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SUMMABILITY OF SPLICED SEQUENCES

JEFFREY A. OSIKIEWICZ

ABSTRACT. A spliced sequence is formed by combining
all of the terms of two or more convergent sequences, in their
original order, into a new “spliced” sequence. We investigate
which nonnegative regular matrices will sum spliced sequences
and to what value, and provide examples illustrating these
results.

1. Preliminaries. Let c denote the set of convergent sequences and
c0 the set of null sequences. We write e := {1, 1, 1, . . . } for the sequence
all of whose terms are 1. If x := {xn}∞n=1 is a complex number sequence
and A := (an,k) is a summability matrix, then Ax is the sequence
whose nth term is given by (Ax)n :=

∑∞
k=1 an,kxk. The matrix A

preserves zero limits if x ∈ c0 implies Ax ∈ c0, is regular if limn xn = L
implies limn(Ax)n = L, and is t-multiplicative, t ∈ R, if limn x = L
implies limn(Ax)n = tL. The well-known Silverman-Töeplitz theorem
characterizes regular matrices, see [1].

Theorem 1.1 (Silverman, Töeplitz). The matrix A := (an,k) is
regular if and only if it satisfies the following three conditions:

(Sp0) limn an,k = 0 for each k = 1, 2, 3, . . . ;

(Zs1) limn

∑∞
k=1 an,k = 1;

(Zn) supn

∑∞
k=1 |an,k| < ∞.

It can be shown, see [1], that A preserves zero limits if and only if it
satisfies conditions (Sp0) and (Zn), and is t-multiplicative if and only
if it preserves zero limits and satisfies

(Zs) limn

∑∞
k=1 an,k = t.

Let A be a nonnegative regular matrix and E a subset of N. Following
Freedman and Sember [3], we define the A-density of E, denoted δA(E),
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by

δA(E) := lim
n→∞

∑
k∈E

an,k = lim
n→∞

∞∑
k=1

an,kχE(k) = lim
n→∞(A · χE)n,

provided this limit exists. (Here, χE denotes the characteristic sequence
of the set E.) If A is the Cesàro matrix C1, then the C1-density of E is
called the natural density of E and is denoted δ(E). If E is considered
as the range of a strictly increasing sequence of natural numbers, say
E := {ν(j)}∞j=1, then an elementary result concerning natural density
is that

(1.1) δ(E) = lim
j→∞

j

ν(j)
,

provided this limit exists, see [6].

Let A := (an,k) be an infinite matrix and E := {ν(j)} an infinite
subset of N. Define the column submatrix A[E] := (dn,k), where
dn,k = an,ν(k). Then if x is any complex number sequence,

(
A[E]x

)
n

=
∞∑

k=1

dn,kxk =
∞∑

k=1

an,ν(k)xk.

Theorem 1.2. Let A be a nonnegative regular matrix and E :=
{ν(j)} an infinite subset of N. If δA(E) exists, then A[E] is δA(E)-
multiplicative. Conversely, if A[E] is t-multiplicative, then δA(E) exists
and equals t.

Proof. Since A[E] is a column submatrix of A, A[E] satisfies conditions
(Sp0) and (Zn) of Theorem 1.1. Also note that, for any n,

(
A[E]e

)
n

=
∞∑

k=1

an,ν(k) =
∑
k∈E

an,k.

Thus, if δA(E) exists, then A[E] is δA(E)-multiplicative. Conversely, if
A[E] is t-multiplicative, then

t = lim
n→∞

(
A[E]e

)
n

= lim
n→∞

∑
k∈E

an,k = δA(E).
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2. Finite splices.

Definition 2.1. Let N be a fixed natural number. An N -
partition of N consists of N infinite sets E1 := {ν1(j)}∞j=1, E2 :=
{ν2(j)}∞j=1, . . . ,EN := {νN (j)}∞j=1 such that N =

⋃N
i=1 Ei and Ei ∩

Ek = ∅ for i �= k.

Definition 2.2. Let {E1, . . . , EN} be a fixed N -partition of N. For
i = 1, . . . , N , let γ(i) := (γ(i)

j )∞j=1 be a convergent complex sequence

with limj γ
(i)
j = Γ(i). Then the N -splice of the sequences γ(1), . . . , γ(N),

over the N -partition {E1, . . . , EN} is the sequence x defined as follows:
if n ∈ Ei, then n = νi(j) for some j. So let xn = xνi(j) := γ

(i)
j .

