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HARMONIC SHEARS OF ELLIPTIC INTEGRALS

MICHAEL DORFF AND J. SZYNAL

ABSTRACT. We shear complex elliptic integrals to create
univalent harmonic mappings and then use the Weierstrass-
Enneper formula to construct embedded minimal surfaces. In
one particular case we use this approach to construct a family
of slanted Scherk’s doubly periodic surfaces whose limit is the
helicoid. The corresponding conjugate surfaces form a family
of Scherk’s singly periodic surfaces that transform into the
catenoid. These particular families of surfaces are significant
in the study of minimal surfaces, and this method of shearing
analytic functions to construct them is a novel approach.

1. Introduction. A harmonic mapping is a complex-valued function
f = u+ iv, for which both u and v are real harmonic. Throughout this
paper we will discuss harmonic functions that are univalent and sense-
preserving on D = {z : |z| < 1}. Such mappings can be written in
the form f = h + ḡ, where h and g are analytic and |h′(z)| > |g′(z)|
[2]. Constructing mappings with these properties is difficult. However,
Clunie and Sheil-Small introduced a shearing method on a certain class
of analytic functions for doing so. A few recent papers have used this
shearing technique [4, 15]. In this paper we apply this shearing method
to complex elliptic integrals.

One nice aspect of these univalent harmonic mappings is that they
lift to embedded, i.e., nonself-intersecting, minimal surfaces via the
Weierstrass-Enneper representation formula. Lifting the harmonic
mappings formed by the shearing of complex elliptic integrals results in
some interesting minimal surfaces. In particular, the minimal graphs
associated with the shearing of a particular elliptic integral of the first
kind form a one-parameter family of slanted Scherk’s surfaces that
range from the canonical Scherk’s first, or doubly periodic, surface to
the helicoid. Doubly periodic minimal surfaces have been studied and
classified by minimal surface theorists [9, 12, 17]. Our approach is
different in that it considers these doubly periodic surfaces by using
geometric function theory techniques and the shearing of analytic
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functions. Finally, by considering the family of conjugate surfaces, we
also derive a one-parameter family of surfaces that transforms Scherk’s
saddle tower, or singly periodic, surface into the catenoid.

2. Shearing elliptic integrals. First we need a definition.

Definition 1. A domain Ω is convex in the direction eiϕ if, for every
a ∈ C, the set

Ω ∩ {a + teiϕ : t ∈ R}
is either connected or empty. In particular, a domain is convex in the
direction of the real axis if every line parallel to the real axis has a
connected intersection with Ω.

The shearing method is based upon a theorem by Clunie and Sheil-
Small [2]:

Theorem A. A harmonic function f = h + ḡ locally univalent in D
is a univalent mapping of D onto a domain convex in the direction of
the real axis if and only if h− g is an analytic univalent mapping of D
onto a domain convex in the direction of the real axis.

We apply this method to shear elliptic integrals. Recall that an
elliptic integral is the inverse of an elliptic, or doubly-periodic, function
and can be thought of as a generalization of inverse trigonometric
functions, see [11] or [13]. Elliptic functions have been used to
construct periodic minimal surfaces [16]. There are three types of
elliptic integrals, known as the elliptic integrals of the first, second
and third kind. These can be represented in the following forms,
respectively:

F (z, k) =
∫ z

0

dζ√
(1 − ζ2)(1 − k2ζ2)

;

E(z, k) =
∫ z

0

√
1 − k2ζ2

1 − ζ2
dζ;

Π(z, m, k) =
∫ z

0

dζ

(1 − mζ2)
√

(1 − ζ2)(1 − k2ζ2)
,
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where k, m ∈ D.

2.1 Elliptic integral of the first kind F (z, k).

Lemma 2. For |k| ≤ 1, F (z) maps D univalently onto a convex
region.

Proof. Notice that

zF ′(z) =
z

(1 − z2)1/2(1 − k2z2)1/2

maps D onto C minus four slits that lie on rays emanating from the
origin. That is, zF ′(z) is a star-like mapping. Hence, by Alexander’s
theorem, see [6], F is a convex mapping.

