APPROXIMATION OF SOBOLEV-TYPE CLASSES WITH QUASI-SEMINORMS

Z. DITZIAN, V.N. KONOVALOV AND D. LEVIATAN

Abstract

Since the Sobolev set $W_{p}^{r}, 0<p<1$, in general is not contained in $L_{q}, 0<q \leq \infty$, we limit ourselves to the set $W_{p}^{r} \cap L_{\infty}, 0<p<1$. We prove that the Kolmogorov n-width of the latter set in $L_{q}, 0<q<1$ is asymptotically 1 , that is, the set cannot be approximated by n-dimensional linear manifolds in the L_{q}-norm. We then describe a related set, the width of which is asymptotically n^{-r}.

1. Introduction and function classes. Very little is known about the exact order of any width of nontrivial classes of functions in the L_{q}-metric for $0<q<1$. Recall that, for $1 \leq p, q \leq \infty$, the orders of most widths of the classical Sobolev classes W_{p}^{r} in L_{q} are well known. In contrast, for $0<p<1$, the behavior of any of the widths of these classes in $L_{q}, 0<q \leq \infty$, are not known. In general, the class W_{p}^{r}, $0<p<1$, is not contained in L_{q}, but even if we overcome this difficulty by taking, say, the smaller set $W_{p}^{r} \cap L_{\infty}, 0<p<1$, we will show that it cannot be approximated well in L_{q} for any $0<q \leq \infty$. We remind the reader that, for the approximation of $f \in L_{p}, 0<p<1$, by polynomials and by splines with either equidistant knots or knots on the Chebyshev partition, there are known Jackson-type estimates involving the moduli of smoothness of f in the L_{p}-quasi-norm, see, e.g., [1]. However, there are no simple relations between the moduli of smoothness and the derivatives of f, if they exist. Moreover, the moduli of smoothness are not equivalent to K-functionals which are identically zero, see, e.g., [3, Theorem 2.1]. Thus, we introduce new classes $V_{p}^{r}, 0<p<1$, which we feel are the proper replacement of the Sobolev classes for $0<p<1$, and we obtain the exact orders of their Kolmogorov, linear, and pseudo-dimensional widths in $L_{q}, 0<q<1$. We also obtain for these classes exact orders of best approximation in $L_{q}, 0<q<1$, by rational functions and free-knot splines.
[^0]Let $I=(a, b)$ be a finite open finite interval, $r \in \mathbf{N}$, and $0<$ $p \leq \infty$. By $\mathcal{W}_{p}^{r}:=\mathcal{W}_{p}^{r}(I)$ we denote the usual Sobolev space of all functions $x: I \rightarrow \mathbf{R}$ such that $x^{(r-1)} \in A C_{l o c}(I)$ equipped with the (quasi-)seminorm

$$
\|x\|_{\mathcal{W}_{p}^{r}}:=\left\|x^{(r)}\right\|_{L_{p}} .
$$

In Section 2 we state our result on estimates of various widths of the subset

$$
W_{p, \infty}^{r}:=\left\{x \in \mathcal{W}_{p}^{r} \mid \sum_{s=0}^{r}\left\|x^{(s)}\right\|_{L_{p}} \leq 1, \quad\|x\|_{L_{\infty}} \leq 1\right\}, \quad 0<p<1
$$

in $L_{q}, 0<q<1$. We show that they stay away from 0 , as $n \rightarrow \infty$.
For $r \in \mathbf{N}, 0<p \leq \infty$, we denote by $\mathcal{V}_{p}^{r}:=\mathcal{V}_{p}^{r}(I)$, the space of all functions $x: I \rightarrow \mathbf{R}$ such that $x^{(r-1)} \in A C_{l o c}(I)$ for which the (quasi-)seminorm

$$
\|x\|_{\mathcal{V}_{p}^{r}}:= \begin{cases}\left(\int_{I}\left|\int_{t_{0}}^{t}\right| x^{(r)}(\tau)|d \tau|^{p} d t\right)^{1 / p}, & 0<p<\infty \\ \sup _{t \in I}\left|\int_{t_{0}}^{t}\right| x^{(r)}(\tau)|d \tau|, & p=\infty\end{cases}
$$

where t_{0} is the midpoint of I, is finite. In Section 2 we give estimates of various widths of the unit ball V_{p}^{r} of \mathcal{V}_{p}^{r}, in $L_{q}, 0<q<1$. We show that they tend to 0 when $n \rightarrow \infty$.

After a section of auxiliary lemmas, we prove the two main results in Sections 4 and 5. Finally in Section 6 we discuss the inclusion and noninclusion relations between \mathcal{V}_{p}^{r} and \mathcal{W}_{p}^{r}.
2. Various widths and the main results. Let X be a real linear space of vectors x with norm $\|x\|_{X}$ and W any nonempty subset in X. Recall that the Kolmogorov n-width of W is defined by

$$
d_{n}(W)_{X}^{k o l}:=\inf _{M^{n}} \sup _{x \in W} \inf _{y \in M^{n}}\|x-y\|_{X}
$$

where the lefthand infimum is taken over all affine subsets M^{n} of (algebraic) dimension $\leq n$. The linear n-width of W is defined by

$$
d_{n}(W)_{X}^{l i n}:=\inf _{M^{n}} \inf _{A} \sup _{x \in W}\|x-A x\|_{X}
$$

where the lefthand infimum is taken over all affine subsets M^{n} of dimension $\leq n$, and the middle infimum is taken over all linear continuous maps A from affine subsets $M=M(W)$ containing W into M^{n}.
Finally, we will also have estimates for yet another width, the pseudodimensional width which was introduced by Maiorov and Ratsaby [7-9], using the concept of pseudo-dimension due to Pollard [12]. Namely, let $M=M(T)$ be a set of real-valued functions $x(t)$ defined on the set T, and denote

$$
\operatorname{Sgn} a:= \begin{cases}1 & a>0 \\ 0 & a \leq 0\end{cases}
$$

The pseudo-dimension $\operatorname{dim}_{p s} M$ of the set M is the largest integer n such that there exist points $t_{1}, \ldots, t_{n} \in T$ and a vector $\left(y_{1}, \ldots, y_{n}\right) \in$ \mathbf{R}^{n}, for which

$$
\operatorname{card}\left\{\left(\operatorname{Sgn}\left(x\left(t_{1}\right)+y_{1}\right), \ldots, \operatorname{Sgn}\left(x\left(t_{n}\right)+y_{n}\right)\right) \mid x \in M\right\}=2^{n}
$$

If n can be arbitrarily large, then $\operatorname{dim}_{p s} M:=\infty$.
The pseudo-dimensional n-width of W is defined by

$$
d_{n}(W)_{X}^{p s d}:=\inf _{M^{n}} \sup _{x \in W} \inf _{y \in M^{n}}\|x-y\|_{X}
$$

where the lefthand infimum is taken over all subsets M^{n} in a normed space X of real-valued functions such that $\operatorname{dim}_{p s} M^{n} \leq n$.

The following properties of the pseudo-dimension are known, see [4].
If M is an arbitrary affine subset in a space of real-valued functions and $\operatorname{dim} M<\infty$, then

$$
\begin{equation*}
\operatorname{dim}_{p s} M=\operatorname{dim} M \tag{2.1}
\end{equation*}
$$

Let $P_{n}:=P_{n}(I)$ be the space of algebraic polynomials p_{n} of degree $\leq n$. Denote by $R_{n}:=R_{n}(I)$ the manifold of rational functions $r_{n}=p_{n} / q_{n}$ where $p_{n}, q_{n} \in P_{n}$. Also denote by $\Sigma_{r, n}=\Sigma_{r, n}(I)$, the manifold of all piecewise polynomials $\sigma_{r, n}$, of order r and with $n-1$ knots in I, i.e., $\sigma_{r, n} \in \Sigma_{r, n}$, if for some points $a=t_{0}<t_{1}<\cdots<t_{n}=b$ it is a polynomial of degree $\leq r-1$ on each interval $\left(t_{i-1}, t_{i}\right), i=1, \ldots, n$.

The rational functions r_{n} are defined arbitrarily at the poles, and the piecewise polynomials $\sigma_{r, n}$ are assigned arbitrary values at the knots.

It is known that

$$
\begin{equation*}
\operatorname{dim}_{p s} R_{n} \asymp \operatorname{dim}_{p s} \Sigma_{r, n} \asymp n \tag{2.2}
\end{equation*}
$$

It follows by (2.1) that if W is a nonempty subset of X, a normed space of real-valued functions, then

$$
\begin{equation*}
d_{n}(W)_{X}^{p s d} \leq d_{n}(W)_{X}^{k o l} \leq d_{n}(W)_{X}^{l i n} \tag{2.3}
\end{equation*}
$$

Given $W \subset X$, let

$$
\begin{aligned}
E\left(W, R_{n}\right)_{X} & :=\sup _{x \in W} \inf _{r_{n} \in R_{n}}\left\|x-r_{n}\right\|_{X} \\
E\left(W, \Sigma_{r, n}\right)_{X} & :=\sup _{x \in W} \inf _{\sigma_{r, n} \in \Sigma_{r, n}}\left\|x-\sigma_{r, n}\right\|_{X}
\end{aligned}
$$

It follows from (2.2) that there exist an absolute integer $\alpha>0$ and an integer $\beta=\beta(r)>0$, such that

$$
\begin{align*}
d_{\alpha n}(W)_{X}^{p s d} & \leq E\left(W, R_{n}\right)_{X} \tag{2.4}\\
d_{\beta n}(W)_{X}^{p s d} & \leq E\left(W, \Sigma_{r, n}\right)_{X} \tag{2.5}
\end{align*}
$$

We are ready to state our first result.

Theorem 1. Let $r \in \mathbf{N}$ and $0<p<1$. For any $0<q \leq \infty$,

$$
\begin{equation*}
d_{n}\left(W_{p, \infty}^{r}\right)_{L_{q}}^{p s d} \asymp d_{n}\left(W_{p, \infty}^{r}\right)_{L_{q}}^{k o l} \asymp d_{n}\left(W_{p, \infty}^{r}\right)_{L_{q}}^{l i n} \asymp 1 \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
E\left(W_{p, \infty}^{r}, \Sigma_{r, n}\right)_{L_{q}} \asymp E\left(W_{p, \infty}^{r}, R_{n}\right)_{L_{q}} \asymp 1 \tag{2.7}
\end{equation*}
$$

On the other hand we show

Theorem 2. Let $r \in \mathbf{N}$ and $0<p, q<1$, be such that $r-1-1 / p+$ $1 / q>0$. Then

$$
\begin{equation*}
d_{n}\left(V_{p}^{r}\right)_{L_{q}}^{p s d} \asymp d_{n}\left(V_{p}^{r}\right)_{L_{q}}^{k o l} \asymp d_{n}\left(V_{p}^{r}\right)_{L_{q}}^{l i n} \asymp n^{-r} \tag{2.8}
\end{equation*}
$$

and

$$
\begin{equation*}
E\left(V_{p}^{r}, \Sigma_{r, n}\right)_{L_{q}} \asymp E\left(V_{p}^{r}, R_{n}\right)_{L_{q}} \asymp n^{-r} \tag{2.9}
\end{equation*}
$$

3. Auxiliary lemmas. The following lemma follows immediately from [6, Lemma 2.2, p. 489], also see [9, Claim 1].

Lemma A. Let $m \in \mathbf{N}$ and $V_{m}:=\left\{v \mid v:=\left(v_{1}, \ldots, v_{m}\right), v_{i}= \pm 1\right.$, $i=1, \ldots, m\}$. Then there exists a subset $F_{m} \subset V_{m}$ of cardinality $\geq 2^{m / 16}$ such that for any $\hat{v}, \check{v} \in F_{m}$, where $\hat{v} \neq \check{v}$, the distance $\|\hat{v}-\check{v}\|_{l_{1}^{m}} \geq m / 2$.

Given $\varepsilon>0$, points $x_{i}, i=1, \ldots, n$, in a linear normed space X are called ε-distinguishable if $\left\|x_{i}-x_{j}\right\|_{X} \geq \varepsilon$ for all $i \neq j$. Let H be any nonempty subset of X, the maximal integer $n \in \mathbf{N}$, such that there exist $n \varepsilon$-distinguishable points $h_{i} \in H$, is called the ε-packing number $M_{\varepsilon}(H)_{X}$ of H in X. If n can be arbitrarily large, then $M_{\varepsilon}(H)_{X}:=\infty$.
The next lemma follows directly from [5, Corollary 3], also see $[\mathbf{9}$, Lemma 1].

