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SHARP INEQUALITIES FOR
THE HURWITZ ZETA FUNCTION

HORST ALZER

ABSTRACT. We prove the following double-inequality for
the Hurwitz zeta function ζ(p, a) =

∑∞
ν=0

(ν + a)−p.

Let m and n be integers with m > n ≥ 0 and let a be
a positive real number. Then we have for all real numbers
p > 1:

m + 1 + a

n + 1 + a
<

(
ζ(p, a) −

∑n

ν=0
(ν + a)−p

ζ(p, a) −
∑m

ν=0
(ν + a)−p

)1/(p−1)

< exp

( m∑
ν=n+1

1

ν + a

)
.

Both bounds are best possible.

Our theorem extends and refines a result of Bennett [2].

1. Introduction. In order to prove a sharp lower bound for the
Cesàro matrix, Bennett [2] applied the following inequality for the
“tail” of the series representation of the classical Riemann zeta function:

fp(n) < fp(n + 1), n = 1, 2, . . . ,

where

fp(n) = np−1
∞∑

ν=n+1

ν−p, p > 1.

The monotonicity of fp provides an interesting upper bound for the

ratio
(∑∞

ν=n+1 ν−p/
∑∞

ν=m+1 ν−p
)1/(p−1)

, which does not depend on
p:

(1.1)
(

ζ(p) − ∑n
ν=1 ν−p

ζ(p) − ∑m
ν=1 ν−p

)1/(p−1)

<
m

n
, p > 1; m > n ≥ 1.
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Another application of an inequality for ζ(p)−∑n
ν=1 ν−p was given by

Cochran and Lee [3]. They established an upper bound for
∑∞

ν=n+1 ν−p

and used their result to prove a striking companion of the well-known
Carleman inequality for infinite series.

The function

ζ(p, a) =
∞∑

ν=0

(ν + a)−p,

introduced by Hurwitz in 1882 for complex numbers p with �p > 1
and real numbers a > 0, is known in the literature as the Hurwitz
zeta function. The function ζ(p, a) plays an important role in Analytic
Number Theory. Its main properties can be found, for instance, in the
monograph [1] and in the recently published article [5]. A probabilistic
interpretation of the Hurwitz zeta function is given in [4].

In view of (1.1) it is natural to look for a corresponding inequality
for ζ(p, a). More precisely, we ask: let

(1.2) Qn,m(p, a) =
(

ζ(p, a) − ∑n
ν=0(ν + a)−p

ζ(p, a) − ∑m
ν=0(ν + a)−p

)1/(p−1)

,

where m and n are fixed integers with m > n ≥ 0 and a > 0 is a fixed
real number. What is the greatest number αn,m(a) and what is the
smallest number βn,m(a) such that the double-inequality

αn,m(a) ≤ Qn,m(p, a) ≤ βn,m(a)

holds for all p > 1? It is the aim of this note to answer this question.
In particular, we show that the upper bound in (1.1) can be improved.

2. Main result. The following theorem provides an extension and
a refinement of Bennett’s inequality (1.1).

Theorem. Let m and n be integers with m > n ≥ 0 and let a be a
positive real number. Then we have for all real numbers p > 1:
(2.1)

m + 1 + a

n + 1 + a
<

(
ζ(p, a) − ∑n

ν=0(ν + a)−p

ζ(p, a) − ∑m
ν=0(ν + a)−p

)1/(p−1)

< exp
( m∑

ν=n+1

1
ν + a

)
.

Both bounds are best possible.
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Proof. First we establish the lefthand side of (2.1) for m = n + 1. A
simple calculation yields

(2.2)
∞∑

ν=n+1

(ν + a)−p
/ ∞∑

ν=n+2

(ν + a)−p −
(n + 2 + a

n + 1 + a

)p−1

= (n + 1 + a)1−p
( ∞∑

ν=n+2

(ν + a)−p
)−1

× [
(n+2+a)p−1 − (n+1+a)p−1

]
Sn(p, a),

where

(2.3) Sn(p, a)

= (n+1+a)−1
[
(n+2+a)p−1 − (n+1+a)p−1

]−1−
∞∑

ν=n+2

(ν+a)−p.