We can apply Clunie and Sheil-Small shearing technique to the elliptic
integral F . Let h(z) − g(z) = F (z, k) and g′(z) = m2z2h′(z), where
|m| ≤ 1. Then we can write h and g in terms of the elliptic integrals F
and Π. In particular,

(1)

h(z) =
∫ z

0

dζ

(1 − m2ζ2)
√

(1 − ζ2)(1 − k2ζ2)

= Π(z, m2, csgn (k) · k)

g(z) =
∫ z

0

m2ζ2 dζ

(1 − m2ζ2)
√

(1 − ζ2)(1 − k2ζ2)

= Π(z, m2, csgn (k) · k) − F (z, csgn (k) · k),

where the csgn function is used to determine in which half-plane k lies,
that is,

csgn (k) =
{

1 if Re (k) > 0 or Re (k) = 0 and Im (k) > 0
−1 if Re (k) < 0 or Re (k) = 0 and Im (k) < 0.

Although we know that F (D) is convex, we do not know much about
f(D) except that it is convex in the direction of the real axis, see
Figure 1. However, there is a particular case in which we can make
some interesting claims.
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FIGURE 1. Images of concentric circles in D under F (z, k) and its harmonic shear,
f = h + ḡ, where h and g are given by (1), for various values of k and m.
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Special case. Consider the case k = 1. Then

F (z, 1) = tanh−1 z =
1
2

log
(

1 + z

1 − z

)
,

which maps D onto a horizontal strip and

h(z) =
∫ z

0

dζ

(1 − m2ζ2)(1 − ζ2)
=

1
2(1 − m2)

log
(

1 + z

1 − z

)

+
m

2(m2 − 1)
log

(
1 + mz

1 − mz

)

g(z) =
∫ z

0

m2ζ2 dζ

(1 − m2ζ2)(1 − ζ2)
=

m2

2(1 − m2)
log

(
1 + z

1 − z

)

+
m

2(m2 − 1)
log

(
1 + mz

1 − mz

)
.

Proposition 3. For k = 1 and every m such that |m| = 1, the image
of D under f = h + ḡ is a parallelogram for all |m| = 1.

Proof. First we will show that the image of D is convex. By a result
by Clunie and Sheil-Small [2, Theorem 5.7] it is equivalent to prove
that the function

F (z) = h(z) − e2iϕg(z)

=
1 − e2iϕm2

2(1 − m2)
log

(
1 + z

1 − z

)
− (1 − e2iϕ)

2(1 − m2)
log

(
1 + mz

1 − mz

)

is convex in the direction eiϕ for all ϕ ∈ [0, π). This can be done by
showing that

(2) Re {eiα(1 − xz)(1 − yz)F ′(z)} > 0

for some α ∈ R and x, y ∈ ∂D, see [10, 14]. Let α = π
2 − ϕ and

−x = y = 1. Then

H(z) = eiα(1 − xz)(1 − yz)F ′(z) = ie−iϕ 1 − e2iϕm2z2

1 − m2z2
.
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Since Möbius transformation (1− e2iϕm2z2)/(1− m2z2) maps D onto
the right half-plane, we have that Re {H(z)} > 0 for all z ∈ D and the
image of D under f = h + ḡ is convex.

Second the boundary of the D gets mapped to the four points under
f . This is because with m = eiθ, without loss of generality, assume
θ ∈ (0, π), and z = eiϕ, we have

Re {f(z)} =
1

2 sin θ

[
arg

(
i cot

(
θ + ϕ

2

))
− cos θ arg

(
i cot

ϕ

2

)]

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

π(1 + cos θ)/4 sin θ if ϕ ∈ (−θ, 0),

π(1 − cos θ)/4 sin θ if ϕ ∈ (0, π − θ),

−π(1 + cos θ)/4 sin θ if ϕ ∈ (π − θ, π),

−π(1 − cos θ)/4 sin θ if ϕ ∈ (π, 2π − θ),

and

Im {f(z)} =
1
2

arg
(

i cot
ϕ

2

)
=

{
π/4 if ϕ ∈ (0, π),
−π/4 if ϕ ∈ (π, 2π).

Finally, Bshouty and Hengartner, see [1, Remark 3.4], note that in
this case the image of D under f must be the convex polygon. That
is, the image of D under f is a parallelogram.

The images of D under f = h + ḡ for m = eiπ/2, m = eiπ/4 and
m = eiπ/6 are shown in Figure 1(f) and Figure 2(a),(b).

2.2 Elliptic integral of the second kind E(z, k).

Lemma 4. For k = eiθ, E maps D univalently onto a region convex
in the direction eiπ/2.

Proof. Note that E(z, k) is convex in the direction eiβ , if

Re {E′(z, k)(1 + zei(α+β))(1 + ze−i(α−β)} > 0,

for some α ∈ R, see [10, 14]. Applying this to our claim with
α, β = π/2, we have

Re {E′(z, eiθ)(1 − z2)} = Re {
√

1 − e2iθz
√

1 − z2}.
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(a) m = eiπ/4 (b) m = eiπ/6

FIGURE 2. Images of concentric circles in D under the harmonic shear of
F (z, 1) for various values of m.