Example 2.3. Consider the 3-partition

E1 := {1, 3, 5, 7, 9, 11, 13, . . . },
E2 := {2, 6, 10, 14, 18, 22, 26, . . . },
E3 := {4, 8, 12, 16, 20, 24, 28, . . . },

and the convergent sequences a := {aj}, b := {bj}, c := {cj}. Then the
3-splice of the sequences a, b, c, over the 3-partition {E1, E2, E3} is the
sequence

x := {a1, b1, a2, c1, a3, b2, a4, c2, a5, b3, a6, c3, a7, b4, a8, c4, a9, . . . } .

Note that an N -splice is necessarily a bounded sequence with at most
N limit points (the values of Γ(i) need not be unique). Conversely, if x
is a bounded sequence with N distinct limit points Γ(1), . . . , Γ(N), then
it is clear that there exists an N -partition {E1, . . . , EN} such that x
is an N -splice over {E1, . . . , EN}. Of course, this N -partition is not
unique.

The formal definition of a spliced sequence is new to the literature,
but the idea has appeared in earlier work. In [7] and [8], Rhoades
examined matrix summability of splices over N -partitions of the form
Ei := {Nj − (N − i)}∞j=1, i = 1, . . . , N . Also in [2] and [4], Cooke,
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Barnett and Henstock investigated to what value a regular matrix will
sum a bounded divergent sequence. Their results have a natural tie-in
to matrix summability of spliced sequences.

Definition 2.4. Let A be a regular matrix and consider a fixed N -
partition {E1, . . . , EN}. Then A is said to have the splicing property
over {E1, . . . , EN} provided that A sums every N -splice over the N -
partition {E1, . . . , EN}.

Theorem 2.5. Let A be a nonnegative regular matrix and {E1, . . . ,
EN} a fixed N-partition of N. If δA(Ei) exists for each i = 1, . . . , N ,
then A has the splicing property over {E1, . . . , EN} with

lim
n→∞ (Ax)n =

N∑
i=1

δA(Ei)Γ(i),

for every N-splice x over {E1, . . . , EN}.

Proof. Assume that δA(Ei) exists for each i = 1, . . . , N , and let x be
an N -splice over the N -partition {E1, . . . , EN}. Then, for a given n,

(Ax)n =
∞∑

k=1

an,kxk =
N∑

i=1

( ∑
k∈Ei

an,kxk

)

=
N∑

i=1

( ∞∑
j=1

anνi(j)xνi(j)

)

=
N∑

i=1

( ∞∑
j=1

anνi(j)γ
(i)
j

)

=
N∑

i=1

(
A[Ei]γ(i)

)
n

.
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By Theorem 1.2, A[Ei] is δA(Ei)-multiplicative. Hence,

lim
n→∞(Ax)n = lim

n→∞

N∑
i=1

(
A[Ei]γ(i)

)
n

=
N∑

i=1

lim
n→∞

(
A[Ei]γ(i)

)
n

=
N∑

i=1

δA(Ei)Γ(i).

Thus, x is A-summable to
∑N

i=1 δA(Ei)Γ(i) and therefore A has the
splicing property over {E1, . . . , EN}.

We note that the hypotheses in Theorem 2.5 can be weakened to
require only that A be regular and A[Ei] multiplicative for each i =
1, . . . , N . However, the requirement that A be nonnegative enables us
to utilize the concept of A-density, which can be advantageous. The
examples in Section 5 will illustrate this advantage. To see that the
nonnegativity in Theorem 2.5 can be removed, we note that in [2],
Cooke and Barnett proved that if x is a bounded sequence with N
limit points l1, l2, . . . , lN , then a sufficient condition that x should
be summable by a regular matrix A is that A should sum each of N
particular sequences of 0’s and 1’s suitably constructed from the given
sequence x. While not using the idea of a spliced sequence per se, their
proof of this result amounts to finding an N -partition {E1, . . . , EN}
such that x can be written as an N -splice over this partition. The
requirement that A sums N particular sequences of 0’s and 1’s will
then imply that A[Ei] is multiplicative for i = 1, . . . , N , and their
result follows.

Recall that a matrix A is strongly regular if it sums every almost
convergent sequence. That is, A is strongly regular if

lim
n→∞

1
n

m+n∑
i=m+1

xi = L, uniformly in m,

implies limn(Ax)n = L, see [1]. In [8, Theorem 1], Rhoades proved
the following theorem concerning summability of N -splices by matrices
that are strongly regular.