Let x = n + 1 + a > 1. Then we have

(2.4) x
[
(x+2)p−1 − (x+1)p−1

](
Sn(p, a) − Sn+1(p, a)

)

=
(x+2)p−1 − (x+1)p−1

(x+1)p−1 − xp−1
− x(x+2)p−1

(x+1)p
.

We consider two cases.

Case 1. 1 < p < 2. Cauchy’s mean value theorem gives

(2.5)
(x+2)p−1 − (x+1)p−1

(x+1)p−1 − xp−1
>

(x+1
x

)p−2

=
(x2+2x+1)p−1 − (x2+2x)p−1

xp−2(x+1)p
+

x(x+2)p−1

(x+1)p
.

Case 2. p ≥ 2. Then we get

(2.6)
(x + 2)p−1 − (x + 1)p−1

(x + 1)p−1 − xp−1
≥

(x + 2
x + 1

)p−2

=
(x + 2)p−2

(x + 1)p
+

x(x + 2)p−1

(x + 1)p
.
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From (2.4), (2.5), and (2.6) we conclude that n �→ Sn(p, a), n =
0, 1, 2, . . . , is strictly decreasing. Since, by the mean value theorem,

x
[
(x+1)p−1 − xp−1

]
≥ (p−1) min

(
xp−1,

x

x+1
(x+1)p−1

)
, x > 0,

we obtain from (2.3) that

lim
n→∞ Sn(p, a) = 0.

Thus, we get

(2.7) Sn(p, a) > 0 for n = 0, 1, 2, . . . .

The validity of the lefthand inequality of (2.1) with m = n + 1 follows
from (2.2) and (2.7).

Now, we prove the righthand side of (2.1) for m = n + 1. We have

(2.8) exp
p − 1

n+1+a
−

∞∑
ν=n+1

(ν + a)−p
/ ∞∑

ν=n+2

(ν + a)−p

=
(
exp

p − 1
n+1+a

− 1
)( ∞∑

ν=n+2

(ν + a)−p
)−1

Tn(p, a),

where

(2.9) Tn(p, a) =
∞∑

ν=n+2

(ν + a)−p − (n+1+a)−p
(
exp

p − 1
n+1+a

− 1
)−1

.

Let ∆(x) = x/(ex − 1). Since

(n+1+a)−p
(
exp

p − 1
n+1+a

−1
)−1

= ∆
( p − 1

n+1+a

) 1
(p−1)(n+1+a)p−1

,

we obtain

lim
n→∞(n+1+a)−p

(
exp

p − 1
n+1+a

− 1
)−1

= 0,

so that (2.9) implies

(2.10) lim
n→∞Tn(p, a) = 0.
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Next, we show that Tn(p, a) is strictly decreasing with respect to n.
Let x = n + 1 + a > 1 and let L(A, B) = (A − B)/(log A − log B) be
the logarithmic mean of

A = xp exp
( p − 1

x + 1

)(
exp

p − 1
x

− 1
)

and

B = (x + 1)p
(
exp

p − 1
x + 1

− 1
)
.

Then we get

(2.11)
AB

L(A, B)

(
exp

1 − p

x + 1

)(
Tn(p, a) − Tn+1(p, a)

)

=
p − 1
x + 1

− p log
x+1

x
+ log

(
exp

p−1
x

− 1
)

− log
(
exp

p − 1
x + 1

− 1
)

= u(p), say.

Differentiation gives

(2.12) (p − 1)2u′′(p) = v
( p − 1

x + 1

)
− v

(p − 1
x

)
,

where

v(t) =
(

t/2
sinh(t/2)

)2

.

Since v is strictly decreasing on (0,∞), we conclude from (2.12) that
u′′(p) > 0 for p > 1. This implies

(2.13) u′(p) > u′(1+) =
2x+1

2x(x+1)
− log

x+1
x

= w(x), say.

Here, we have used l’Hôpital’s rule twice in evaluating u′(1+). A short
computation yields w′(x)=−[x(x+1)]−2/2 and w(x)> limt→∞ w(t)=0.
Hence, we get from (2.13) that u(p) > u(1+) = 0. Thus, (2.11) implies
that n �→ Tn(p, a), n = 0, 1, 2 . . . , is strictly decreasing, so that (2.10)
yields

(2.14) Tn(p, a) > 0 for n = 0, 1, 2, . . . .
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From (2.8) and (2.14) we conclude that the righthand inequality of
(2.1) holds with m = n + 1.