Lemma B. Let $H_{n, a}:=\{h\}$ be a set of Lebesgue-measurable functions h on $(0,1)$ such that $\|h\|_{L_{\infty}} \leq a<\infty$ and $\operatorname{dim}_{p s} H_{n, a} \leq n<\infty$. Then for any $\varepsilon>0$,

$$
M_{\varepsilon}\left(H_{n, a}\right)_{L_{1}} \leq e(n+1)(4 e a / \varepsilon)^{n}
$$

We prove the following
Lemma 1. Let $I:=(0,1)$, and let $a>0, \varepsilon>0$, and $m \in \mathbf{N}$, such that $m \geq 16\left(8+\log _{2}(a / \varepsilon)\right)$, be given. Suppose that a set $\Phi_{m}=\{\varphi\} \subset$ L_{∞} exists, of cardinality $\geq 2^{m / 16}$ such that

$$
\|\varphi\|_{L_{\infty}} \leq a, \quad \varphi \in \Phi_{m}
$$

and for some $0<q<1$,

$$
\|\hat{\varphi}-\check{\varphi}\|_{L_{q}} \geq \varepsilon, \quad \hat{\varphi} \neq \check{\varphi}, \quad \hat{\varphi}, \check{\varphi} \in \Phi_{m}
$$

Then for any $n \in \mathbf{N}$ such that $n \leq\left(16\left(8+\log _{2}(a / \varepsilon)\right)\right)^{-1} m$ we have

$$
d_{n}\left(\Phi_{m}\right)_{L_{q}}^{p s d} \geq 2^{-2-1 / q}\left(2^{q}-1\right)^{1 / q} \varepsilon
$$

Proof. Let $H_{n} \subset L_{q}$ be such that $\operatorname{dim}_{p s} H_{n} \leq n$. Denote

$$
\begin{equation*}
\delta:=E\left(\Phi_{m}, H_{n}\right)_{L_{q}} \tag{3.1}
\end{equation*}
$$

With any $\varphi \in \Phi_{m}$ we associate an element $h_{\delta}(\varphi ; \cdot) \in H_{n}$, such that

$$
\begin{equation*}
\left\|\varphi(\cdot)-h_{\delta}(\varphi ; \cdot)\right\|_{L_{q}} \leq 2 \delta \tag{3.2}
\end{equation*}
$$

and denote by

$$
H_{\delta, n}:=H_{\delta, n}(I):=\left\{h_{\delta}(\varphi ; \cdot), \varphi \in \Phi_{m}\right\}
$$

the collection of these functions. Now we let

$$
h_{\delta, a}(\varphi ; t):= \begin{cases}-a & \text { for } t: h_{\delta}(\varphi ; t)<-a \\ h_{\delta}(\varphi ; t) & \text { for } t:\left|h_{\delta}(\varphi ; t)\right| \leq a \\ a & \text { for } t: h_{\delta}(\varphi ; t)>a\end{cases}
$$

and denote by

$$
H_{\delta, n, a}:=H_{\delta, n, a}(I):=\left\{h_{\delta, a}(\varphi ; \cdot), \varphi \in \Phi_{m}\right\}
$$

the collection of the truncated functions. Clearly

$$
\begin{equation*}
\left\|h_{\delta, a}(\varphi ; \cdot)\right\|_{L_{\infty}} \leq a, \quad \varphi \in \Phi_{m} \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{dim}_{p s} H_{\delta, n, a} \leq \operatorname{dim}_{p s} H_{\delta, n} \leq \operatorname{dim}_{p s} H_{n} \leq n \tag{3.4}
\end{equation*}
$$

We will prove that

$$
\begin{equation*}
\delta>2^{-2-1 / q}\left(2^{q}-1\right)^{1 / q} \varepsilon \tag{3.5}
\end{equation*}
$$

Assume to the contrary that

$$
\begin{equation*}
\delta \leq 2^{-2-1 / q}\left(2^{q}-1\right)^{1 / q} \varepsilon \tag{3.6}
\end{equation*}
$$

where δ is defined by (3.1). Then, recalling that $0<q \leq 1$, we have

$$
\begin{align*}
\left.\| h_{\delta, a}(\hat{\varphi} ; \cdot)-h_{\delta, a}(\check{\varphi} ; \cdot)\right) \|_{L_{q}}^{q} \geq & \|\hat{\varphi}-\check{\varphi}\|_{L_{q}}^{q}-\left\|\hat{\varphi}(\cdot)-h_{\delta, a}(\hat{\varphi} ; \cdot)\right\|_{L_{q}}^{q} \tag{3.7}\\
& -\left\|\check{\varphi}(\cdot)-h_{\delta, a}(\check{\varphi} ; \cdot)\right\|_{L_{q}}^{q}
\end{align*}
$$

Since $|\hat{\varphi}(t)| \leq a$ and $|\check{\varphi}(t)| \leq a, t \in I$, (3.2) implies

$$
\left\|\hat{\varphi}(\cdot)-h_{\delta, a}(\hat{\varphi} ; \cdot)\right\|_{L_{q}}^{q} \leq\left\|\hat{\varphi}(\cdot)-h_{\delta}(\hat{\varphi} ; \cdot)\right\|_{L_{q}}^{q} \leq 2^{q} \delta^{q}
$$

and

$$
\left\|\check{\varphi}(\cdot)-h_{\delta, a}(\check{\varphi} ; \cdot)\right\|_{L_{q}}^{q} \leq\left\|\check{\varphi}(\cdot)-h_{\delta}(\check{\varphi} ; \cdot)\right\|_{L_{q}}^{q} \leq 2^{q} \delta^{q}
$$

which, substituting in (3.7), yields

$$
\begin{equation*}
\left.\| h_{\delta, a}(\hat{\varphi} ; \cdot)-h_{\delta, a}(\check{\varphi} ; \cdot)\right)\left\|_{L_{q}}^{q} \geq\right\| \hat{\varphi}-\check{\varphi} \|_{L_{q}}^{q}-2^{q+1} \delta^{q} \geq 2^{-q} \varepsilon^{q} . \tag{3.8}
\end{equation*}
$$

Setting $\eta:=\varepsilon / 2$, we see from (3.8) that the function class $H_{\delta, n, a}$ consists of η-distinguishable functions in L_{q}. Thus, in view of $\|x\|_{L_{1}} \geq$ $\|x\|_{L_{q}}, 0<q \leq 1$, we conclude that the function class $H_{\delta, n, a}$ contains at least $2^{m / 16} \eta$-distinguishable functions in L_{1}. On the other hand, by virtue of (3.3), $\left\|h_{\delta, a}(\phi ; \cdot)\right\|_{L_{\infty}} \leq a$. Hence by Lemma B we have an upper estimate on the η-packing number $M_{\eta}\left(H_{\delta, n, a}\right)_{L_{1}}$ of the function class $H_{\delta, n, a}$, namely,

$$
\begin{aligned}
M_{\eta}\left(H_{\delta, n, a}\right)_{L_{1}} & \leq e(n+1)(4 e a / \eta)^{n}=e(n+1)(4 e 2 a / \varepsilon)^{n} \\
& <2^{3 n}\left(2^{5} a / \varepsilon\right)^{n}=2^{\left(8+\log _{2}(a / \varepsilon)\right) n}
\end{aligned}
$$

Since $m \geq 16\left(8+\log _{2}(a / \varepsilon)\right) n$, it follows that

$$
2^{\left(8+\log _{2}(a / \varepsilon)\right) n} \leq M_{\eta}\left(H_{\delta, n, a}\right)_{L_{1}}<2^{\left(8+\log _{2}(a / \varepsilon)\right) n}
$$

a contradiction. Thus (3.6) is contradicted and (3.5) is valid. Hence for any subset $H_{n} \in L_{q}$ with $\operatorname{dim}_{p s} H_{n} \leq n$, we have

$$
E\left(\Phi_{m}, H_{n}\right)_{L_{q}}>2^{-2-1 / q}\left(2^{q}-1\right)^{1 / q} \varepsilon
$$

and in turn

$$
d_{n}\left(\Phi_{m}\right)_{L_{q}}^{p s d} \geq 2^{-2-1 / q}\left(2^{q}-1\right)^{1 / q} \varepsilon
$$

This completes the proof of Lemma 1.

Lemma 2. Let $0<p<1$, and for $b_{i}>0, i=1, \ldots, n$, let

$$
\delta_{p, i}:=\left(\sum_{j=i}^{n} b_{j}^{p}\right)^{1 / p}-\left(\sum_{j=i+1}^{n} b_{j}^{p}\right)^{1 / p}, \quad 1 \leq i \leq n-1, \quad \delta_{p, n}:=b_{n}
$$

Denote

$$
T_{p, n}:=\left\{t:=\left(t_{1}, \ldots, t_{n}\right) \mid 0 \leq t_{1} \leq \cdots \leq t_{n}, \sum_{i=1}^{n}\left(b_{i} t_{i}\right)^{p} \leq 1\right\}
$$

and

$$
S_{p, n}:=\left\{t:=\left(t_{1}, \ldots, t_{n}\right) \mid 0 \leq t_{1} \leq \cdots \leq t_{n}, \sum_{i=1}^{n} \delta_{p, i} t_{i} \leq 1\right\}
$$

If

$$
l_{p, n}(t):=\sum_{i=1}^{n} \delta_{p, i} t_{i}, \quad t \in \mathbf{R}^{n}
$$

then

$$
\begin{equation*}
\max _{t \in T_{p, n}} l_{p, n}(t)=1 \tag{3.9}
\end{equation*}
$$

and consequently $T_{p, n} \subseteq S_{p, n}$.

Proof. We consider the extremal problem

$$
l_{p, n}^{p}(t)=\left(\sum_{i=1}^{n} \delta_{p, i} t_{i}\right)^{p} \longrightarrow \sup ; \quad 0 \leq t_{1} \leq \cdots \leq t_{n}, \quad \sum_{i=1}^{n}\left(b_{i} t_{i}\right)^{p} \leq 1
$$

Denote $\tau_{i}:=t_{i}^{p}, i=1, \ldots, n$, and let $\tau:=\left(\tau_{1}, \ldots, \tau_{n}\right)$. Then we get an equivalent extremal problem,
$f_{p, n}(\tau):=\left(\sum_{i=1}^{n} \delta_{p, i} \tau_{i}^{1 / p}\right)^{p} \longrightarrow \sup ; \quad 0 \leq \tau_{1} \leq \cdots \leq \tau_{n}, \quad \sum_{i=1}^{n} b_{i}^{p} \tau_{i} \leq 1$.
By Minkowski's inequality it is easy to verify that $f_{p, n}$ is convex. Therefore it achieves its maximum on the vertices of

$$
Q_{p, n}:=\left\{\tau \mid 0 \leq \tau_{1} \leq \cdots \leq \tau_{n}, \sum_{i=1}^{n} b_{i}^{p} \tau_{i} \leq 1\right\}
$$

If $e^{(0)}:=(0, \ldots, 0), e^{(1)}:=(1,1, \ldots, 1), e^{(2)}:=(0,1, \ldots, 1), \ldots, e^{(n)}:=$ $(0, \ldots, 0,1)$, then these vertices are

$$
\tau^{(0)}=e^{(0)}, \quad \tau^{(k)}:=\left(\sum_{j=k}^{n} b_{j}^{p}\right)^{-1} e^{(k)}, \quad k=1, \ldots, n
$$

Since

$$
f_{p, n}\left(\tau^{(0)}\right)=0, \quad f_{p, n}\left(\tau^{(k)}\right)=1, \quad k=1, \ldots, n
$$

we conclude that

$$
\max _{\tau \in Q_{p, n}} f_{p, n}(\tau)=\max _{t \in T_{p, n}} l_{p, n}(t)=1
$$

This completes the proof.