Theorem 2.6 (Rhoades). For a given N , consider the N-partition
Ei := {Nj − (N − i)}∞j=1, i = 1, . . . , N . Then any strongly regular
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matrix A has the splicing property over {E1, . . . , EN} with

lim
n→∞(Ax)n =

1
N

N∑
i=1

Γ(i),

for every N-splice x over {E1, . . . , EN}.

The next theorem shows that a regular matrix A cannot have the
splicing property over every N -partition, where N ≥ 2.

Theorem 2.7. Let A be a regular matrix. Then for any N ≥ 2,
there exists an N-partition {E1, . . . , EN} such that A does not have
the splicing property over {E1, . . . , EN}.

Proof. By a theorem of Steinhaus [10], there exists a sequence x
consisting of 0’s and 1’s that is not A-summable. So, for a fixed N ≥ 2,
consider the N -partition {E1, . . . , EN} where E1 := {n : xn = 1 }
and E2, . . . , EN , are constructed so that they are disjoint, infinite,
and ∪N

i=2Ei = N \ E1. Then x can be treated as an N -splice of the
constant sequences γ(1) := 1 and γ(i) := 0 for i = 2, . . . , N , over the N -
partition {E1, . . . , EN}. Hence, A does not have the splicing property
over {E1, . . . , EN}.

It is now natural to ask the following question: if A is a regular
matrix that sums an N -splice over an N -partition {E1, . . . , EN}, with
Γ(i) all distinct, will A sum all N -splices over {E1, . . . , EN}? That
is, will A necessarily have the splicing property over {E1, . . . , EN}?
The following results address this question. We begin, however, with a
theorem regarding matrices that preserve zero limits.

Theorem 2.8. Let A be a matrix that preserves zero limits. If
there exists a sequence γ ∈ c \ c0 that is A-summable to L, then A is
L/Γ-multiplicative, where limn γn = Γ �= 0.

Proof. Since A preserves zero limits, it satisfies conditions (Sp0) and
(Zn) of Theorem 1.1. Hence we need only show that limn

∑
k an,k =

L/Γ. Since limn γn = Γ �= 0, we may write γn := Γen + εn, where
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e := {1, 1, 1, . . . } and limn εn = 0. Then, for a given n,

(Aγ)n =
∞∑

k=1

an,kγk =
∞∑

k=1

an,k (Γek + εk) = Γ
∞∑

k=1

an,kek +
∞∑

k=1

an,kεk.

Since γ is A-summable to L and A preserves zero limits, we have

L = lim
n→∞ (Aγ)n = Γ lim

n→∞

∞∑
k=1

an,k + lim
n→∞

∞∑
k=1

an,kεk

= Γ lim
n→∞

∞∑
k=1

an,k + 0.

That is, limn

∑
k an,k = L/Γ and hence A is L/Γ-multiplicative.

Theorem 2.9. Let x be a 2-splice of the sequences γ(1) and γ(2) over
the 2-partition {E1, E2}, with Γ(1) �= Γ(2). If A is a nonnegative regular
matrix that sums x to the value L, then both δA(E1) and δA(E2) exist
with

δA(E1) =
Γ(2) − L

Γ(2) − Γ(1)
and δA(E2) =

L − Γ(1)

Γ(2) − Γ(1)
.

Proof. Let x be a 2-splice of the sequences γ(1) and γ(2) over the
2-partition {E1, E2}, with Γ(1) �= Γ(2), and assume x is A-summable
to L. Since A[E1] and A[E2] are column submatrices of A, they satisfy
conditions (Sp0) and (Zn) of Theorem 1.1. Hence, A[E1] and A[E2]

preserve zero limits. We write E1 := {ν1(j)} and E2 := {ν2(j)}. Then,
for a given n,

(
A
(
x−Γ(1)

))
n

=
∞∑

k=1

an,k

(
xk − Γ(1)

)

=
∞∑

j=1

an,ν1(j)

(
γ

(1)
j − Γ(1)

)
+

∞∑
j=1

an,ν2(j)

(
γ

(2)
j − Γ(1)

)

=
(
A[E1]

(
γ(1) − Γ(1)

))
n

+
(
A[E2]

(
γ(2) − Γ(1)

))
n

.
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Since γ(1) − Γ(1) ∈ c0, we have(
A[E2]

(
γ(2) − Γ(1)

))
n

=
(
A
(
x − Γ(1)

))
n
−
(
A[E1]

(
γ(1) − Γ(1)

))
n

= L − Γ(1) + o(1).