Notice that Re {1 − e2iθz} > 0 for all θ ∈ R, where z ∈ D. Hence,
Re {√1 − e2iθz

√
1 − z2} > 0, see [7, p. 79, Theorem 2 (11)].

Clunie and Sheil-Small’s shearing technique applied to a function, f ,
convex in the direction eiπ/2 requires us to consider h+g = f . Applying
this to our situation, let k = eiθ. Then for the elliptic integral E, let
h + g = E and g′ = −k2z2h′. By doing so, we can solve for h and g in
terms of the elliptic integrals F and E.

h(z) =
∫ z

0

dζ√
(1 − k2ζ2)(1 − ζ2)

= F (z, csgn (k) · k)

g(z) =
∫ z

0

−k2ζ2 dζ√
(1 − k2ζ2)(1 − ζ2)

= E(z, csgn (k) · k)

− F (z, csgn (k) · k).

Again, we do not know much about f(D) except that it is convex in
the direction of the imaginary axis, see Figure 3.

3. Minimal surfaces from harmonic univalent mappings.
There is a nice relationship between embedded, i.e., nonself-intersecting,
minimal surfaces and univalent harmonic mappings. In the theory of
minimal surfaces, the Weierstrass-Enneper representation provides a
formula for the local representation of a minimal surface, see [3].
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FIGURE 3. Images of concentric circles in D under E(z, k) and its harmonic shear
for various values of k.
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Theorem B. For every analytic function µ and meromorphic func-
tion ν in D with µ �= 0, ν �= 0 such that µν2 is analytic in D, the
parametrization X(z) = (x1(z), x2(z), x3(z)) defines a minimal surface
X : D → R3, where

x1(z) = Re
∫ z

0

µ(1 − ν2) dζ,

x2(z) = Re
∫ z

0

iµ(1 + ν2) dζ,

x3(z) = Re
∫ z

0

2µν dζ.

Using this, we can construct embedded minimal surfaces by lifting
harmonic univalent mappings, see [8]. Some papers have already
investigated the family of minimal surfaces resulting from lifting specific
mappings [4, 5].

For our purposes, notice that x1, x2, x3 can be written in terms of h
and g, where f = h+ ḡ is a univalent harmonic mapping. In particular,
h =

∫
µ dζ and g = − ∫

µν2 dζ. Thus,

x1(z) = Re {h(z) + g(z)} = Re {f(z)},
x2(z) = Im {h(z) − g(z)} = Im {f(z)},
x3(z) = 2Im

{ ∫ z

0

√
h′(ζ)g′(ζ) dz

}
.

For example, using the shear of the elliptic integral of the first kind,

x3(z) =
∫ z

0

mζ dζ

(1 − m2ζ2)
√

(1 − ζ2)(1 − k2ζ2)
,

while for the shear of the elliptic integral of the second kind, we get

x3(z) =
∫ z

0

ikζ dζ√
(1 − k2ζ2)(1 − ζ2)

.

Images of some minimal surfaces generated by the shearing of these
two kinds of elliptic integrals are shown in Figure 4, for projections
onto the complex plane, see Figure 1(b) and Figure 3(d).
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FIGURE 4. The minimal surface generated by the shear of various elliptic
integrals.

Special case. Consider the case of the minimal surfaces constructed
from shearing the elliptic integral of the first kind with k = 1 while
letting m vary. This is particularly interesting, because they form a
one-parameter family of slanted Scherk surfaces that range from the
canonical Scherk first surface to the helicoid. Recall that when we
shear the elliptic integral F (z, 1), we have f(z) = h(z) + g(z), where

h(z) =
1

2(1 − m2)
log

(
1 + z

1 − z

)
+

m

2(m2 − 1)
log

(
1 + mz

1 − mz

)

g(z) =
m2

2(1 − m2)
log

(
1 + z

1 − z

)
+

m

2(m2 − 1)
log

(
1 + mz

1 − mz

)
.

Notice that

x3 = Im
{

m

1 − m2
log

(
1 − m2z2

1 − z2

)}
.