Lemma 3. Let $0<p, q<1$ and $b_{i}>0, i=1, \ldots, n$. Denote

$$
\Theta_{p, n}:=\left\{\theta:=\left(\theta_{1}, \ldots, \theta_{n}\right) \mid \theta_{i} \geq 0,1 \leq i \leq n, \sum_{i=1}^{n}\left(b_{i} \sum_{j=1}^{i} \theta_{j}\right)^{p} \leq 1\right\}
$$

For $a_{i} \geq 0,1 \leq i \leq n$, let

$$
f_{q, n}(\theta):=\left(\sum_{i=1}^{n}\left(a_{i} \theta_{i}\right)^{q}\right)^{1 / q}, \quad \theta \in \mathbf{R}_{+}^{n}
$$

Then

$$
\max _{\theta \in \Theta_{p, n}} f_{q, n}(\theta) \leq n^{1 / q-1} \max _{1 \leq i \leq n} a_{i}\left(\sum_{j=i}^{n} b_{j}^{p}\right)^{-1 / p} .
$$

Proof. The inequality

$$
\left(\sum_{i=1}^{n}\left(a_{i} \theta_{i}\right)^{q}\right)^{1 / q} \leq n^{1 / q-1} \sum_{i=1}^{n} a_{i} \theta_{i}=: g_{q, n}(\theta), \quad \theta \in \Theta_{p, n},
$$

follows by the concavity of u^{q}. Set

$$
t_{i}:=\sum_{j=1}^{i} \theta_{i}, \quad i=1, \ldots, n
$$

Then

$$
\theta_{1}=t_{1}, \quad \theta_{i}=t_{i}-t_{i-1}, \quad i=2, \ldots, n
$$

and

$$
g_{q, n}(\theta)=n^{1 / q-1}\left(a_{1} t_{1}+\sum_{i=2}^{n} a_{i}\left(t_{i}-t_{i-1}\right)\right)=: h_{q, n}(t) .
$$

Hence, by Lemma 2,

$$
\max _{\theta \in \Theta_{p, n}} g_{q, n}(\theta)=\max _{t \in T_{p, n}} h_{q, n}(t) \leq \max _{t \in S_{p, n}} h_{q, n}(t)
$$

where $T_{p, n}$ and $S_{p, n}$ were defined in Lemma 2. The function $h_{q, n}$ is linear, thus it achieves its maximum at one of the vertices of the simplex $S_{p, n}$, that is, at $t^{(k)}, 1 \leq k \leq n$, where $t^{(0)}:=(0, \ldots, 0)$, and

$$
t^{(k)}:=\left(\sum_{j=k}^{n} b_{j}^{p}\right)^{-1 / p} e^{(k)}, \quad k=1 \ldots, n .
$$

Now $h_{q, n}\left(\tau^{(0)}\right)=0$, and for $k \geq 1$,

$$
\tau_{i}^{(k)}-\tau_{i-1}^{(k)}= \begin{cases}0 & i \neq k \\ \left(\sum_{j=k}^{n} b_{j}^{p}\right)^{-1 / p} & i=k\end{cases}
$$

where we take $\tau_{0}^{(k)}=0,1 \leq k \leq n$. Hence

$$
\max _{t \in S_{p, n}} h_{q, n}(t)=n^{1 / q-1} \max _{1 \leq k \leq n}\left\{a_{k}\left(\sum_{j=k}^{n} b_{j}^{p}\right)^{-1 / p}\right\}
$$

We need a well-known relation between various quasi-norms of polynomials, see, e.g., [2, Chapter 4, Theorem 2.7].

Lemma C. Let π_{r-1} be a polynomial of degree $\leq r-1, r \in \mathbf{N}$, and $p, q \geq p_{0}$. Then there exists a constant $c=c\left(r, p_{0}\right)$ such that for any finite interval J,

$$
\left\|\pi_{r-1}\right\|_{L_{q}(J)} \leq c|J|^{1 / q-1 / p}\left\|\pi_{r-1}\right\|_{L_{p}(J)}
$$

Finally, in the proof of (2.9), we use the following relation between the degrees of rational approximation and those of free-knots splines, due to Pekarskii $[\mathbf{1 0}]$ and Petrushev $[\mathbf{1 1}]$, see also $[\mathbf{6}$, Chapter 10, Theorem 6.2].

Lemma D. Let $r \in \mathbf{N}, 0<p<\infty, \lambda>0, \gamma=\min \{1, p\}$, and $x \in L_{p}$. Then

$$
E\left(x, R_{n}\right)_{L_{p}} \leq c n^{-\lambda}\left(\sum_{k=1}^{n} k^{-1}\left(k^{\lambda} E\left(x, \Sigma_{r, k}\right)_{L_{p}}\right)^{\gamma}\right)^{1 / \gamma}
$$

where $c=c(r, p, \lambda)$.
4. Proof of Theorem 1. The upper bound in (2.6) is trivial. Thus, we prove the lower bounds. To this end, we are going to construct extremal functions.
Let I be the generic interval $(0,1)$, and fix $r, m \in \mathbf{N}$, and $0<p<1$. Let

$$
\begin{equation*}
\varepsilon_{s}:=\varepsilon_{s}(p, r, m):=m^{-(1-p)^{s-r}}, \quad s=0,1, \ldots, r \tag{4.1}
\end{equation*}
$$

and set

$$
\tau_{s}:=\tau_{s}(p, r, m):=\sum_{k=0}^{s-1} 2^{s-2-k} \varepsilon_{k}+\varepsilon_{s} / 2, \quad s=1, \ldots, r
$$

Define

$$
\phi_{0}(t):=\phi_{0}(t ; p, r, m):= \begin{cases}m^{\left(1-(1-p)^{r}\right) / p(1-p)^{r}} & t \in\left(-\varepsilon_{0} / 2, \varepsilon_{0} / 2\right) \tag{4.2}\\ 0 & t \notin\left(-\varepsilon_{0} / 2, \varepsilon_{0} / 2\right)\end{cases}
$$

and

$$
\begin{aligned}
\phi_{s}(t) & :=\phi_{s}(t ; p, r, m):=\int_{-\infty}^{t}\left(\phi_{s-1}\left(\tau+\tau_{s}\right)-\phi_{s-1}\left(\tau-\tau_{s}\right)\right) d \tau \\
& =\int_{t-\tau_{s}}^{t+\tau_{s}} \phi_{s-1}(\tau) d \tau, \quad t \in \mathbf{R}, \quad s=1, \ldots, r
\end{aligned}
$$

It is easy to see that
(4.3) $\operatorname{supp} \phi_{s}=\left[-\sum_{k=0}^{s} 2^{s-1-k} \varepsilon_{k}, \sum_{k=0}^{s} 2^{s-1-k} \varepsilon_{k}\right], \quad s=0,1, \ldots, r$,
hence

$$
\operatorname{supp} \phi_{0} \subset \operatorname{supp} \phi_{1} \subset \cdots \subset \operatorname{supp} \phi_{r}
$$

Since by (4.1) we have $\varepsilon_{0}<\varepsilon_{1}<\cdots<\varepsilon_{r}$, it follows from (4.3) that

$$
\begin{equation*}
\varepsilon_{s} \leq\left|\operatorname{supp} \phi_{s}\right| \leq 2^{s+1} \varepsilon_{s}, \quad s=0,1, \ldots, r \tag{4.4}
\end{equation*}
$$

Also, we have

$$
\begin{equation*}
\phi_{s}(t)=\phi_{s}(-t) \geq 0, \quad t \in \mathbf{R}, \quad s=0,1, \ldots, r \tag{4.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\phi_{s}(t) \equiv\left\|\phi_{s}\right\|_{L_{\infty}(\mathbf{R})}, \quad t \in\left(-\varepsilon_{s} / 2, \varepsilon_{s} / 2\right), \quad s=0,1, \ldots, r \tag{4.6}
\end{equation*}
$$

By virtue of (4.4) and (4.6), we obtain

$$
\begin{gather*}
\left\|\phi_{0}\right\|_{L_{\infty}(\mathbf{R})} \prod_{k=0}^{s-1} \varepsilon_{k} \leq\left\|\phi_{s}\right\|_{L_{\infty}(\mathbf{R})} \leq 2^{s(s+1) / 2}\left\|\phi_{0}\right\|_{L_{\infty}(\mathbf{R})} \prod_{k=0}^{s-1} \varepsilon_{k} \tag{4.7}\\
s=0,1, \ldots, r
\end{gather*}
$$

Hence, combining (4.4) through (4.7) we conclude that

$$
\begin{align*}
\left\|\phi_{s}\right\|_{L_{p}(\mathbf{R})}^{p} & =\int_{\operatorname{supp} \phi_{s}}\left|\phi_{s}(t)\right|^{p} d t \\
& \leq \int_{0}^{2^{s+1} \varepsilon_{s}}\left\|\phi_{s}\right\|_{L_{\infty}(\mathbf{R})}^{p} d t \\
& \leq 2^{s+1} \varepsilon_{s} 2^{p s(s+1) / 2}\left\|\phi_{0}\right\|_{L_{\infty}(\mathbf{R})}^{p}\left(\prod_{k=0}^{s-1} \varepsilon_{k}\right)^{p} \tag{4.8}\\
& \leq 2^{(s+1)(s+2) / 2}\left\|\phi_{0}(\cdot)\right\|_{L_{\infty}(\mathbf{R})}^{p} \varepsilon_{s}\left(\prod_{k=0}^{s-1} \varepsilon_{k}\right)^{p}
\end{align*}
$$

Now by (4.1) and (4.2)

$$
\begin{aligned}
& \left\|\phi_{0}(\cdot)\right\|_{L_{\infty}(\mathbf{R})^{p}}^{p} \varepsilon_{s}\left(\prod_{k=0}^{s-1} \varepsilon_{k}\right)^{p} \\
& \quad=m^{p\left(1-(1-p)^{r}\right) / p(1-p)^{r}} m^{-(1-p)^{s-r}} \prod_{k=0}^{s-1} m^{-p(1-p)^{k-r}} \\
& \quad=m^{\left(1-(1-p)^{r}\right) /(1-p)^{r}} m^{-(1-p)^{s} /(1-p)^{r}} m^{-\left(1-(1-p)^{s}\right) /(1-p)^{r}} \\
& \quad=m^{-1}
\end{aligned}
$$

which substituting in (4.8), yields

$$
\begin{equation*}
\left\|\phi_{s}(\cdot)\right\|_{L_{p}(\mathbf{R})}^{p} \leq 2^{(s+1)(s+2) / 2} m^{-1}, \quad s=0,1, \ldots, r \tag{4.9}
\end{equation*}
$$

By virtue of (4.7) and (4.2), we obtain

$$
\begin{align*}
\left\|\phi_{r}\right\|_{L_{\infty}(\mathbf{R})} & \geq\left\|\phi_{0}\right\|_{L_{\infty}(\mathbf{R})} \prod_{k=0}^{r-1} \varepsilon_{k} \tag{4.10}\\
& =m^{\left(1-(1-p)^{r}\right) / p(1-p)^{r}} m^{-\left(1-(1-p)^{r}\right) / p(1-p)^{r}} \\
& =1
\end{align*}
$$

and
(4.11)

$$
\begin{aligned}
\left\|\phi_{r}(\cdot)\right\|_{L_{\infty}(\mathbf{R})} & \leq 2^{r(r+1) / 2}\left\|\phi_{0}(\cdot)\right\|_{L_{\infty}(\mathbf{R})} \prod_{k=0}^{r-1} \varepsilon_{k} \\
& =2^{r(r+1) / 2} m^{\left(1-(1-p)^{r}\right) / p(1-p)^{r}} m^{-\left(1-(1-p)^{r}\right) / p(1-p)^{r}} \\
& =2^{r(r+1) / 2}
\end{aligned}
$$

In turn (4.10) combined with (4.1), (4.5) and (4.6), implies

$$
\begin{equation*}
\phi_{r}(t) \geq 1, \quad t \in\left[-(2 m)^{-1},(2 m)^{-1}\right] \tag{4.12}
\end{equation*}
$$

Finally, (4.1), (4.4) and (4.5) yield

$$
\left|\operatorname{supp} \phi_{r}\right| \leq 2^{r+1} m^{-1}
$$

and

$$
\begin{equation*}
\operatorname{supp} \phi_{r} \subset\left[-2^{r} m^{-1}, 2^{r} m^{-1}\right] \tag{4.13}
\end{equation*}
$$

Next, set

$$
\varphi_{r}(t):=(r+1)^{-1} 2^{-(3 r(r+1)) /(2 p)} \phi_{r}\left(2^{r+1} t\right), \quad t \in \mathbf{R}
$$

Then it follows from (4.13) that

$$
\begin{equation*}
\operatorname{supp} \varphi_{r} \subset\left[-(2 m)^{-1},(2 m)^{-1}\right] \tag{4.14}
\end{equation*}
$$

and by (4.11) we have

$$
\begin{align*}
\left\|\varphi_{r}\right\|_{L_{\infty}(\mathbf{R})} & \leq(r+1)^{-1} 2^{-3 r(r+1) /(2 p)} 2^{r(r+1) / 2} \\
& <(r+1)^{-1} 2^{-(3-1) r(r+1) / 2} \tag{4.15}\\
& =(r+1)^{-1} 2^{-r(r+1)}
\end{align*}
$$