Hence, γ(2) − Γ(1) is A[E2]-summable to L − Γ(1). Since γ(2) − Γ(1) ∈
c \ c0, Theorem 2.8 implies that A[E2] is t-multiplicative, where t =
(L − Γ(1))/(Γ(2) − Γ(1)). By Theorem 1.2, δA(E2) exists with

δA(E2) =
L − Γ(1)

Γ(2) − Γ(1)
.

Lastly, it is clear that

δA(E1) = 1 − δA(E2) = 1 − L − Γ(1)

Γ(2) − Γ(1)
=

Γ(2) − L

Γ(2) − Γ(1)
.

We note that, as in Theorem 2.5, the requirement that A be nonneg-
ative in Theorem 2.9 enables us to make use of A-density. Accordingly,
with the appropriate modifications, this requirement may be dropped
yielding the following corollary.

Corollary 2.10. Let x be a 2-splice of the sequences γ(1) and γ(2)

over the 2-partition {E1, E2}, with Γ(1) �= Γ(2). If A is a regular matrix
that sums x, then A has the splicing property over {E1, E2}.

One may now conjecture that, for N ≥ 3, if a regular matrix A sums
an N -splice over an N -partition {E1, . . . , EN}, with Γ(i) all distinct,
then A will sum all N -splices over {E1, . . . , EN} (and hence have the
splicing property over {E1, . . . , EN}). Unfortunately this conjecture is
shown to be false in the following example.

Example 2.11. We construct a 3-splice x over a 3-partition {E1, E2,
E3}, with Γ(1), Γ(2), Γ(3) all distinct, such that x is C1-summable to 0,
but δ(E1), δ(E2), and δ(E3) do not exist.

Let E1 := {ν1(n)} be an infinite subset of N such that ν1(n) + 1 <
ν1(n + 1) and δ(E1) does not exist. (We note that it is not difficult
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to construct a set E1 having these properties.) Define E2 := {ν2(n)}
by ν2(n) := ν1(n) + 1. Then E2 is infinite, δ(E2) does not exist, and
E1 ∩E2 = ∅. Lastly, let E3 := {ν3(n)} = N \ (E1 ∪ E2) and note that
E3 is infinite and does not have natural density.

Define a 3-splice x over {E1, E2, E3} by γ
(1)
j := 1, γ

(2)
j := −1, and

γ
(3)
j := 0. We claim that x is C1-summable to 0. Observe that, for a

given n,

|(C1x)n| =

∣∣∣∣∣∣∣∣
1
n

∑
k∈E1

1≤k≤n

xk +
1
n

∑
k∈E2

1≤k≤n

xk +
1
n

∑
k∈E3

1≤k≤n

xk

∣∣∣∣∣∣∣∣
=

1
n

∣∣∣∣∣
∑

{j:ν1(j)≤n}

γ
(1)
j +

∑
{j:ν2(j)≤n}

γ
(2)
j +

∑
{j:ν3(j)≤n}

γ
(3)
j

∣∣∣∣∣
=

1
n

∣∣∣∣∣
∑

{j:ν1(j)≤n}

1 +
∑

{j:ν2(j)≤n}

(−1) +
∑

{j:ν3(j)≤n}

0

∣∣∣∣∣
=

1
n

∣∣∣∣∣
∑

{j:ν1(j)≤n}

1 −
∑

{j:ν1(j)+1≤n}

1

∣∣∣∣∣
=

1
n

∣∣∣∣∣
∑

{j:ν1(j)≤n}

1 −
∑

{j:ν1(j)≤n−1}

1

∣∣∣∣∣
≤ 1

n
.

Thus x is C1-summable to 0, but δ(E1), δ(E2), and δ(E3) do not exist.

3. Infinite splices.

Definition 3.1. An ∞-partition of N consists of an infinite number
of infinite sets Ei := {νi(j)}∞j=1, i ∈ N, such that N =

⋃∞
i=1 Ei and

Ei ∩ Ek = ∅ for i �= k.
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Definition 3.2. Let {Ei} be a fixed ∞-partition of N. For i ∈ N, let
γ(i) := (γ(i)

j )∞j=1 be a convergent complex sequence with limj γ
(i)
j = Γ(i).

