) �= (0, 0) (let β2(z0) �= 0 for definiteness),

(1.18) β1(z0) = kβ2(z0), β1(z0) = kβ2(z0),

where k is a real number. For the sake of simplicity we consider the
particular case in which ajk(z0) = bjk(z0) = cjk(z0) = 0. Then L3(v)
and L4(v̄) vanish. Using

v = β̄2(z0)(u1 − ku2),

the equation (1.16) can be rewritten in the form

(1.19)
∂

∂ζ1

[
d2(z0)β2(z0)

λ2(z0) − λ2(z0)
∂v1
∂ζ2

− d2(z0)β2(z0)
λ2(z0) − λ2(z0)

∂v1
∂ζ̄2

]
= 0,

where

(1.20) v1 = u1 − ku2, v2 = u2.

The equation (1.19) is equivalent to the system of two real equations
of the form

(1.21)
ν1
∂2v1
∂x2

+ γ1
∂2v1
∂x∂y

+ µ1
∂2v1
∂y2

= 0,

ν2
∂2v2
∂x2

+ γ2
∂2v2
∂x∂y

+ µ2
∂2v2
∂y2

= 0,



8 S.K. AFYAN

where νj , γj , µj are real numbers. The system (1.21) is nonelliptic with
respect to v1 and v2. However, this is impossible since (1.21) was ob-
tained from an elliptic system by multiplying both sides by the nonde-
generate matrix ω(z0) and applying the nondegenerate transformation
(1.20). This contradiction proves that (1.8) is nondegenerate.

Since d1(z) and d2(z) are not both zero, the equation (1.16) can be
represented either as (1.9) or as (1.10). This completes the proof.

2. Riemann-Hilbert type boundary value problem. We
consider the homogeneous canonical equation for the case in which
the first order derivatives and the function itself are missing:

(2.1)
∂

∂ζ1

(
∂v

∂ζ2
− r(z)

∂v

∂ζ2

)
= 0,

where the r(z) function is from C1
α(D).

Riemann-Hilbert type problem. We look for a solution of (2.1) in the
class C1

α(D) ∩ C2(D) satisfying the boundary condition

(2.2) Re [µ(t)v] = f(t), t ∈ Γ,

where µ(t) and f(t) are functions defined in Cα(Γ).

The equation (2.1) can be reduced to the Beltrami equation. Indeed,
using (1.11) and denoting

(2.3) w =
∂v

∂ζ2
− r(z)

∂v

∂ζ2

we rewrite (2.1) in the form

(2.4)
∂w

∂z̄
− q1(z)

∂w

∂z
= 0,

where

q1(z) =
iλ1(z) − 1
iλ1(z) + 1

.
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It is easy to verify that |q1(z)| < 1 in D and |q1(z)| = 1 on Γ.

A method for finding the general solution of the equation (2.4) when
|q1(z)| ≤ q0 < 1 on the D was put forward in Vekua [16, p. 116] and
Boyarskĭı [10].

The following theorem generalizes their result.

Theorem 1. Let q(z) ∈ C1(D) ∩ Cα(D), 0 < α ≤ 1, |q(z)| < 1
in domain D and |q(z)| = 1 on the boundary D. Then there is a
homeomorphic solution W (z) of Beltrami equation

(2.5)
∂w

∂z̄
− q(z)

∂w

∂z
= 0

and the general solution has the form

(2.6) w = Φ(W (z)),

where Φ is an arbitrary analytic function in D1 = W (D).

Proof. We try to seek some homeomorphic solution W (z) of (2.5) of
the form

(2.7) W (z) = z − 1
π

∫∫
D

q(ζ)f(ζ)
ζ − z

dξ dη ≡ z + T (qf),

where f is an unknown function from class Cα(D) [16]. Substituting
W (z) into (2.5), we obtain (q(z) �= 0)

(2.8) f − Π(qf) = 1,

where

(2.9) Π(qf) = − 1
π

∫∫
D

q(ζ)f(ζ)
(ζ − z)2

dξ dη.

This integral is understood in the sense of Cauchy. We now prove that
the equation (2.8) has a solution in the space Lp(D), p = 2/(1 − α).