Finally, (4.12) implies

$$
\begin{equation*}
\varphi_{r}(t) \geq(r+1)^{-1} 2^{-3 r(r+1) /(2 p)}, \quad t \in\left(-2^{-r-2} m^{-1}, 2^{-r-2} m^{-1}\right) \tag{4.16}
\end{equation*}
$$

Direct calculations using (4.9) yield, for $s=0,1, \ldots, r$,

$$
\begin{align*}
\left\|\varphi_{r}^{(s)}\right\|_{L_{p}(\mathbf{R})}^{p}= & \int_{\mathbf{R}}\left|(r+1)^{-1} 2^{-(3 r(r+1)) / 2 p} 2^{(r+1) s} \phi_{r}^{(s)}\left(2^{r+1} t\right)\right|^{p} d t \tag{4.17}\\
= & (r+1)^{-p} 2^{-(3 r(r+1)) / 2} 2^{(r+1) s p} 2^{s} \int_{\mathbf{R}}\left|\phi_{r-s}\left(2^{r+1} t\right)\right|^{p} d t \\
\leq & (r+1)^{-p} 2^{-(3 r(r+1)) / 2} 2^{(r+2) s} 2^{-(r+1)}\left\|\phi_{r-s}\right\|_{L_{p}(\mathbf{R})}^{p} \\
\leq & (r+1)^{-p} 2^{-(3 r(r+1)) / 2} 2^{(r+2) s} \\
& \times 2^{-(r+1)} 2^{(r-s+1)(r-s+2) / 2} m^{-1} \\
\leq & (r+1)^{-p} 2^{-r(r+1) / 2} m^{-1} \\
\leq & (r+1)^{-p} m^{-1}
\end{align*}
$$

Let $t_{m, i}:=i / m, i=0,1, \ldots, m$, and set $I_{m, i}:=\left[t_{m, i-1}, t_{m, i}\right]$, $i=1, \ldots, m$. Denote $\bar{t}_{m, i}:=\left(t_{m, i-1}+t_{m, i}\right) / 2, i=1, \ldots, m$, and set

$$
\varphi_{p, r, m, i}(t):=\varphi_{r}\left(t-\bar{t}_{m, i}\right), \quad t \in \mathbf{R}, \quad i=1, \ldots, m
$$

It follows by (4.14) and (4.16) that

$$
\begin{equation*}
\operatorname{supp} \varphi_{p, r, m, i} \subset I_{m, i}, \quad i=1, \ldots, m \tag{4.18}
\end{equation*}
$$

and

$$
\begin{gather*}
\varphi_{p, r, m, i}(t) \geq(r+1)^{-1} 2^{-(3 r(r+1)) /(2 p)} \\
t \in\left(\bar{t}_{m, i}-2^{-r-2} m^{-1}, \bar{t}_{m, i}+2^{-r-2} m^{-1}\right) \tag{4.19}\\
i=1, \ldots, m
\end{gather*}
$$

While (4.15) and (4.17) yield

$$
\begin{equation*}
\left\|\varphi_{p, r, m, i}(\cdot)\right\|_{L_{\infty}} \leq(r+1)^{-1} 2^{-r(r+1)}, \quad i=1, \ldots, m \tag{4.20}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|\varphi_{p, r, m, i}^{(s)}(\cdot)\right\|_{L_{p}}^{p} \leq(r+1)^{-p} m^{-1}, \quad i=1, \ldots, m \tag{4.21}
\end{equation*}
$$

Write
$\Phi_{p, r, m}:=\Phi_{p, r, m}(I):=\left\{\varphi \mid \varphi:=\sum_{i=1}^{m} v_{i} \varphi_{p, r, m, i}, v:=\left(v_{1}, \ldots, v_{m}\right) \in F_{m}\right\}$,
where F_{m} is the class of sign-vectors defined in Lemma A. Then by Lemma A

$$
\begin{equation*}
\operatorname{card} \Phi_{p, r, m} \geq 2^{m / 16} \tag{4.22}
\end{equation*}
$$

Let $\varphi \in \Phi_{p, r, m}$. Then, by virtue of (4.18) and (4.21) we obtain for any $0 \leq s \leq r$,

$$
\begin{aligned}
\left\|\varphi^{(s)}\right\|_{L_{p}(I)} & =\left(\int_{I}\left|\varphi^{(s)}(t)\right|^{p} d t\right)^{1 / p} \\
& =\left(\sum_{i=1}^{m}\left|v_{i}\right|^{p} \int_{I_{m, i}}\left|\varphi_{p, r, m, i}^{(s)}(t)\right|^{p} d t\right)^{1 / p} \\
& =\left(\sum_{i=1}^{m}\left\|\varphi_{p, r, m, i}^{(s)}(\cdot)\right\|_{L_{p}}^{p}\right)^{1 / p} \\
& \leq\left(\sum_{i=1}^{m}(r+1)^{-p} m^{-1}\right)^{1 / p} \\
& =(r+1)^{-1}
\end{aligned}
$$

so that

$$
\sum_{s=0}^{r}\left\|\varphi^{(s)}\right\|_{L_{p}} \leq 1, \quad \varphi \in \Phi_{p, r, m}
$$

It also follows from (4.18) and (4.20) that

$$
\begin{aligned}
\|\varphi\|_{L_{\infty}} & =\left\|\sum_{i=1}^{m} v_{i} \varphi_{p, r, m}\right\|_{L_{\infty}} \\
& =\max _{1 \leq i \leq m}\left\{\mid v_{i}\| \| \varphi_{p, r, m}(\cdot) \|_{L_{\infty}}\right\} \\
& \leq(r+1)^{-1} 2^{-r(r+1)} \leq 1 .
\end{aligned}
$$

Hence, we conclude that

$$
\begin{equation*}
\Phi_{p, r, m} \subset W_{p, \infty}^{r}, \quad 0<p<1, \quad r, m \in \mathbf{N} . \tag{4.23}
\end{equation*}
$$

For any two different vectors $\hat{v}:=\left(\hat{v}_{1}, \ldots, \hat{v}_{m}\right)$ and $\check{v}:=\left(\check{v}_{1}, \ldots, \check{v}_{m}\right)$, in F_{m}, let

$$
\hat{\phi}:=\sum_{i=1}^{m} \hat{v}_{i} \varphi_{p, r, m, i} \quad \text { and } \quad \check{\phi}:=\sum_{i=1}^{m} \check{v}_{i} \varphi_{p, r, m, i},
$$

be the associated functions, respectively. If $\|\hat{v}-\check{v}\|_{l_{1}^{m}} \geq m / 2$, then, evidently, there exist indices $i_{1}, \ldots, i_{[m / 4]}$ such that $\hat{v}_{i_{k}}=-\check{v}_{i_{k}}$, $k=1, \ldots,\lceil m / 4\rceil$. Therefore, by (4.18) and (4.19) we get for $0<q<1$,

$$
\begin{aligned}
\|\hat{\varphi}(\cdot)-\check{\varphi}(\cdot)\|_{L_{q}(I)}^{q} & =\int_{I}\left|\sum_{i=1}^{m}\left(\hat{v}_{i}-\check{v}_{i}\right) \varphi_{p, r, m, i}(t)\right|^{q} d t \\
& =\sum_{i=1}^{m} \int_{I_{m, i}}\left|\hat{v}_{i}-\check{v}_{i}\right|^{q}\left|\varphi_{p, r, m, i}(t)\right|^{q} d t \\
& \geq \sum_{i=1}^{m}\left|\hat{v}_{i}-\check{v}_{i}\right|^{q} \int_{\bar{t}_{m, i}-2^{-r-2} m^{-1}}^{\bar{t}_{m, i}+2^{-r-2} m^{-1}}\left|\varphi_{p, r, m, i}(t)\right|^{q} d t \\
& \geq \sum_{i=1}^{m}\left|\hat{v}_{i}-\check{v}_{i}\right|^{q} 2^{-r-1} m^{-1}(r+1)^{-q} 2^{-(3 r(r+1) q) /(2 p)} \\
& \geq 2^{-r-1} m^{-1}(r+1)^{-q} 2^{-(3 r(r+1) q) /(2 p)} \sum_{i=1}^{\lceil m / 47} 2^{q} \\
& \geq 2^{-r-1} m^{-1}(r+1)^{-q} 2^{-(3 r(r+1) q) /(2 p)} 2^{q} 2^{-2} m \\
& =(r+1)^{-q} 2^{q-(r+3)-(3 r(r+1) q) /(2 p)} .
\end{aligned}
$$

Thus, for

$$
\varepsilon:=(r+1)^{-1} 2^{1-(r+3) / q-(3 r(r+1)) /(2 p)} .
$$

we have

$$
\|\hat{\varphi}(\cdot)-\check{\varphi}(\cdot)\|_{L_{q}(I)} \geq \varepsilon, \quad \hat{\varphi} \neq \check{\varphi}, \quad \hat{\varphi}, \check{\varphi} \in \Phi_{p, r, m}
$$

If we set

$$
a:=(r+1)^{-1} 2^{-r(r+1)},
$$

then by (4.20) we have

$$
\left\|\varphi_{p, r, m, i}\right\|_{L_{\infty}(\mathbf{R})} \leq a, \quad \varphi \in \Phi_{p, r, m}
$$

Therefore for

$$
m:=\left\lceil 16\left(8+\log _{2}(a / \varepsilon)\right)\right\rceil n, \quad n \in \mathbf{N}
$$

it follows by virtue of (4.22) and Lemma 1, that

$$
d_{n}\left(\Phi_{p, r, m}\right)_{L_{q}(I)}^{p s d} \geq 2^{-2-1 / q}\left(2^{q}-1\right)^{1 / q} \varepsilon=: c
$$

where $c=c(r, p, q)$. This, by (4.23), in turn implies

$$
d_{n}\left(W_{p, \infty}^{r}\right)_{L_{q}(I)}^{p s d} \geq c
$$

where $c=c(r, p, q)$. The lower bounds

$$
d_{n}\left(W_{p, \infty}^{r}\right)_{L_{q}}^{l i n} \geq d_{n}\left(W_{p, \infty}^{r}\right)_{L_{q}}^{k o l} \geq c
$$

and

$$
\begin{aligned}
& E\left(W_{p, \infty}^{r}, \Sigma_{r, n}\right)_{L_{q}} \geq c \\
& E\left(W_{p, \infty}^{r}, R_{n}\right)_{L_{q}} \geq c,
\end{aligned}
$$

where $c=c(r, p, q)$, now follow readily from (2.3) through (2.5). This completes the proof of Theorem 1. \quad.
5. Proof of Theorem 2 (Upper bounds). Here it is more convenient to take $I:=(-1,1)$. Fix $n \in \mathbf{N}$ and set

$$
\begin{equation*}
\beta:=\frac{r-1+1 / q}{r-1-1 / p+1 / q} \geq 1 \tag{5.1}
\end{equation*}
$$

which is well defined since by assumption $r-1-1 / p+1 / q>0$. We partition I by

$$
t_{i}:=t_{\beta, n, i}:= \begin{cases}1-((n-i) / n)^{\beta} & i=0,1, \ldots, n \\ -1+((n+i) / n)^{\beta} & i=-1, \ldots,-n\end{cases}
$$

and set

$$
I_{i}:=I_{\beta, n, i}:= \begin{cases}{\left[t_{i-1}, t_{i}\right)} & i=1, \ldots, n \\ \left(t_{i}, t_{i+1}\right] & i=-1, \ldots,-n\end{cases}
$$

Given an $x \in V_{p}^{r}$, we denote by

$$
\begin{aligned}
\pi_{r-1, i}(x ; t):= & \pi_{r-1}\left(x ; t ; t_{i}\right):=\sum_{s=0}^{r-1} x^{(s)}\left(t_{i}\right) \frac{\left(t-t_{i}\right)^{s}}{s!} \\
& i=0, \pm 1, \ldots, \pm(n-1)
\end{aligned}
$$

its Taylor polynomial of the degree $r-1$ about t_{i}, and define the associated piecewise polynomial

$$
\sigma_{r, n}(x ; t):=\sigma_{\beta, r, n}(x ; t):= \begin{cases}\pi_{r-1, i-1}(x ; t) & t \in I_{i}, i=1, \ldots, n \\ \pi_{r-1, i+1}(x ; t) & t \in I_{i}, i=-1, \ldots,-n\end{cases}
$$