Then the ∞-splice of the sequences γ(i), i ∈ N, over the ∞-partition
{Ei} is the sequence x defined as follows: if n ∈ Ei, then n = νi(j) for
some j. So let xn = xνi(j) := γ

(i)
j .

Note that an ∞-splice is not necessarily bounded.

Definition 3.3. Let A be a regular matrix and consider a fixed ∞-
partition {Ei}. Then A is said to have the splicing property over {Ei}
provided that A sums every bounded ∞-splice over the ∞-partition
{Ei}.

Theorem 3.4. Let A be a nonnegative regular matrix and {Ei} an
∞-partition of N. If δA(Ei) exists for every i and

∑
i δA(Ei) = 1, then

A has the splicing property over {Ei} with

lim
n→∞(Ax)n =

∞∑
i=1

δA(Ei)Γ(i),

for every bounded ∞-splice x over {Ei}.

Proof. Assume that δA(Ei) exists for every i,
∑

i δA(Ei) = 1, and let
x be a bounded ∞-splice over {Ei}. Then, for a given n,

(Ax)n =
∞∑

k=1

an,kxk =
∞∑

i=1

( ∑
k∈Ei

an,kxk

)

=
∞∑

i=1

( ∞∑
j=1

anνi(j)xνi(j)

)

=
∞∑

i=1

( ∞∑
j=1

anνi(j)γ
(i)
j

)

=
∞∑

i=1

(
A[Ei]γ(i)

)
n

.
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For a fixed n, define fn : N → C and gn : N → C by

fn(i) :=
(
A[Ei]γ(i)

)
n

and gn(i) := M
(
A[Ei]e

)
n

,

where M := ‖x‖∞. Since δA(Ei) exists for every i, by Theorem 1.2,
A[Ei] is δA(Ei)-multiplicative. Thus,

f(i) := lim
n→∞ fn(i) = lim

n→∞

(
A[Ei]γ(i)

)
n

= δA(Ei)Γ(i),

and
g(i) := lim

n→∞ gn(i) = lim
n→∞M

(
A[Ei]e

)
n

= MδA(Ei).

If µ represents counting measure, we have

lim
n→∞

∫
N

gn(i) dµ = lim
n→∞

∞∑
i=1

M
(
A[Ei]e

)
n

= M lim
n→∞

∞∑
i=1

(∑
k∈Ei

an,k

)

= M lim
n→∞

∞∑
k=1

an,k.

Since A is regular and
∑

i δA(Ei) = 1,

lim
n→∞

∫
N

gn(i) dµ = M lim
n→∞

∞∑
k=1

an,k = M · 1 = M

∞∑
i=1

δA(Ei)

=
∫
N

g(i) dµ.

That is,

(3.1) lim
n→∞

∫
N

gn(i) dµ =
∫
N

lim
n→∞ gn(i) dµ.

Also, for every n,

(3.2)

|fn(i)| =
∣∣∣(A[Ei]γ(i)

)
n

∣∣∣ =

∣∣∣∣∣∣
∞∑

j=1

anνi(j)γ
(i)
j

∣∣∣∣∣∣
≤ M

∞∑
j=1

anνi(j) = M
(
A[Ei]e

)
n

= gn(i).
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Thus, (3.1) and (3.2) enable us to invoke the Lebesgue Dominated
Convergence theorem to yield

lim
n→∞ (Ax)n = lim

n→∞

∞∑
i=1

(
A[Ei]γ(i)

)
n

=
∞∑

i=1

lim
n→∞

(
A[Ei]γ(i)

)
n

=
∞∑

i=1

δA(Ei)Γ(i).

Hence x is A-summable to
∑

i δA(Ei)Γ(i) and consequently A has the
splicing property over {Ei}.

We note that Henstock [2, Theorem I] has proved the following
theorem concerning matrix summability of bounded sequences.

Theorem 3.5 (Henstock). Let A := (an,k) be a real regular matrix,
and let {zk} be a real sequence such that |zk| < B for every k. Suppose
that {x(k)}, k = 1, 2, . . . , is the subsequence of the positive integers
such that zx(k) ≤ x, and let gn(x) :=

∑∞
k=1 an,x(k). If gn(x) tends to a

limit g(x) as n → ∞ for all x in (−B, B), then

lim
n→∞

∞∑
k=1

an,kzk =
∫ B

−B

x dg(x).