Indeed, since

Lp(Πg) ≤ ΛpLp(g), Λp = Lp(Π),
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we have
Lp(Π(qf)) ≤ ΛpLp(qf).

It is easy to see that there exists a point z∗ ∈ D such that

Lp(qf) = |q(z∗)| · Lp(f).

Since |q(z)| < 1 in D and |q(z)| = 1 only on Γ, we have |q(z∗)| < 1.
Hence

(2.10) Lp(Π(qf)) ≤ Λp|q(z∗)|Lp(f).

It is known that the norm Λp is a continuous function of p and that
Λ2 = 1 [16]. Therefore there exists an ε > 0 such that Λp · |q(z∗)| < 1
for p ≤ 2 + ε. It follows from (2.10) that f → Π(qf) is a contractive
mapping. According to Banach’s contractive mapping principle, there
exists a solution of equation (2.8) which belongs to class Lp(D) for each
p ≤ 2 + ε and the solution can be found by means of the successive
approximation method:

f0 = 1, fn+1 = Π(qfn) + 1, n = 0, 1, . . . ,

Substituting the obtained solution f into (2.7) we get a homeomorphic
solution of (2.5) and the general solution is well known to be of the
form (2.6) (see also [16]). This completes the proof.

Now substituting w(z) from (2.6) into (2.3), when q = q1, W = H1,
we get

∂v

∂ζ2
− r(z)

∂v

∂ζ2
= Φ(H1(z)).

It follows that

(2.11) (1 − |r(z)|2) ∂v
∂ζ2

= Φ(H1(z)) + r(z)Φ(H1(z)).

As z tends to t ∈ Γ, we obtain

(2.12) Φ(τ ) + r1(τ )Φ(τ ) = 0, τ ∈ Γ1 = H1(Γ),

where
τ = H1(t), r1(τ ) = r(H−1

1 (τ )).



DEGENERATE ELLIPTIC SYSTEMS 11

Since any simply connected domain can be conformally mapped onto
the unit disk, we will consider the case where D1 is the unit disk.
Determination of Φ(ξ) by the boundary condition (2.7) is reduced to
the famous conjugation problem with respect to an unknown piecewise
analytic function

Ω(ξ) =
{

Φ(ζ) for |ξ| < 1,
Φ(1/ζ̄) for |ζ| > 1.

Indeed, the boundary condition (2.7) has the form

(2.13) Ω+(τ ) + r1(τ )Ω−(τ ) = 0,

where Ω+(τ ) and Ω−(τ ) are the limits of Ω(ξ) from inside and outside
of Γ1 in point τ of Γ1, respectively.

Let m be the integer defined by

(2.14) m =
1
2π

∆Γ arg r(t),

where ∆Γ arg r(t) is increase of arg r(t), when t is rotated over Γ once
in the positive direction. Assume that H1(z) conserves the orientation
of Γ, then we have also

(2.14)′ m =
1
2π

∆Γ1 arg r1(t).

Using the solution of problem (2.13) [9], we find all analytic functions
satisfying the boundary condition (2.12) [5]

(2.15)

Φ(ζ) = 0 for m ≤ −1,

Φ(ξ) = exp
[

1
2πi

∫
Γ1

ln(τ−mr1(τ ))
τ − ζ

dτ

] m∑
k=0

Ckζ
k for m ≥ 0,

where Ck are complex constants satisfying the conditions Cm−k = Ck,
k = 0, 1, . . . ,m.

Let’s return to equation (2.11) which can be easily reduced to the
Beltrami equation

(2.16)
∂v

∂z̄
+ q2(z)

∂v

∂z
= h(z),
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where

q2(z) =
1 − iλ2(z)
1 + iλ2(z)

, h(z) =
Φ(H1(z)) + r(z)Φ(H1(z))
(1 − |r(z)|2)(1 + iλ2(z))

for m ≥ 0 and h(z) = 0 for m ≤ −1. It is easy to verify that |q2(z)| < 1
in D and |q2(z)| = 1 on Γ. By Lemma 2 [5], h(z) ∈ Cα(D).