For m = i the resulting minimal surface has the form

X = (x1, x2, x3)

=
(

Re
{
− i

2
log

(
1+iz

1−iz

)}
, Re

{
− i

2
log

(
1+z

1−z

)}
,

Re
{

1
2

log
(

1+z2

1−z2

)})
,
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which is Scherk’s first, or doubly periodic, surface. With m = eiθ and
letting θ decrease between π/2 and 0, we get sheared transformations
of Scherk’s first surface. In the limit, i.e., θ = 0, we have the equation

X = (x1, x2, x3)

=
(

Re
{

z

1 − z2

}
, Re

{
− i

2
log

(
1 + z

1 − z

)}
, Re

{ −iz2

1 − z2

})
.

Using the substitution z �→ ez−1/ez +1 and the fact that Re {−iz2/1−
z2} = Re {(1/2i)(1 + z2/1 − z2)}, this equation is equivalent to

X = (x1, x2, x3) =
(

1
2

sinh u cos v,
1
2
v,

1
2

sinh u sin v

)
,

which is an equation of a helicoid.

The Schwarz reflection principle allows one to create larger periodic
minimal surfaces by reflecting a known surface through lines and planes
of symmetry. This technique is used widely today to create many new
minimal surfaces. The reflection principle states, see [3]:

Theorem C. (1) Every straight line contained in a minimal surface
is an axis of symmetry of the surface.

(2) If a minimal surface intersects some plane E perpendicularly, then
E is a plane of symmetry of the surface.

From Proposition 3, we know that the projection of these minimal
surfaces formed by shearing the elliptic integral of the first kind with
k = 1 onto the complex plane is a parallelogram. Hence we can
apply the Schwarz reflection principle to combine one of these minimal
surfaces with copies of itself to form a checkerboard-like conglomeration
of minimal surfaces, see Figure 5.

From these slanted Scherk’s first surface we can construct another
one-parameter family of surfaces which this time varies from Scherk’s
saddle tower, or singly periodic, surface to the catenoid. To do this, we
use the idea of conjugate surfaces.

Definition 5. If a minimal surface X(u, v)=(x1(u, v), x2(u, v), x3(u, v))
is defined on a simply connected domain Ω ∈ C, then we define the



496 M. DORFF AND J. SZYNAL

–4

–2

0

2

4

–4
–3 –2

–1 0 1 2 3 4

–4

–2

0

2

4

–4

–3

–2

–1

0

1

2

3

4

–4 –3 –2 –1 0 1 2 3 4

(a) Five pieces of Scherk’s (b) Projection of (a) onto

First Surface (m=eiπ/2) xy-plane

–4

–2

0

2

4

–4
–3 –2

–1 0 1 2 3 4

–4

–2

0

2

4

–4

–3

–2

–1

0

1

2

3

4

–4 –3 –2 –1 0 1 2 3 4

(c) Five pieces of Scherk’s (d) Projection of (c) onto

Slanted Surface (m=eiπ/4) xy-plane

–4

–2

0

2

4

–4
–3 –2

–1 0 1 2 3 4

–4

–2

0

2

4

–4

–3

–2

–1

0

1

2

3

4

–4 –3 –2 –1 0 1 2 3 4

(e) Five pieces of Scherk’s (f) Projection of (e) onto

Slanted Surface (m=eiπ/6) xy-plane

FIGURE 5. The minimal surface generated by the shearing of the elliptic integral
F (z, 1).
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FIGURE 5. The minimal surface generated by the shearing of the elliptic integral
F (z, 1).

conjugate, or adjoint, surface, X∗(u, v) = (x∗
1(u, v), x∗

2(u, v), x∗
3(u, v))

to Z(u, v) on Ω as solution of the Cauchy-Riemann equations

Xu = X∗
v , Xv = −X∗

u

in Ω.

Scherk’s saddle tower is the conjugate surface to Scherk’s first surface
and the catenoid is the conjugate surface to the helicoid [3].

For our purposes, notice that

x∗
1(z) = Re {h(z) − g(z)},

x∗
2(z) = Im {h(z) + g(z)},

x∗
3(z) = 2Re

{ ∫ z

0

√
h′(ζ)g′(ζ) dζ

}
.

In the minimal surface generated by the shearing of the elliptic
integral F (z, 1), each lattice is composed of a principal part that is
a minimal graph over a convex domain. Krust theorem, see [3], states
that in such a situation, the conjugate surface will be a minimal graph.
Thus, for each m = eiθ with θ varying from π/2 to 0, we have a one-
parameter family of Scherk saddle tower-like surfaces. The standard
Scherk saddle tower surface occurs for θ = π/2. As θ decreases,
the holes in one side elongate while the holes on the neighboring side
shorten and in the limit form the catenoid.
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