Cooke and Barnett’s result concerning matrix summability of se-
quences with a finite number of limit points is a corollary of this theo-
rem.

While Henstock’s result does yield the limiting value of the A-
transform of a bounded sequence, it requires the evaluation of a possibly
difficult Riemann-Stieltjes integral. In contrast, Theorem 3.4 gives the
limiting value of the A-transform of a bounded ∞-splice in terms of the
sum of the A-density of the sets {Ei}, which can be beneficial.

Thus, a nonnegative regular matrix A will have the splicing property
over {Ei} provided δA(Ei) exists for every i and

∑
i δA(Ei) = 1.

We next investigate the existence of those matrices that have these
properties. Let s := {sn} be a given sequence. Then for each
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point y in the interval (0, 1], associate the sequence {snαn(y)}∞n=1,
where αn(y) is the nth digit in the nonterminating binary expansion
0.α1α2α3 · · ·αn · · · of y. In [5, Theorem 5.7], Hill proved the following
result.

Theorem 3.6 (Hill). Let A := (an,k) be any matrix method, and let
{sn} be A-summable to s �= 0. If

∞∑
k=1

a2
n,ks2

k = o

(
1

log n

)
,

then almost all of the sequences {snαn(y)} are A-summable to s/2.

The next theorem gives a sufficient condition guaranteeing the exis-
tence of an ∞-partition {Ei} such that δA(Ei) exists for every i and∑

i δA(Ei) = 1.

Theorem 3.7. Let A be a nonnegative regular matrix such that

(3.3)
∞∑

k=1

a2
n,k = o

(
1

log n

)
.

Then there exists an ∞-partition {Ei} such that δA(Ei) exists for every
i and

∑
i δA(Ei) = 1.

Proof. Let A be a nonnegative regular matrix satisfying (3.3). Since
e := {1, 1, 1, . . . } is A-summable to 1 and

∑
k a2

n,ke2
k = o (1/log n),

by Theorem 3.6, almost all sequences of 0’s and 1’s are A-summable
to 1/2; choose one, say χ1. Then the sequence χ1 determines a set
E1 ⊂ N where E1 := {m : χ1(m) = 1 }. Since A is regular and χ1 is
A-summable to 1/2, E1 and its complement E1 must be infinite. We
write E1 := {ν1(j)} and E1 := {ν1(j)}. Then

δA(E1) = lim
n→∞

∑
k∈E1

an,k = lim
n→∞

∞∑
k=1

an,kχ1(k) =
1
2
.

Now consider the matrix A[E1]. It is clear that e is A[E1]-summable
to 1/2 and

∑
k a2

n,ν1(k)e
2
k = o (1/log n). Hence Theorem 3.6 implies



990 J.A. OSIKIEWICZ

the existence of a sequence χ2 of 0’s and 1’s such that χ2 is A[E1]-
summable to (1/2)/2 = 1/4. Then χ2 determines a set E2 ⊂ E1 where
E2 := { ν1(j) : χ2(j) = 1 }. Since A[E1] is 1/2-multiplicative and χ2

is A[E1]-summable to 1/4, E2 and its complement E2 must be infinite.
Also note that E1 ∩ E2 = ∅ and

δA(E2) = lim
n→∞

∑
k∈E2

an,k = lim
n→∞

∞∑
j=1

an,ν1(j)
χ2(j) =

1
4
.

By induction, for a given i, we have the existence of a set Ei ⊂ N such
that Ei is infinite, Ei ∩ Ek = ∅ for all k < i, and δA(Ei) exists with
δA(Ei) = 1/2i. Thus,

∞∑
i=1

δA(Ei) =
∞∑

i=1

1
2i

= 1.

Now consider the set E0 := N \⋃∞
i=1 Ei. We claim that δA(E0) = 0.

Note that

0 ≤ lim sup
n→∞

∑
k∈E0

an,k = lim sup
n→∞

( ∞∑
k=1

an,k −
∑

k �∈E0

an,k

)

= 1 − lim inf
n→∞

∑
k �∈E0

an,k

= 1 − lim inf
n→∞

∞∑
i=1

( ∑
k∈Ei

an,k

)

= 1 − lim inf
n→∞

∞∑
i=1

(
A(Ei)e

)
n

.

By Fatou’s lemma,

0 ≤ lim sup
n→∞

∑
k∈E0

an,k ≤ 1 −
∞∑

i=1

lim inf
n→∞

(
A[Ei]e

)
n

= 1 −
∞∑

i=1

δA(Ei) = 1 − 1 = 0.
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Thus,
δA(E0) = lim

n→∞

∑
k∈E0

an,k = 0.