In the case m ≤ −1, h(z) = 0, all solutions of equation (2.11) have
the form

(2.17) v(z) = ψ(H2(z))

where H2(z) is a homeomorphic solution of (2.16), when h(z) = 0, ψ
is an analytic function in D2 = H2(D) and v ∈ C1

α(D) if q2 ∈ Cα(D),
0 < α ≤ 1 (see (2.4) and (2.5)).

Substituting v(z) from (2.17) into the boundary condition (2.2), we
obtain

(2.18) Re (ν(τ )ψ(τ )) = g(τ ), τ ∈ Γ2 = H2(Γ),

where ν(τ ) = µ(H−1
2 (τ )), g(τ ) = f(H−1

2 (τ )).

Without loss of generality, we will consider the case in which D2 is
the unit disk and the map H2(z) preserves the orientation of Γ. Define
σ by

(2.19) σ =
1
π

∆Γ2 argµ(τ ).

It is known [12] that the Riemann-Hilbert problem (2.18) for σ ≥ 0
has a solution, and the general solution contains σ + 1 arbitrary real
constants as a linear; and for σ < 0 that problem has a unique solution
if it satisfies −σ − 1 some conditions of orthogonality.

In the case m ≥ 0, h(z) �= 0, the function v(z) satisfies the nonhomo-
geneous equation (2.16). The right part of (2.16) can be represented in
the form

h(z) =
m∑

k=0

dkhk(z),
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where dk are real constants and hk(z) are certain linearly independent
functions, with respect to the field of real numbers, from the class
Cα(D). The general solution of the linear equation (2.16) will have the
form

(2.20) v(z) = ψ(H2(z)) +
m∑

k=0

dkfk(z),

where fk(z) is a particular solution of (2.16) with right part hk(z). The
solution fk(z) may be obtained in the form

z − 1
π

∫∫
D

q2(ζ)ρ(ζ)
ζ − z

dξ dη,

where the function ρ is a solution of equation

ρ− 1
π

∫∫
D

q2(ζ)ρ(ζ)
(ζ − z)2

dξ dη = hk − q2.

Substituting v(z) from (2.20) into (2.2), we obtain

(2.21) Re (ν(τ )ψ(τ )) = g(τ ) −
m∑

k=0

dkgk(τ ),

where gk(τ ) = Re [ν(τ )fk(H−1
2 (τ ))].

For σ ≥ 0, function ψ(z) is determined up to σ+m+2 real constants.

For σ < 0, the problem (2.16) is solvable for ψ(z) if and only
if the right part of (2.21) satisfies some conditions of orthogonality.
Therefore, the numbers d0, d1, . . . , dm must satisfy some algebraic
system of −σ − 1 linear equations. Hence the problem (2.1) (2.2) will
have σ +m+ 2 many solutions, σ > −m− 2.

We have thus proved the following result.

Theorem 2. Let r(z) ∈ C1
α(D) and µ(t), f(t) ∈ Cα(Γ). Then the

problem (2.1) (2.2) has

1) m + σ + 2 linearly independent solutions, over the field of real
numbers, in the cases
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a) m ≥ 0, σ ≥ 0,

b) m ≥ 0, σ < 0, m+ 1 ≥ −σ − 1;

2) σ + 1 linearly independent solutions in the case m < 0, σ ≥ 0;

3) a unique solution in the case m < 0, σ < 0, if and only if the right
part of (2.2) satisfies some conditions of orthogonality.

3. Conclusion. It is well known that the stating of boundary
conditions for degenerate elliptic systems essentially depends upon
the set in which the degeneration takes place. For instance, there is
a system, degenerate at an internal point of the domain, for which
the Dirichlet problem is Fredholm. For another system the same
inhomogeneous problem is solvable without any condition, in spite
of the fact that the homogeneous problem has linearly independent
solutions. For a third one the homogeneous problem has linearly
independent solutions of infinite number, and the inhomogeneous one
is solvable if and only if an infinite number of linearly independent
conditions are satisfied [6, 13]. When the degeneration takes place only
at a portion of the boundary of the domain, then the considerations of
various authors have the following similarity: the part of the boundary,
where degeneration takes place, is either completely or partially freed
of the boundary condition [11].