We first assume that $x \in V_{p}^{r}$ satisfies in addition

$$
x^{(s)}(0)=0, \quad s=0, \ldots, r-1
$$

Then

$$
x(t)=\frac{1}{(r-1)!} \int_{0}^{t} x^{(r)}(\tau)(t-\tau)^{r-1} d \tau, \quad t \in I
$$

Set

$$
\check{x}(t):=\frac{1}{(r-1)!} \int_{0}^{t}\left|x^{(r)}(\tau)\right|(t-\tau)^{r-1} d \tau, \quad t \in I
$$

and

$$
\hat{x}(t):=\frac{1}{(r-1)!} \int_{0}^{t}\left(\left|x^{(r)}(\tau)\right|-x^{(r)}(\tau)\right)(t-\tau)^{r-1} d \tau, \quad t \in I
$$

Clearly, $x=\check{x}-\hat{x}$, and

$$
\sigma_{r, n}(x ; t)=\sigma_{r, n}(\check{x} ; t)-\sigma_{r, n}(\hat{x} ; t), \quad t \in I
$$

It readily follows that

$$
\|\check{x}\|_{\mathcal{V}_{p}^{r}} \leq 1 \quad \text { and } \quad\|\hat{x}\|_{\mathcal{V}_{p}^{r}} \leq 2
$$

Also, it is easy to see that

$$
\check{x}^{(s)}(t) \geq 0, \quad \text { and } \quad \hat{x}^{(s)}(t) \geq 0, \quad s=0, \ldots, r-1, \quad t \in[0,1)
$$

and

$$
\begin{gathered}
(-1)^{r-s} \check{x}^{(s)}(t) \geq 0, \quad \text { and } \quad(-1)^{r-s} \hat{x}^{(s)}(t) \geq 0 \\
s=0, \ldots, r-1, \quad t \in(-1,0]
\end{gathered}
$$

Moreover, for every $s=0, \ldots, r-1$ the functions $\check{x}^{(s)}$ and $\hat{x}^{(s)}$ are nondecreasing in $[0,1)$ because $\check{x}^{(r)}(t) \geq 0$ and $\hat{x}^{(r)}(t) \geq 0$ almost everywhere for $t \in I$. Respectively, the functions $(-1)^{r-s} \check{x}^{(s)}$ and $(-1)^{r-s} \hat{x}^{(s)}$ are nonincreasing in $(-1,0]$ for every $s=0, \ldots, r-1$.
Let $0<q \leq p<1$. Then it follows immediately from Hölder's inequality that $\check{x} \in L_{q}$, and we will prove that

$$
\begin{equation*}
\left\|\check{x}(\cdot)-\sigma_{r, n}(\check{x} ; \cdot)\right\|_{L_{q}([0,1))} \leq c n^{-r} \tag{5.2}
\end{equation*}
$$

where $c=c(r, p, q)$. A similar proof yields the same inequality for the norm of \hat{x} in $[0,1)$, and for the norms of \check{x} and \hat{x} in $(-1,0]$.
To this end, we observe that (5.2) is trivial for $n=1$, so that we may assume $n>1$.

From the definition of $\pi_{r-1, i-1}$ and by Taylor's expansion, we have

$$
\begin{aligned}
\check{x}(t)-\pi_{r-1, i-1}(\check{x} ; t) & =\frac{1}{(r-1)!} \int_{t_{i-1}}^{t} \check{x}^{(r)}(\tau)(t-\tau)^{r-1} d \tau \\
i & =1, \ldots, n-1
\end{aligned}
$$

If we denote

$$
\theta_{i}:=\theta_{r, i}(\check{x}):=\check{x}^{(r-1)}\left(t_{i}\right)-\check{x}^{(r-1)}\left(t_{i-1}\right), \quad i=1, \ldots, n-1,
$$

then $\theta_{i} \geq 0, i=1, \ldots, n-1$, since $\check{x}^{(r-1)}$ is nondecreasing in $[0,1)$ and, by the above,

$$
\left|\check{x}(t)-\pi_{r-1, i-1}(\check{x} ; t)\right| \leq c\left|I_{i}\right|^{r-1} \theta_{i}, \quad t \in I_{i}, \quad i=1, \ldots, n-1
$$

Hence

$$
\begin{equation*}
\left\|\check{x}(\cdot)-\sigma_{r, n}(\check{x} ; \cdot)\right\|_{L_{q}\left(I_{i}\right)} \leq c\left|I_{i}\right|^{r-1+1 / q} \theta_{i}, \quad i=1, \ldots, n-1 . \tag{5.3}
\end{equation*}
$$

For $i=n$ we get by Hölder's inequality

$$
\begin{aligned}
&\left\|\check{x}(\cdot)-\pi_{r-1, n-1}(\check{x} ; \cdot)\right\|_{L_{q}\left(I_{n}\right)} \\
&=\frac{1}{(r-1)!}\left(\int_{t_{n-1}}^{1}\left|\int_{t_{n-1}}^{t} \check{x}^{(r)}(\tau)(t-\tau)^{r-1} d \tau\right|^{q} d t\right)^{1 / q} \\
& \leq c\left|I_{n}\right|^{r-1}\left(\int_{t_{n-1}}^{1}\left|\int_{t_{n-1}}^{t}\right| \check{x}^{(r)}(\tau)|d \tau|^{q} d t\right)^{1 / q} \\
& \leq c\left|I_{n}\right|^{r-1-1 / p+1 / q}\left(\int_{t_{n-1}}^{1}\left|\int_{t_{n-1}}^{t}\right| \check{x}^{(r)}(\tau)|d \tau|^{p} d t\right)^{1 / p} \\
& \leq c\left|I_{n}\right|^{r-1-1 / p+1 / q}\left(\int_{0}^{1}\left|\int_{0}^{t}\right| \check{x}^{(r)}(\tau)|d \tau|^{p} d t\right)^{1 / p} \\
& \leq c\left|I_{n}\right|^{r-1-1 / p+1 / q}\|\check{x}\|_{\nu_{p}^{r}} \\
& \leq c\left|I_{n}\right|^{r-1-1 / p+1 / q} .
\end{aligned}
$$

Hence

$$
\begin{equation*}
\left\|\check{x}(\cdot)-\sigma_{\beta, r, n}(\check{x} ; \cdot)\right\|_{L_{q}\left(I_{n}\right)} \leq c\left|I_{n}\right|^{r-1-1 / p+1 / q} . \tag{5.4}
\end{equation*}
$$

Since $q<1$, we apply the inequality $a^{q}+b^{q} \leq 2^{1-q}(a+b)^{q}, a, b \geq 0$, to obtain from (5.3) and (5.4),

$$
\begin{align*}
\| \check{x}(\cdot) & -\sigma_{\beta, r, n}(\check{x} ; \cdot) \|_{L_{q}([0,1))} \tag{5.5}\\
& \leq c\left(\sum_{i=1}^{n-1}\left(2^{1 / q-1}\left|I_{i}\right|^{r-1+1 / q} \theta_{i}\right)^{q}\right)^{1 / q}+c 2^{1 / q-1}\left|I_{n}\right|^{r-1-1 / p+1 / q} .
\end{align*}
$$

Thus we need an estimate on the sum on the righthand side. Observe that, for $t \in I_{i}, 2 \leq i \leq n$,

$$
\begin{aligned}
\check{x}^{(r-1)}(t) & =\check{x}^{(r-1)}(t)-\check{x}^{(r-1)}\left(t_{i-1}\right)+\sum_{j=1}^{i-1}\left[\check{x}^{(r-1)}\left(t_{j}\right)-\check{x}^{(r-1)}\left(t_{j-1}\right)\right] \\
& \geq \sum_{j=1}^{i-1} \theta_{j} \geq 0 .
\end{aligned}
$$

Hence

$$
\begin{aligned}
\left\|\check{x}^{(r-1)}\right\|_{L_{p}([0,1))}^{p} & =\int_{0}^{1}\left|\check{x}^{(r-1)}(t)\right|^{p} d t \\
& =\sum_{i=1}^{n} \int_{I_{i}}\left|\check{x}^{(r-1)}(t)\right|^{p} d t \\
& \geq \sum_{i=2}^{n} \int_{I_{i}}\left|\check{x}^{(r-1)}(t)\right|^{p} d t \\
& \geq \sum_{i=2}^{n}\left(\left|I_{i}\right|^{1 / p} \sum_{j=1}^{i-1} \theta_{j}\right)^{p} .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
\left\|\check{x}^{(r-1)}\right\|_{L_{p}([0,1))}^{p} & =\int_{0}^{1}\left|\check{x}^{(r-1)}(t)\right|^{p} d t \\
& =\int_{0}^{1}\left|\int_{0}^{t} \check{x}^{(r)}(\tau) d \tau\right|^{p} d t \\
& \leq\|\check{x}\|_{\mathcal{V}_{p}^{r}}^{p} \leq 1
\end{aligned}
$$

Together these two inequalities imply

$$
\begin{equation*}
\sum_{i=1}^{n-1}\left(\left|I_{i+1}\right|^{1 / p} \sum_{j=1}^{i} \theta_{j}\right)^{p} \leq 1 \tag{5.6}
\end{equation*}
$$

Now, simple calculations show that

$$
c_{1}(n-i+1)^{\beta-1} / n^{\beta} \leq\left|I_{n, i}\right| \leq c_{2}(n-i+1)^{\beta-1} / n^{\beta}, \quad i=1, \ldots, n
$$

for some constants $c_{1}=c_{1}(\beta)>0$ and $c_{2}=c_{2}(\beta)$, which substituting in (5.5) and (5.6) yield, respectively,

$$
\begin{align*}
\| \check{x}(\cdot) & -\sigma_{r, n}(\check{x} ; \cdot) \|_{L_{q}([0,1))} \tag{5.7}\\
& \leq\left(\sum_{i=1}^{n-1}\left(\left(\check{c}_{1}(n-i)^{\beta-1} / n^{\beta}\right)^{r-1+1 / q} \theta_{i}\right)^{q}\right)^{1 / q}+\check{c}_{1} n^{-\beta(r-1-1 / p+1 / q)},
\end{align*}
$$

and

$$
\sum_{i=1}^{n-1}\left(\left(\check{c}_{2}(n-i)^{\beta-1} / n^{\beta}\right)^{1 / p} \sum_{j=1}^{i} \theta_{j}\right)^{p} \leq 1
$$

for some constants $\check{c}_{1}=\check{c}_{1}(r, p, q)$ and $\check{c}_{2}=\check{c}_{2}(r, p, q)$.
Thus with

$$
a_{i}:=\left(\check{c}_{1}(n-i)^{\beta-1} / n^{\beta}\right)^{r-1+1 / q}
$$

and

$$
b_{i}:=\left(\check{c}_{2}(n-i)^{\beta-1} / n^{\beta}\right)^{1 / p}, \quad i=1, \ldots, n-1
$$

we have to estimate

$$
\begin{aligned}
\left(\sum_{i=1}^{n-1}\left(\left(\check{c}_{1}(n-i)^{\beta-1} / n^{\beta}\right)^{r-1+1 / q} \theta_{i}\right)^{q}\right)^{1 / q} & =\left(\sum_{i=1}^{n-1}\left(a_{i} \theta_{i}\right)^{q}\right)^{1 / q} \\
& =: f_{q, n-1}(\theta)
\end{aligned}
$$

under the constraint

$$
\theta_{i} \geq 0, \quad i=1, \ldots, n-1, \quad \sum_{i=1}^{n-1}\left(b_{i} \sum_{j=1}^{i} \theta_{j}\right)^{p} \leq 1
$$

This is exactly what Lemma 3 is about, and we conclude by it that

$$
\begin{equation*}
f_{q, n-1}(\theta) \leq(n-1)^{-1+1 / q} \max _{1 \leq i \leq n-1}\left\{a_{i}\left(\sum_{j=i}^{n-1} b_{j}^{p}\right)^{-1 / p}\right\} \tag{5.8}
\end{equation*}
$$

where $c=c(r, p, q)$. So all we need is to estimate the righthand side of (5.8).