If E0 is infinite, consider the ∞-partition {Ei}∞i=0. If E0 is finite (or
empty), take E∗

1 := E0∪E1, and E∗
1 ∪{Ei}∞i=2 is the partition we seek.

Hence, if a nonnegative regular matrix satisfies (3.3), then it will
determine an ∞-partition {Ei} such that it has the splicing property
over {Ei}. Conversely, the following corollary shows that for a given
∞-partition {Ei}, there exists a nonnegative regular matrix that has
the splicing property over {Ei}. However, we first prove the following
theorem.

Theorem 3.8. Let {Ei} be an ∞-partition of N and {ti} a sequence
of nonnegative numbers such that

∑
i ti = 1. Then there exists a

nonnegative regular matrix A such that, for every i, δA(Ei) exists and
equals ti.

Proof. Let {Ei} be an ∞-partition of N, Ei := {νi(j)}, and {ti} a
sequence of nonnegative numbers such that

∑
i ti = 1. Define a matrix

A := (an,k) by

an,k :=
{

ti if k = νi(n),
0 otherwise.

Observe that, for every k, limn an,k = 0, and, for every n,

∞∑
k=1

an,k =
∞∑

i=1

an,νi(n) =
∞∑

i=1

ti = 1.

Hence A is regular and, for a given i and n,

(A · χEi
)n =

∑
k∈Ei

an,k =
∞∑

j=1

an,νi(j) = an,νi(n) = ti.

Thus,
δA(Ei) = lim

n→∞ (A · χEi
)n = lim

n→∞ ti = ti.
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Corollary 3.9. Let {Ei} be an ∞-partition of N and {ti} a sequence
of nonnegative numbers such that

∑
i ti = 1. Then there exists a

nonnegative regular matrix A such that A has the splicing property over
{Ei} with

lim
n→∞(Ax)n =

∞∑
i=1

tiΓ(i),

for every bounded ∞-splice x over {Ei}.

The proof of this corollary is a direct application of Theorems 3.4
and 3.8.

4. Examples. In this final section, we present examples illustrating
the ideas presented in the previous sections. We limit our examples
to the Cesàro matrix C1 and its associated natural density. We begin
with three examples of ∞-partitions.

Example 4.1. For every i ∈ N, let Ei := {2i−1(2j − 1)}∞j=1. Then
clearly each Ei is infinite, N =

⋃∞
i=1 Ei, and Ei ∩ Ek = ∅ for i �= k.

By (1.1), for every i,

δ(Ei) = lim
j→∞

j

2i−1(2j − 1)
=

1
2i

.

Hence, {Ei} is an ∞-partition of N such that for every i, δ(Ei) = 1/2i,
and

∑
i δ(Ei) = 1.

Example 4.2. Construct an ∞-partition of N as follows: let E1

be the set of squares, E2 the set of squares plus one, and E3 the set
of squares plus two. The set E4 is the set of squares plus three, less
any previously used terms. In general, the set Ei will be the set of
squares plus i − 1, less any previously used terms. That is, for i > 1,
Ei := {j2 + (i− 1)}∞j=[i/2], where [i/2] denotes the greatest integer less
than or equal to i/2. Then for every i, Ei is infinite, N =

⋃∞
i=1 Ei, and

Ei ∩ Ek = ∅ for i �= k. Also, by (1.1),

δ(E1) = lim
j→∞

j

j2
= 0,
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and for i > 1,

δ(Ei) = lim
j→∞

j

j2 + (i − 1)
= 0.

Hence, {Ei} is an ∞-partition of N such that for every i, δ(Ei) = 0.

Example 4.3. Construct an ∞-partition of N as follows: let
E1 := {2j − 1}∞j=1 and E2 := {ν2(j)}∞j=1, where ν2(1) := 2 and
ν2(j) := [2(j − 1)]2 for j = 2, 3, . . . . The sets E3, E4, E5, E6, and E7

are the set of even squares plus 2, 4, 6, 8, and 10, respectively. The set
E8 is the set of even squares plus 12, less any previously used terms. In
general, the set Ei will be the set of even squares plus 2(i−2), less any
previously used terms. That is, for i > 3, Ei := {(2j)2+2(i−2)}∞j=[i/4],
where [i/4] denotes the greatest integer less than or equal to i/4. Then
for every i, Ei is infinite, N =

⋃∞
i=1 Ei, and Ei ∩ Ek = ∅ for i �= k.