We considered the case when degeneration takes place at the whole
boundary of the domain and when the characteristic equation corre-
sponding to (0.1) has i as double roots inside the domain and an arbi-
trary number of roots at the boundary.

In these cases equation (0.1) is reduced to the following complex
canonical form

(3.1)
∂

∂z̄

(
∂v

∂z̄
− q(z)

∂v

∂z̄

)
+ P (v) +Q(v̄) = 0,

where the following nondegenerate transformation was used

v = α(z)u1 + β(z)u2,

and P (u) and Q(ū) are linear differential operators of the first order.
In the papers [1 5] we investigated three cases of degeneration: (1) de-
generation at the whole boundary; (2) at any closed curve inside the
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domain; (3) both degeneration cases simultaneously. Various problems,
which depended on the behavior of the coefficient q(z), were discussed.
It was shown that those problems are Noetherian. Besides, those prob-
lems are reduced to the form v = Lv + f where L is a completely
continuous operator in the corresponding Banach space. Also the in-
dexes (i.e., the difference between the numbers of linearly independent
solutions of the homogeneous problem and that of solvability condi-
tions for the inhomogeneous one) for those problems were computed or
evaluated.

In the present paper we again consider the degeneration at the whole
boundary, when the characteristic equation of (0.1) has different and
variable roots inside the domain, and an arbitrary number of solutions
at the boundary. Equations (0.3) and (0.4) are the canonical forms of
(0.1) in the complex expression. Equation (0.3), for instance, can be
written in the form

(3.2)
(
∂

∂z̄
− q1(z)

∂

∂z

)(
∂v

∂z̄
− q2(z)

∂v

∂z

)
+ P (v) +Q(v̄) = 0.

This equation is essentially different from (3.1), since the Beltrami
operator is applied twice in it. For this reason I have not succeeded in
reducing the Riemann-Hilbert problem for (3.2) to the form v = Lv+f
in Banach spaces where L is a complete continuous operator. But in
the particular case, when P (v) = 0, Q(v̄) = 0, the problem (2.1) (2.2)
was solved explicitly (if it had a solution).

Given its complexity, the solution formula of that problem was not
included in the formulation of Theorem 2 but it shows up in the proof
of Theorem 2.

In stating the problem (2.1) (2.2) at the whole boundary of the
degenerate set, we give only the combination of the components of
the sought vector function and not the vector function’s values. This
means that the set in which the system is degenerated is partially free
from boundary conditions.

It is to be noted that the cases P (v) �= 0, Q(v̄) �= 0 and also the
simple root cases were not investigated.

It seems that, in the latter case, stating the problem also depends on
whether the characteristic matrix vanishes or not.
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10. B.V. Boyarskĭı, Generalized solutions of a system of differential equations of
first order and of elliptic type with discontinuous coefficients, Mat. Sb. N.S. 43 (85)
(1957), 451 503 (Russian).

11. V. Didenko, The first boundary problem for some elliptic differential systems
with degeneration at the boundary, Siberian Math. J. 6, �4, (1965), 814 831
(Russian).

12. N.I. Muskhelishvili, Singular integral equations, Dover Publications, Inc., New
York, 1992.

13. R. Sharipova, On normal solvability of Dirichlet problem for a degenerate
elliptic system, Differential Equations, vol. 12, �2 (1976), 343 347.

14. M.M. Smirnov, Mixed type equations, Nauka, Moscow, 1970 (Russian).

15. N.E. Tovmasyan, The Dirichlet problem for an elliptic system of two second
order differential equations, in Outlines Joint Sympos., Partial Differential Equa-
tions (Novosibirsk, 1963), vol. 153, �1, Acad. Sci. USSR Siberian Branch, Moscow,
pp. 53 56.



DEGENERATE ELLIPTIC SYSTEMS 17

16. I.N. Vekua, Generalized analytic functions, Pergamon Press, London; Addison-
Wesley, Reading, MA, 1962.

Department of Physics, Yerevan State University, 375025 Yerevan,
Armenia
E-mail address: afyan@sun.ysu.am