Straightforward calculations yield

$$
\sum_{j=i}^{n-1} b_{j}^{p}=\check{c} n^{-\beta} \sum_{j=i}^{n-1}(n-j)^{\beta-1} \geq \tilde{c} n^{-\beta}(n-i)^{\beta}
$$

whence,

$$
\begin{aligned}
& \max _{1 \leq i \leq n-1}\left\{a_{i}\left(\sum_{j=i}^{n-1} b_{j}^{p}\right)^{-1 / p}\right\} \\
& \quad \leq c_{*} \beta^{-1 / p} n^{-\beta(r-1-1 / p+1 / q)} \max _{1 \leq i \leq n-1}(n-i)^{(\beta-1)(r-1+1 / q)-\beta / p} \\
& \quad \leq c_{*} n^{-\beta(r-1-1 / p+1 / q)}(n-1)^{(\beta-1)(r-1+1 / q)-\beta / p} \leq c n^{-r+1-1 / q}
\end{aligned}
$$

since the choice of β in (5.1) guarantees that

$$
\max _{1 \leq i \leq n-1}(n-i)^{(\beta-1)(r-1+1 / q)-\beta / p}=(n-1)^{(\beta-1)(r-1+1 / q)-\beta / p}
$$

Substituting in (5.8) yields

$$
\begin{equation*}
f_{q, n-1}(\theta) \leq c n^{-r} \tag{5.9}
\end{equation*}
$$

where $c=c(r, p, q)$. The choice of β in (5.1) also gives

$$
n^{-\beta(r-1-1 / p+1 / q)} \leq n^{-r}
$$

which, substituted together with (5.9) into (5.7), yields

$$
\begin{equation*}
\left\|\check{x}(\cdot)-\sigma_{r, n}(\check{x} ; \cdot)\right\|_{L_{q}([0,1))} \leq c n^{-r}, \quad n=1,2, \ldots \tag{5.10}
\end{equation*}
$$

where $c=c(r, p, q)$. Similarly we obtain

$$
\begin{equation*}
\left\|\hat{x}(\cdot)-\sigma_{r, n}(\hat{x} ; \cdot)\right\|_{L_{q}([0,1))} \leq c n^{-r}, \quad n=1,2, \ldots, \tag{5.11}
\end{equation*}
$$

where $c=c(r, p, q)$.
Combining (5.10) and (5.11) we conclude that for $0<q \leq p<1$ we have

$$
\begin{equation*}
\left\|x(\cdot)-\sigma_{r, n}(x ; \cdot)\right\|_{L_{q}([0,1))} \leq c n^{-r}, \quad n=1,2, \ldots \tag{5.12}
\end{equation*}
$$

where $c=c(r, p, q)$.
If, on the other hand, $0<p<q<1$, then in general we can no longer guarantee that $x \in \mathcal{V}_{p}^{r}$ necessarily belongs to L_{q}. We have this because we have assumed that $r-1-1 / p+1 / q>0$. In order to see this we
first observe that in this case $r>1$. We will show that if $x \in \mathcal{V}_{p}^{r}$, then for all $t \in I$ we have the pointwise convergence,

$$
\begin{aligned}
x(t)= & \sigma_{r, 2^{0}}(x ; t)+\sum_{\nu=1}^{\infty}\left(\sigma_{r, 2^{\nu}}(x ; t)-\sigma_{r, 2^{\nu-1}}(x ; t)\right) \\
= & \sigma_{r, 2^{0}}(\check{x} ; t)+\sum_{\nu=1}^{\infty}\left(\sigma_{r, 2^{\nu}}(\check{x} ; t)-\sigma_{r, 2^{\nu-1}}(\check{x} ; t)\right) \\
& -\sigma_{r, 2^{2}}(\hat{x} ; t)-\sum_{\nu=1}^{\infty}\left(\sigma_{r, 2^{\nu}}(\hat{x} ; t)-\sigma_{r, 2^{\nu-1}}(\hat{x} ; t)\right) .
\end{aligned}
$$

In fact we will show more, namely, that

$$
\sigma_{q, r}(\check{x} ; t):=\left|\sigma_{r, 2^{0}}(\check{x} ; t)\right|^{q}+\sum_{\nu=1}^{\infty}\left|\sigma_{r, 2^{\nu}}(\check{x} ; t)-\sigma_{r, 2^{\nu-1}}(\check{x} ; t)\right|^{q}
$$

and

$$
\sigma_{q, r}(\hat{x} ; t):=\left|\sigma_{r, 2^{0}}(\hat{x} ; t)\right|^{q}+\sum_{\nu=1}^{\infty}\left|\sigma_{r, 2^{\nu}}(\hat{x} ; t)-\sigma_{r, 2^{\nu-1}}(\hat{x} ; t)\right|^{q}
$$

converge pointwise for all $t \in I$ and any $0<q<1$.
Indeed, for a fixed $t \in I$,

$$
\begin{aligned}
\left|x(t)-\sigma_{r, 2^{\nu}}(x ; t)\right| & \leq \max _{i=1, \ldots, 2^{v}}\left|I_{2^{\nu}, i}\right|^{r-1}\left|\int_{0}^{t}\right| x^{(r)}(\tau)|d \tau| \\
& \leq c 2^{-(r-1) \nu}\left|\int_{0}^{t}\right| x^{(r)}(\tau)|d \tau|
\end{aligned}
$$

Since $r>1$, the above series are dominated by a convergent geometric series.

Now for $\nu \in \mathbf{N}$ and all $1 \leq i \leq 2^{\nu-1}$, we have $I_{2^{\nu-1}, i}=I_{2^{\nu}, 2 i-1} \cup I_{2^{\nu}, 2 i}$. Also,

$$
\begin{aligned}
\sigma_{r, 2^{\nu-1}}(\check{x} ; t) & =\pi_{r-1}\left(\check{x} ; t, t_{2^{\nu-1}, i-1}\right) \\
& =\pi_{r-1}\left(\check{x} ; t, t_{2^{\nu}, 2 i-2}\right), \quad t \in I_{2^{\nu-1}, i}
\end{aligned}
$$

while

$$
\sigma_{r, 2^{\nu}}(\check{x} ; t)= \begin{cases}\pi_{r-1}\left(\check{x} ; t, t_{2^{\nu}, 2 i-2}\right) & t \in I_{2^{\nu}, 2 i-1} \\ \pi_{r-1}\left(\check{x} ; t, t_{2^{\nu}, 2 i-1}\right) & t \in I_{2^{\nu}, 2 i}\end{cases}
$$

Hence

$$
\begin{array}{ll}
\sigma_{r, 2^{\nu}}(\check{x} ; t)-\sigma_{r, 2^{\nu-1}}(\check{x} ; t) \\
\quad= \begin{cases}0 & t \in I_{2^{\nu}, 2 i-1}, \\
\pi_{r-1}\left(\check{x} ; t, t_{2^{\nu}, 2 i-1}\right)-\pi_{r-1}\left(\check{x} ; t, t_{2^{\nu-1}, i-1}\right), & t \in I_{2^{\nu}, 2 i},\end{cases}
\end{array}
$$

so that

$$
\begin{align*}
& \left\|\sigma_{r, 2^{\nu}}(\check{x} ; \cdot)-\sigma_{r, 2^{\nu-1}}(\check{x} ; \cdot)\right\|_{L_{q}\left(I_{2^{\nu-1}, i}\right)} \\
& \quad=\left\|\pi_{r-1}\left(\check{x} ; \cdot, t_{2^{\nu}, 2 i-1}\right)-\pi_{r-1}\left(\check{x} ; \cdot, t_{2^{\nu-1}, i-1}\right)\right\|_{L_{q}\left(I_{2^{\nu}, 2 i}\right)} \tag{5.13}
\end{align*}
$$

By virtue of Lemma C we have

$$
\begin{align*}
& \left\|\pi_{r-1}\left(\check{x} ; \cdot, t_{2^{\nu}, 2 i-1}\right)-\pi_{r-1}\left(\check{x} ; \cdot, t_{2^{\nu-1}, i-1}\right)\right\|_{L_{q}\left(I_{2^{\nu}, 2 i}\right)} \tag{5.14}\\
& \quad \leq c\left|I_{2^{\nu}, 2 i}\right|^{1 / q-1 / p}\left\|\pi_{r-1}\left(\check{x} ; \cdot, t_{2^{\nu}, 2 i-1}\right)-\pi_{r-1}\left(\check{x} ; \cdot, t_{2^{\nu-1}, i-1}\right)\right\|_{L_{p}\left(I_{2^{\nu}, 2 i}\right)}
\end{align*}
$$

where $c=c(r, p, q)$, and

$$
\begin{align*}
\| \pi_{r-1}\left(\check{x} ; \cdot, t_{2^{\nu}, 2 i-1}\right)- & \pi_{r-1}\left(\check{x} ; \cdot, t_{2^{\nu-1}, i-1}\right) \|_{L_{p}\left(I_{2^{\nu}, 2 i}\right)}^{p} \\
\leq & \left\|\check{x}(\cdot)-\pi_{r-1}\left(\check{x} ; \cdot, t_{2^{\nu-1}, i-1}\right)\right\|_{L_{p}\left(I_{2^{\nu}, 2 i}\right)}^{p} \\
& +\left\|\check{x}(\cdot)-\pi_{r-1}\left(\check{x} ; \cdot, t_{2^{\nu}, 2 i-1}\right)\right\|_{L_{p}\left(I_{2^{\nu}, 2 i}\right)}^{p} \tag{5.15}\\
\leq & \left\|\check{x}(\cdot)-\pi_{r-1}\left(\check{x} ; \cdot, t_{2^{\nu-1}, i-1}\right)\right\|_{L_{p}\left(I_{2^{\nu-1, i}}\right)}^{p} \\
& +\left\|\check{x}(\cdot)-\pi_{r-1}\left(\check{x} ; \cdot, t_{2^{\nu}, 2 i-1}\right)\right\|_{L_{p}\left(I_{2^{\nu}, 2 i}\right)}^{p} .
\end{align*}
$$

Substituting (5.14) and (5.15) in (5.13) implies

$$
\begin{align*}
& \left.\left\|\sigma_{r, 2^{\nu}}(\check{x} ; \cdot)-\sigma_{r, 2^{\nu-1}}(\check{x} ; \cdot)\right\|_{L_{q}\left(I_{2^{\nu-1, i}}\right.}^{q}\right) \\
& \quad \leq c\left|I_{2^{\nu-1}, i}\right|^{1-q / p}\left\|\check{x}(\cdot)-\pi_{r-1}\left(\check{x} ; \cdot, t_{2^{\nu-1}, i-1}\right)\right\|_{L_{p}\left(I_{2^{\nu-1, i}}\right)}^{q} \tag{5.16}\\
& \quad+c\left|I_{2^{\nu}, 2 i}\right|^{1-q / p}\left\|\check{x}(\cdot)-\pi_{r-1}\left(\check{x} ; \cdot, t_{2^{\nu}, 2 i-1}\right)\right\|_{L_{p}\left(I_{2^{\nu}, 2 i}\right)}^{q}
\end{align*}
$$

where $c=c(r, p, q)$, and where we used the convexity of the function $u^{q / p}$.
Denoting

$$
\begin{aligned}
\theta_{2^{\nu}, i} & :=\theta_{r, 2^{\nu}, i}(\check{x}) \\
& :=\check{x}^{(r-1)}\left(t_{2^{\nu}, i}\right)-\check{x}^{(r-1)}\left(t_{2^{\nu}, i-1}\right), \quad i=1, \ldots, 2^{\nu}-1,
\end{aligned}
$$

similar to (5.3) and (5.4) we obtain

$$
\begin{gather*}
\left\|\check{x}(\cdot)-\pi_{r-1}\left(\check{x} ; \cdot, t_{2^{\nu}, i-1}\right)\right\|_{L_{p}\left(I_{2^{\nu}, i}\right)} \leq\left|I_{2^{\nu}, i}\right|^{r-1+1 / p} \theta_{2^{\nu}, i}, \tag{5.17}\\
i=1, \ldots, 2^{\nu}-1
\end{gather*}
$$

and

$$
\begin{equation*}
\left\|\check{x}(\cdot)-\pi_{r-1}\left(\check{x} ; \cdot, t_{2^{\nu}, 2^{\nu}-1}\right)\right\|_{L_{p}\left(I_{2^{\nu}, 2^{\nu}}\right)} \leq\left|I_{2^{\nu}, 2^{\nu}}\right|^{r-1} \tag{5.18}
\end{equation*}
$$