Also, by (1.1),

δ(E1) = lim
j→∞

j

2j − 1
=

1
2
,

δ(E2) = lim
j→∞

j

[(2(j − 1))]2
= 0,

and for i ≥ 3,

δ(Ei) = lim
j→∞

j

(2j)2 + 2(i − 2)
= 0.

Hence, {Ei} is an ∞-partition of N such that δ(E1) = 1/2 and
δ(Ei) = 0 for i ≥ 2.

We next present examples illustrating C1-summability of spliced
sequences.

Example 4.4. Find the C1-limit of the sequence x defined by

xn :=

⎧⎨
⎩
√

(2m + 1)/m if n = 3m − 2 for some m = 1, 2, . . . ,
arctanm if n = 3m − 1 for some m = 1, 2, . . . ,
1/m, if n = 3m for some m = 1, 2, . . . .
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That is, find the C1-limit of

x :=

{√
3
1
, arctan(1), 1,

√
5
2
, arctan(2),

1
2
,

√
7
3
, arctan(3),

1
3
, . . .

}
.

Observe that x is a 3-splice of the sequences γ(1), γ(2), γ(3), over the
3-partition {E1, E2, E3}, where

γ
(1)
j :=

√
2j + 1

j
, γ

(2)
j := arctan j, γ

(3)
j :=

1
j
,

and

E1 := {3j − 2}∞j=1, E2 := {3j − 1}∞j=1, and E3 := {3j}∞j=1.

By (1.1), δ(E1) = δ(E2) = δ(E3) = 1/3. Since limj γ
(1)
j =

√
2,

limj γ
(2)
j = π/2, and limj γ

(3)
j = 0, Theorem 2.5 yields

lim
n→∞ (C1x)n =

3∑
i=1

δ(Ei)Γ(i) =
1
3
·
√

2 +
1
3
· π

2
+

1
3
· 0 =

1
3

(√
2 +

π

2

)
.

Alternatively, since C1 is strongly regular, see [1], this limit also follows
from Theorem 2.6.

Example 4.5. Let x be the sequence defined as follows: for
every n ∈ N, there exists a unique pair of integers i, j such that
n = 2i−1(2j − 1). So let xn := 1/i. Show that x is C1-summable
to log 2.

Observe that x is a bounded ∞-splice of the sequences γ(i) over the
∞-partition {Ei} where, for each i, γ(i) is the constant sequence 1/i and
Ei := {2i−1(2j − 1)}∞j=1. From Example 4.1, for every i, δ(Ei) = 1/2i

and
∑

i δ(Ei) = 1. Hence, Theorem 3.4 yields

lim
n→∞ (C1x)n =

∞∑
i=1

δ(Ei)Γ(i) =
∞∑

i=1

1
2i

· 1
i

= log 2.
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That is, x is C1-summable to log 2.

The last example illustrates the use of statistical convergence to
determine the C1-limit of a bounded ∞-splice. Recall that a sequence x
is statistically convergent to L provided that for every ε > 0, δ(Kε) = 0,
where Kε := {k ∈ N : |xk −L| ≥ ε}. We first note the following lemma
proved by Schoenberg [9].

Lemma 4.6 (Schoenberg). If x is a bounded sequence that is
statistically convergent to L, then x is C1-summable to L.

Example 4.7. Consider the ∞-partition given in Example 4.2.
Construct a bounded ∞-splice x over {Ei} by setting, for a given i,
γ

(i)
j := 1/i. That is, if n ∈ Ei, then xn := 1/i. Show that x is C1-

summable to 0.

From Example 4.2, δ(Ei) = 0 for every i. Thus Theorem 3.4 is not
applicable in this case. However, we shall show that x is statistically
convergent to 0, and hence, by Lemma 4.6, x is C1-summable to 0.

Let ε > 0. Then there exists an M ∈ N such that 1/M < ε. If
Kε := { k ∈ N : |xk| ≥ ε }, then

δ (Kε) ≤ δ

({
k ∈ N : |xk| ≥ 1

M

})
= δ

(
M⋃
i=1

Ei

)
=

M∑
i=1

δ (Ei) = 0.

Hence, x is statistically convergent to 0 and therefore by Lemma 4.6,
x is C1-summable to 0.
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