Now, we prove that (2.1) is valid for m = n + k with k ≥ 1. Let
Qn,m(p, a) be defined as in (1.2). Since

(2.15) Qn,n+k(p, a) =
k∏

j=1

Qn+j−1,n+j(p, a),

we conclude from (2.1) with m = n + 1:

n+k+1+a

n+1+a
=

k∏
j=1

n+j+1+a

n+j+a
< Qn,n+k(p, a)

<
k∏

j=1

exp
1

n+j+a
= exp

( n+k∑
ν=n+1

1
ν + a

)
.

It remains to show that the bounds given in (2.1) are sharp. We
prove

lim
p→1

Qn,n+1(p, a) = exp
1

n+1+a
(2.16)

and

lim
p→∞ Qn,n+1(p, a) =

n+2+a

n+1+a
,(2.17)

so that (2.15), (2.16), and (2.17) imply

lim
p→1

Qn,n+k(p, a) = exp
n+k∑

ν=n+1

1
ν + a

(2.18)

and

lim
p→∞ Qn,n+k(p, a) =

n+k+1+a

n+1+a
.(2.19)

The limit relations (2.18) and (2.19) reveal that both bounds in (2.1)
are best possible.
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To prove (2.16) we use the fact that the function p �→ ζ(p, a) is
holomorphic in C−{1} with a simple pole at p = 1 with residue 1, see
[1, p. 255]. This leads to the representations

(p−1) ζ (p, a) = 1 +
∞∑

ν=0

γν(a)(p − 1)ν+1(2.20)

and

(2.21) (p−1)2
∂ ζ (p, a)

∂p
= −(p−1) ζ (p, a)

+
∞∑

ν=0

γν(a)(ν + 1)(p − 1)ν+1.

We have

log Qn,n+1(p, a) =
− log (1 − Rn(p, a))

p − 1
,

where

Rn(p, a) = (n+1+a)−p
[
ζ (p, a) −

n∑
ν=0

(ν + a)−p
]−1

.

Using l’Hôpital’s rule and Rn(p, a)|p=1 = 0, we obtain

(2.22) lim
p→1

log Qn,n+1(p, a) =
∂Rn(p, a)

∂p

∣∣∣
p=1

.

Partial differentiation yields

(2.23) (n+1+a)p ∂Rn(p, a)
∂p

= −(n+1+a)p
(
log (n+1+a)

)
Rn(p, a)

− (p−1)2(∂/∂p) ζ (p, a) + (p−1)2
∑n

ν=0

(
(ν+a)−p log (ν+a)

)
[
(p−1) ζ (p, a) − (p−1)

∑n
ν=0(ν+a)−p

]2 .

From (2.20), (2.21), and (2.23) we get

∂Rn(p, a)
∂p

∣∣∣
p=1

=
1

n+1+a
,
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so that (2.22) implies (2.16).

Finally, we prove (2.17). Applying (2.3) and (2.7) we obtain

0 < (n+1+a)p
[
ζ (p, a) −

n∑
ν=0

(ν + a)−p
]
− 1 <

[(n+2+a

n+1+a

)p−1

− 1
]−1

.

This leads to

(2.24) lim
p→∞(n+1+a)p

[
ζ (p, a) −

n∑
ν=0

(ν + a)−p
]

= 1.

Using (2.24) and

Qn,n+1(p, a) =

⎛
⎝ (n+1+a)p

[
ζ (p, a) − ∑n

ν=0(ν + a)−p
]

(n+2+a)p
[
ζ (p, a) − ∑n+1

ν=0(ν + a)−p
]
⎞
⎠

1/(p−1)

×
(n+2+a

n+1+a

)p/(p−1)

,

we get (2.17). This completes the proof of the Theorem.

Remark. If we set a = 1 in (2.1), then we obtain a double-inequality
for the Riemann zeta function, which sharpens and complements in-
equality (1.1):

Let m and n be integers with m > n ≥ 1. Then we have for all real
numbers p > 1:

m + 1
n + 1

<

(
ζ(p) − ∑n

ν=1 ν−p

ζ(p) − ∑m
ν=1 ν−p

)1/(p−1)

< exp
( m∑

ν=n+1

1
ν

)
.

Both bounds are best possible.
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