Substituting (5.17) and (5.18) in (5.16) yields,

$$
\begin{align*}
\| \sigma_{r, 2^{\nu}}(\check{x} ; \cdot)- & \sigma_{r, 2^{\nu-1}}(\check{x} ; \cdot) \|_{L_{q}([0,1)} \\
\leq & \check{c}\left(\sum_{i=1}^{2^{\nu-1}-1}\left(\left|I_{2^{\nu-1}, i}\right|^{r-1+1 / q} \theta_{2^{\nu-1}, i}\right)^{q}\right)^{1 / q} \\
& +\check{c}\left|I_{2^{\nu-1}, 2^{\nu-1}}\right|^{r-1-1 / p+1 / q} \tag{5.19}\\
& +\check{c}\left(\sum_{i=1}^{2^{\nu}-1}\left(\left|I_{2^{\nu}, i}\right|^{r-1+1 / q} \theta_{2^{\nu}, i}\right)^{q}\right)^{1 / q} \\
& +\check{c}\left|I_{2^{\nu}, 2^{\nu}}\right|^{r-1-1 / p+1 / q},
\end{align*}
$$

with some constant $\check{c}=\check{c}(r, p, q)$, and our goal is to estimate the righthand side of (5.19). But we have done just that for β satisfying (5.1). Observe that we have obtained the estimate of the righthand side of (5.7) by Lemma 3, for all $0<p, q<1$, provided $r-1-1 / p+1 / q>0$. Thus we conclude that for the prescribed β,

$$
\left\|\sigma_{r, 2^{\nu}}(\check{x} ; \cdot)-\sigma_{r, 2^{\nu-1}}(\check{x} ; \cdot)\right\|_{L_{q}[0,1)} \leq c 2^{-\nu r}
$$

where $c=c(r, p, q)$. Similarly we have

$$
\left\|\sigma_{r, 2^{\nu}}(\check{x} ; \cdot)-\sigma_{r, 2^{\nu-1}}(\check{x} ; \cdot)\right\|_{L_{q}(-1,0]} \leq c 2^{-\nu r}
$$

where $c=c(r, p, q)$. And combined we end up with

$$
\begin{equation*}
\left\|\sigma_{r, 2^{\nu}}(\check{x} ; \cdot)-\sigma_{r, 2^{\nu-1}}(\check{x} ; \cdot)\right\|_{L_{q}(I)}^{q} \leq c 2^{-\nu r q}, \quad \nu=1,2, \ldots \tag{5.20}
\end{equation*}
$$

where $c=c(r, p, q)$, so that the series

$$
\sum_{\nu=1}^{\infty}\left\|\sigma_{r, 2^{\nu}}(\check{x} ; \cdot)-\sigma_{r, 2^{\nu-1}}(\check{x} ; \cdot)\right\|_{L_{q}(I)}^{q} \leq \sum_{\nu=1}^{\infty} c 2^{-\nu r q}<\infty
$$

It thus follows by Fatou lemma that the function

$$
\sigma_{q, r}(\check{x} ; t):=\left|\sigma_{r, 2^{\nu-1}}(\check{x} ; t)\right|^{q}+\sum_{\nu=1}^{\infty}\left|\sigma_{r, 2^{\nu}}(\check{x} ; t)-\sigma_{r, 2^{\nu-1}}(\check{x} ; t)\right|^{q}
$$

is integrable in I, and since

$$
|\check{x}(t)|^{q} \leq \sigma_{q, r}(\check{x} ; t), \quad t \in I
$$

we conclude that $\check{x} \in L_{q}(I)$. Moreover, by virtue of (5.20), we readily get

$$
\begin{aligned}
\left\|\check{x}(\cdot)-\sigma_{r, 2^{n}}(\check{x} ; \cdot)\right\|_{L_{q}(I)}^{q} & \leq \sum_{\nu=n+1}^{\infty}\left\|\sigma_{r, 2^{\nu}}(\check{x} ; \cdot)-\sigma_{r, 2^{\nu-1}}(\check{x} ; \cdot)\right\|_{L_{q}(I)}^{q} \\
& \leq \sum_{\nu=n+1}^{\infty} c 2^{-\nu r q} \leq c 2^{-n r q}, \quad n=0,1,2, \ldots
\end{aligned}
$$

where $c=c(r, p, q)$. Similarly we obtain the upper bounds

$$
\left\|\hat{x}(\cdot)-\sigma_{r, 2^{n}}(\hat{x} ; \cdot)\right\|_{L_{q}(I)} \leq c 2^{-n r}, \quad n=0,1,2, \ldots
$$

where $c=c(r, p, q)$, and together we have

$$
\begin{equation*}
\left\|x(\cdot)-\sigma_{r, 2^{n}}(x ; \cdot)\right\|_{L_{q}(I)} \leq c 2^{-n r}, \quad n=0,1,2, \ldots \tag{5.21}
\end{equation*}
$$

where $c=c(r, p, q)$.
Recall that the upper bounds (5.12) and (5.21) have been proved under the additional assumption that

$$
x^{(s)}(0)=0, \quad s=0, \ldots, r-1
$$

If this is not the case, then we let

$$
\tilde{x}(t):=x(t)-\sum_{s=0}^{r-1} x^{(s)}(0) \frac{t^{s}}{s!}, \quad t \in I
$$

Evidently $\tilde{x} \in \mathcal{V}_{p}^{r},\|\tilde{x}\|_{\mathcal{V}_{p}^{r}}=\|x\|_{\mathcal{V}_{p}^{r}}$, and

$$
\tilde{x}^{(s)}(0)=0, \quad s=0, \ldots, r-1
$$

Finally,

$$
x(t)-\sigma_{r, n}(x ; t)=\tilde{x}(t)-\sigma_{r, n}(\tilde{x} ; t), \quad t \in I
$$

Thus we conclude that for $x \in V_{p}^{r}$,

$$
\begin{equation*}
\left\|x(\cdot)-\sigma_{r, n}(x ; \cdot)\right\|_{L_{q}(I)} \leq c n^{-r}, \quad 0<q \leq p<1, \quad n=1,2, \ldots \tag{5.22}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|x(\cdot)-\sigma_{r, 2^{n}}(x ; \cdot)\right\|_{L_{q}(I)} \leq c 2^{-n r}, \quad 0<p<q<1, \quad n=0,1,2, \ldots \tag{5.23}
\end{equation*}
$$

where $c=c(r, p, q)$.
Let $\mathcal{S}_{r}:=\mathcal{S}_{\beta, r}$, be a space of piecewise polynomials of degree $\leq r-1$ on each subinterval $I_{r, i}, i= \pm 1, \ldots, \pm n$, and continuous at the point $t=0$. Then $\operatorname{dim} \mathcal{S}_{r}=2 r n-1$, and the mapping defined above $\sigma_{r, n}: \mathcal{V}_{p}^{r} \rightarrow \mathcal{S}_{r}$ is linear. Hence it follows immediately by (5.22), and it follows by standard technique from (5.23) that

$$
d_{n}\left(V_{p}^{r}\right)_{L_{q}}^{l i n} \leq c n^{-r}, \quad 0<p, q<1, \quad n=1,2, \ldots
$$

where $c=c(r, p, q)$. In view of (2.3) we immediately obtain

$$
d_{n}\left(V_{p}^{r}\right)_{L_{q}}^{p s d} \leq d_{n}\left(V_{p}^{r}\right)_{L_{q}}^{k o l} \leq c n^{-r}, \quad 0<p, q<1, \quad n=1,2, \ldots
$$

where $c=c(r, p, q)$.
Obviously we also have

$$
E\left(V_{p}^{r}, \Sigma_{r, n}\right)_{L_{q}} \leq c n^{-r}, \quad 0<p, q<1, \quad n=1,2, \ldots
$$

where $c=c(r, p, q)$, and finally applying Lemma D with $\lambda=r+1 / q$ and $\gamma=q$, the last inequality yields,

$$
E\left(V_{p}^{r}, R_{n}\right)_{L_{q}} \leq c n^{-r}, \quad 0<p, q<1, \quad n=1,2, \ldots
$$

where $c=c(r, p, q)$. This completes the proof of the upper bounds in Theorem 2.
6. Proof of Theorem 2 (Lower bounds). The proof follows the same lines as that of the lower bounds in Theorem 1, but it is simpler.

Let $\varphi \in C_{0}^{\infty}(\mathbf{R})$ be nonnegative with $\operatorname{supp} \varphi=[0,1]=: I,\|\varphi\|_{L_{\infty}}=1$, and $\varphi(t)=1$ if $t \in[1 / 4,3 / 4]$. For $r \in \mathbf{N}$, let

$$
\phi_{r}(t):=\varphi(t) /\left\|\varphi^{(r)}\right\|_{L_{\infty}}, \quad t \in \mathbf{R}
$$

and for $m \in \mathbf{N}$ to be prescribed, take $t_{i}:=t_{m, i}:=i / m, i=0,1, \ldots, m$, and $I_{i}:=I_{m, i}:=\left[t_{i-1}, t_{i}\right], i=1, \ldots, m$. Denote

$$
\phi_{r, m, i}(t):=m^{-r} \phi_{r}\left(m\left(t-t_{i-1}\right)\right), \quad t \in \mathbf{R}, \quad i=1, \ldots, m
$$

Then, $\operatorname{supp} \phi_{r, m, i}=I_{i}, i=1, \ldots, m$,

$$
\begin{equation*}
\left\|\phi_{r, m, i}^{(r)}\right\|_{L_{\infty}}=1, \quad 0 \leq \phi_{r, m, i}(t) \leq m^{-r}\left\|\varphi^{(r)}\right\|_{L_{\infty}}^{-1}, \quad t \in I \tag{6.1}
\end{equation*}
$$

and
(6.2) $\phi_{r, m, i}(t)=m^{-r}\left\|\varphi^{(r)}(\cdot)\right\|_{L_{\infty}}^{-1}, \quad t \in\left[t_{i-1}+1 /(4 m), t_{i}-1 /(4 m)\right]$.

Write
$\Phi_{r, m}:=\Phi_{r, m}(I):=\left\{\phi \mid \phi:=\sum_{i=1}^{m} v_{i} \phi_{r, m, i}, \quad v:=\left(v_{1}, \ldots, v_{m}\right) \in F_{m}\right\}$,
where F_{m} is the class of sign-vectors defined in Lemma A. Then, by virtue of (6.1), we have

$$
\|\phi\|_{L_{\infty}(I)} \leq m^{-r}\left\|\varphi^{(r)}\right\|_{L_{\infty}(I)}^{-1}, \quad\left\|\phi^{(r)}\right\|_{L_{\infty}(I)} \leq 1, \quad \phi \in \Phi_{r, m}
$$

so that $\Phi_{r, m} \subset V_{p}^{r}$. Hence

$$
\begin{equation*}
d_{n}\left(V_{p}^{r}\right)_{L_{q}}^{p s d} \geq d_{n}\left(\Phi_{r, m}\right)_{L_{q}}^{p s d}, \quad 0<q<1, \quad n \geq 1 \tag{6.3}
\end{equation*}
$$

For any two different vectors $\hat{v}:=\left(\hat{v}_{1}, \ldots, \hat{v}_{m}\right)$ and $\check{v}:=\left(\check{v}_{1}, \ldots, \check{v}_{m}\right)$, in F_{m}, let

$$
\hat{\phi}:=\sum_{i=1}^{m} \hat{v}_{i} \phi_{r, m, i} \quad \text { and } \quad \check{\phi}:=\sum_{i=1}^{m} \check{v}_{i} \phi_{r, m, i},
$$

be the associated functions in $\Phi_{r, m}$. If $\|\hat{v}-\check{v}\|_{l_{1}^{m}} \geq m / 2$, then there exist $\lceil m / 4\rceil$ indices $i_{1}, \ldots, i_{\lceil m / 4\rceil}$ such that $\hat{v}_{i_{k}}=-\check{v}_{i_{k}}, k=1, \ldots,\lceil m / 4\rceil$. Hence, by (6.2),

$$
\begin{aligned}
\|\hat{\phi}-\check{\phi}\|_{L_{q}}^{q} & =\int_{I}\left|\sum_{i=1}^{m}\left(\hat{v}_{i}-\check{v}_{i}\right) \phi_{r, m, i}(t)\right|^{q} d t \\
& =\sum_{i=1}^{m} \int_{I_{m, i}}\left|\hat{v}_{i}-\check{v}_{i}\right|^{q}\left(\phi_{r, m, i}(t)\right)^{q} d t \\
& \geq \sum_{k=1}^{\lceil m / 4\rceil}\left|\hat{v}_{i_{k}}-\check{v}_{i_{k}}\right|^{q} \int_{t_{m, i_{k}-1}+(1 / 4 m)}^{t_{m, i_{k}}-1 / 4 m} m^{-r q}\left\|\varphi^{(r)}\right\|_{L_{\infty}}^{-q} d t \\
& =m^{-r q}\left\|\varphi^{(r)}\right\|_{L_{\infty}}^{-q}(2 m)^{-1} \sum_{k=1}^{\lceil m / 4\rceil} 2^{q} \\
& \geq m^{-r q}\left\|\varphi^{(r)}\right\|_{L_{\infty}}^{-q}(2 m)^{-1} 2^{q}\lceil m / 4\rceil \\
& \geq 2^{q-3}\left\|\varphi^{(r)}\right\|_{L_{\infty}}^{-q} m^{-r q}=: \varepsilon^{q} .
\end{aligned}
$$

If we set $a:=m^{-r}\left\|\varphi^{(r)}\right\|_{L_{\infty}}^{-1}$, and given $n \in \mathbf{N}$, we take $m=$ $\left\lceil 80\left(2^{3 / q-1}+1\right)\right\rceil n$, then applying Lemma 1 , as we did in the proof of Theorem 1, we conclude that

$$
d_{n}\left(\Phi_{r, m}\right)_{L_{q}} \geq c n^{-r}, \quad n \in \mathbf{N}, \quad 0<q<1
$$

where $c=c(r, q)$. By virtue of (6.3) and (2.3) this implies

$$
\begin{aligned}
d_{n}\left(V_{p}^{r}\right)_{L_{q}}^{l i n} & \geq d_{n}\left(V_{p}^{r}\right)_{L_{q}}^{k o l} \geq d_{n}\left(V_{p}^{r}\right)_{L_{q}}^{p s d} \geq c n^{-r} \\
0 & <p, q<1, \quad n=1,2, \ldots
\end{aligned}
$$

where $c=c(r, q)$. The lower bounds

$$
E\left(V_{p}^{r}, \Sigma_{r, n}\right)_{L_{q}} \geq c n^{-r}, \quad 0<p, q<1, \quad n=1,2, \ldots
$$

and

$$
E\left(V_{p}^{r}, R_{n}\right)_{L_{q}} \geq c n^{-r}, \quad 0<p, q<1, \quad n=1,2, \ldots
$$

where $c=c(r, q)$, readily follow from (2.4) and(2.5). This completes the proof of the lower bounds in Theorem 2.
7. Relations between the spaces \mathcal{W}_{p}^{r} and \mathcal{V}_{p}^{r}. Let X and Y be linear spaces equipped with the (quasi-)seminorms $\|x\|_{X}$ and $\|y\|_{Y}$, respectively. If $X \subseteq Y$, we say that X is embedded in Y, notation $X \hookrightarrow Y$, if $\|x\|_{Y} \leq c\|x\|_{X}$ for all $x \in X$. Otherwise we write $X \nVdash Y$.

The following relations hold between \mathcal{W}_{p}^{r} and \mathcal{V}_{p}^{r}.

Proposition 1. For every $r \in \mathbf{N}, \mathcal{V}_{p}^{r} \nrightarrow \mathcal{W}_{p}^{r}, 0<p \leq \infty$. However, while for $1 \leq p \leq \infty, \mathcal{W}_{p}^{r} \hookrightarrow \mathcal{V}_{p}^{r}$, if $0<p<1$, then $\mathcal{W}_{p}^{r} \hookrightarrow \mathcal{V}_{p}^{r}$.

Proof. We begin with the easiest part which is to observe that if $1 \leq p \leq \infty$, then by Hölder inequality,

$$
\|x\|_{\mathcal{V}_{p}^{r}} \leq c\|x\|_{\mathcal{W}_{p}^{r}}, \quad \forall x \in \mathcal{W}_{p}^{r}
$$

where $c:=2^{1 / p-1} p^{-1 / p}|I|$. Thus, $\mathcal{W}_{p}^{r} \hookrightarrow \mathcal{V}_{p}^{r}$.
On the other hand, let $0<p \leq \infty$, and take $0<\varepsilon<|I|$. Recall that t_{0} is the midpoint of I, and set

$$
x_{\varepsilon, p, 0}(t):= \begin{cases}\varepsilon^{-1 / p-1} & t \in\left(-|I| / 2+t_{0},-(|I|-\varepsilon) / 2+t_{0}\right) \\ 0 & t \in\left[-(|I|-\varepsilon) / 2+t_{0}, t_{0}+(|I|-\varepsilon) / 2\right] \\ \varepsilon^{-1 / p-1} & t \in\left(t_{0}+(|I|-\varepsilon) / 2, t_{0}+|I| / 2\right)\end{cases}
$$

and

$$
x_{\varepsilon, p, s}(t):=\int_{t_{0}}^{t} x_{\varepsilon, p, s-1}(\tau) d \tau, \quad s=1, \ldots, r, \quad t \in I
$$

Then clearly, $x_{\varepsilon, p, r} \in \mathcal{W}_{p}^{r} \cap \mathcal{V}_{p}^{r}$, and straightforward calculations yield

$$
\left\|x_{\varepsilon, p, r}\right\|_{\mathcal{W}_{p}^{r}}=\varepsilon^{-1} \quad \text { and } \quad\left\|x_{\varepsilon, p, r}\right\|_{\mathcal{V}_{p}^{r}}=2^{-1}(p+1)^{-1 / p}
$$

Obviously, there exists no constant $c>0$ such that

$$
\left\|x_{\varepsilon, p, r}\right\| \mathcal{W}_{p}^{r} \leq c\left\|x_{\varepsilon, p, r}\right\|_{\mathcal{V}_{p}^{r}}
$$

for all $\varepsilon \rightarrow 0$. Thus $\mathcal{V}_{p}^{r} \nrightarrow \mathcal{W}_{p}^{r}$.

Finally, let $0<p<1$ and take $0<\varepsilon<|I|$. Set

$$
y_{\varepsilon, p, 0}(t):= \begin{cases}0 & t \in\left[-|I| / 2+t_{0}, t_{0}-\varepsilon / 2\right] \\ \varepsilon^{-1 / p} & t \in\left(-\varepsilon / 2+t_{0}, t_{0}+\varepsilon / 2\right) \\ 0 & t \in\left(t_{0}+\varepsilon / 2, t_{0}+|I| / 2\right)\end{cases}
$$

and

$$
y_{\varepsilon, p, s}(t):=\int_{t_{0}}^{t} y_{\varepsilon, p, s-1}(\tau) d \tau, \quad s=1, \ldots, r, \quad t \in I
$$

Again it is clear that $y_{\varepsilon, p, r} \in \mathcal{W}_{p}^{r} \cap \mathcal{V}_{p}^{r}$, and again by straightforward calculations,
$\left\|y_{\varepsilon, p, r}\right\|_{\mathcal{W}_{p}^{r}(I)}=1 \quad$ and $\quad\left\|y_{\varepsilon, p, r}\right\|_{\mathcal{V}_{p}^{r}(I)}=2^{-1}\left(\varepsilon+(p+1)^{-1} \varepsilon+|I|\right) \varepsilon^{1-1 / p}$.
This time it is clear that there exists no constant $c>0$ such that

$$
\left\|y_{\varepsilon, p, r}\right\|_{\mathcal{V}_{p}^{r}(I)} \leq c\left\|y_{\varepsilon, p, r}\right\|_{\mathcal{W}_{p}^{r}(I)}
$$

for all $\varepsilon \rightarrow 0$. Thus $\mathcal{W}_{p}^{r} \nrightarrow \mathcal{V}_{p}^{r}$. This completes the proof of Proposition 1.

On the other hand we do have

Proposition 2. The inclusion $\mathcal{V}_{p}^{r} \subseteq L_{p}$, is valid for every $r \in \mathbf{N}$ and all $0<p \leq \infty$.

Proof. For $x \in \mathcal{V}_{p}^{r}$, let

$$
\pi_{r-1}\left(x ; t ; t_{0}\right):=\sum_{s=0}^{r-1} x^{(s)}\left(t_{0}\right) \frac{\left(t-t_{0}\right)^{s}}{s!}
$$

denote the Taylor polynomial of x. Then

$$
x(t)=\pi_{r-1}\left(x ; t ; t_{0}\right)+\frac{1}{(r-1)!} \int_{t_{0}}^{t} x^{(r)}(\tau)(t-\tau)^{r-1} d \tau
$$

Now $\pi_{r-1}\left(x ; t ; t_{0}\right) \in L_{p}, 0<p \leq \infty$, so it suffices to prove that the remainder does too.

If $0<p<\infty$, then

$$
\begin{aligned}
\left(\int_{I} \mid \int_{t_{0}}^{t} x^{(r)}(\tau)\right. & \left.\left.(t-\tau)^{r-1} d \tau\right|^{p} d t\right)^{1 / p} \\
\leq & 2^{-r+1}|I|^{r-1}\left(\int_{I}\left|\int_{t_{0}}^{t}\right| x^{(r)}(\tau)|d \tau|^{p} d t\right)^{1 / p} \\
& =2^{-r+1}|I|^{r-1}\|x\|_{\mathcal{V}_{p}^{r}}<\infty
\end{aligned}
$$

and for $p=\infty$,

$$
\begin{aligned}
\sup _{t \in I}\left|\int_{t_{0}}^{t} x^{(r)}(\tau)(t-\tau)^{r-1} d \tau\right| & \leq 2^{-r+1}|I|^{r-1} \sup _{t \in I}\left|\int_{t_{0}}^{t}\right| x^{(r)}(\tau)|d \tau| \\
& =2^{-r+1}|I|^{r-1}\|x\|_{\mathcal{V}_{\infty}^{r}}<\infty
\end{aligned}
$$

Thus the proof is complete.

REFERENCES

1. R.A. DeVore, Y. K. Hu and D. Leviatan, Convex polynomial and spline approximation in $L_{p}[-1,1], 0<p<\infty$, Constr. Approx. 12 (1996), 409-422.
2. R.A. DeVore and G.G. Lorentz, Constructive approximation, Grundlehren Math. Wiss. 303, Springer Verlag, Berlin, 1993.
3. Z. Ditzian, V.H. Hristov and K.G. Ivanov, Moduli of smoothness and Kfunctionals in $L_{p}, 0<p<1$, Constr. Approx. 11 (1995), 67-83.
4. D. Haussler, Decision theoretic generalizations of the PAC model for neural net and other learning applications, Inform. and Comput. 100 (1992), 78-150.
5. -, Sphere packing numbers for subsets of the Boolean n-cube with bounded Vapnik-Chervonenkis dimension, J. Combin. Theory 69 (1995), 217-232.
6. G.G. Lorentz, M.V. Golitschek, Yu. Makovoz, Constructive approximation, advanced problems, Springer-Verlag, Berlin, 1996.
7. V. Maiorov and J. Ratsaby, Generalization of the PAC-model for learning with partial information, Proc. 3rd European Conf. on Computational Learning Theory, EuroCOLT 97, Springer, Berlin, 1997.
8. - The degree of approximation of sets in Euclidian space using sets with bounded Vapnik-Chervonenkis dimension, Discrete Appl. Math. 88 (1998), 81-93.
9. - On the degree of approximation by manifolds of finite pseudo-dimension, Constr. Approx. 15 (1999), 291-300.
10. A.A. Pekarskii, Relations between best rational and piecewise-polynomial approximations, Vestsī Akad. Navuk BSSR Ser. Fīz.-Mat. Navuk 5 (1986), 36-39.
11. P.P. Petrushev, Relations between rational and spline approximation in L_{p}, J. Approx. Theory 50 (1987), 141-159.
12. D. Pollard, Convergence of stochastic processes Springer Series in Statistics, Springer-Verlag, New York, 1984.

Department of Mathematics, University of Alberta, Edmonton, Alberta
T6G 2G1, Canada
E-mail address: zditzian@interbaun.com
Institute of Mathematics, National Academy of Sciences of Ukraine, Kyiv 01601, Ukraine
E-mail address: vikono@imath.kiev.ua
School of Mathematical Sciences, Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
E-mail address: leviatan@math.tau.ac.il

[^0]: 1991 AMS Mathematics Subject Classification. Primary 41A46.
 Key words and phrases. n-widths in $L_{q}, 0<q<1$, Sobolev type classes.
 Received by the editors on March 3, 2003, and in revised form on September 17, 2003.

