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REFLECTIONS ON SYMMETRIC POLYNOMIALS
AND ARITHMETIC FUNCTIONS

TRUEMAN MACHENRY AND GEANINA TUDOSE

ABSTRACT. In an isomorphic copy of the ring of symmet-
ric polynomials we study some families of polynomials which
are indexed by rational weight vectors. These families include
well known symmetric polynomials, such as the elementary,
homogeneous, and power sum symmetric polynomials. We in-
vestigate properties of these families and focus on constructing
their rational roots under a product induced by convolution.
A direct application of the latter is to the description of the
roots of certain multiplicative arithmetic functions (the core
functions) under the convolution product.

Introduction. This paper is concerned with a certain isomorphic
copy of the ring of symmetric polynomials, namely the ring of isobaric
polynomials denoted by A}, where the isomorphism is given by a
polynomial map involving the elementary symmetric polynomials. This
ring is a polynomial ring with coefficients taken to be either the integers
3 or the rationals 9, and the image of a symmetric polynomial under
the isomorphism mentioned above will be called an isobaric reflect. An
isobaric! polynomial is one of the form P, = Y A(a)t{" ---t;*, where
a=(ag,...,qr), a; > 0 are integers with Z?leaj =n.

As for the ring of symmetric polynomials, we can allow either a finite
number k of variables or we can work in A’ = @j>0A}, with infinitely
many variables. Families of isobaric polynomials occur in many con-
texts in mathematics. In [5] it was shown that the reflects of the
complete symmetric polynomials (CSP) determine the multiplicative
arithmetic functions locally. In [6] it was shown that the reflects of
the power sum symmetric polynomials (PSP) determine the lattice of
root fields of quadratic extensions. Properties of these two sequences of
polynomials were discussed in [7] where the CSP-reflects are called Gen-
eralized Fibonacci Polynomials (GFP), and the PSP-reflects are called
the Generalized Lucas Polynomials (GLP). Recall that the Complete
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Symmetric Polynomials form a 3-basis for the symmetric polynomials
as do the Elementary Symmetric Polynomials (ESP), while the Power
Symmetric Polynomials (PSP) form a Q-basis. The analogues of these
facts carry over to the isobaric polynomial algebras by way of a canon-
ical isomorphism of the ring of symmetric polynomials Ay to the ring
A}, denoted by Zj. In fact, this isomorphism is just the one that takes
symmetric functions on k variables, written in terms of elementary

symmetric polynomials, and rewrites each elementary polynomial e; as
(—1)3+1¢;.

(0.1) & = Sx(e) = (1) ;.

It is well known that the Schur Symmetric Polynomials (SSP) deter-
mine the complex character table of the finite symmetric groups using
the Littlewood-Richardson rule and the Frobenius Character Theorem.
Thus the SSPs for a given n can be regarded as an encoding of the
complex character table of Sym (n). The Frobenius Character Theo-
rem can be written in terms of isobaric polynomials, namely in terms
of GLPs. Using this fact, the complex characters of Sym (n) can be
easily calculated from the isobaric reflects of the SSP (n), the Schur
polynomials, for a given n.

The families GFP and GLP have the additional useful property
that each satisfies recursion relations (Newton identities). It will
turn out that A’ contains a large class of recursively defined families
(Theorem 1.3). These are the families of what we have called weighted
isobaric polynomials (WIPs), and they are the main subject of this
paper. Such polynomials are determined by assigning a weight to
each of the variables t;, i.e., by assigning a weight vector to the set of
variables {t;}. Such families will be called weighted isobaric families.

It turns out that the union of all such families does not exhaust
the ring of isobaric polynomials. In fact, in this paper we show
that among the Schur polynomials, exactly those Schur reflects which
represent hook partitions can belong to a sequence of weighted isobaric
polynomials (Theorems 2.1 and 2.4). Families of WIPs, multi-indexed
by their weights, form in a natural way a free abelian group induced by
addition of their weight vectors, Theorem 1.3. The weighted families
GFP and GLP, i.e., the CSP and PSP reflects, are the weighted
families determined by weight vectors (1,1,...) in the case of GFP,
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and (1,2,3,...) in the case of GLP. The Schur-hook reflects have weight
vectors of the form (0,0,...,1,1,...), Theorem 2.2.

The coefficients of the monomials in an isobaric polynomial are
uniquely determined by the exponents of the variables and the weight
vector of the family, Theorem 1.1. In order to prove Theorem 1.1 we use
the fact that each monomial determines a lattice whose nodes are the
exponent partitions of the monomial obtained by derivation. However,
this lattice is not the well-known Young’s lattice in symmetric functions
theory, but instead it is a lattice partially ordered by the pointwise
inequality of the exponents of the constituent nodes. It assumes a
major role in this paper in understanding the construction of the WIPs
and certain other structures associated to them. This lattice is in fact
isomorphic with the divisor lattice of natural numbers.?

In 1988, Carroll and Gioia [1] gave a numerical description of the gth
roots, ¢ € Q, of the multiplicative arithmetical functions in the group
of units of the ring of arithmetical functions. In [5] it was shown that,
under convolution, these functions form a free abelian group generated
by the completely multiplicative functions, as mentioned above; it was
also shown in that paper that the GFPs give a generic set of generating
functions for this group of arithmetic functions in the following sense:
each multiplicative function in the core group® of the group of units
of a multiplicative arithmetic function together with its convolution
inverse is uniquely determined locally by a monic polynomial (over the
complex field), the generating polynomial.

What is called a negative element is a multiplicative function whose
local values are just the coefficients of this generating polynomial, while
the inverse of this negative core function, a positive element, is a
multiplicative function whose local values are given by evaluating the
series of GFPs truncated at the degree of the generating polynomial at
these coefficients.

In Section 4 we produce a sequence of isobaric polynomials which
are the gth roots for any ¢ € Q of the generic generating functions
for these roots, that is, the gth roots of the Generalized Fibonacci and
Lucas polynomials, the CSP and PSP reflects. Thus, we have embedded
the core group into its divisible closure. Moreover, our construction is
more far-reaching than this. It produces a set of ¢th roots with respect
to a product induced by convolution, which we have called the level
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product (so-called because it acts on polynomials of the same level and
conserves level) for every isobaric polynomial in any weighted family
(Theorem 4.7). Theorem 4.7 also implies that, under the level product,
an element has a level product inverse. It is not the case that the
isobaric roots of weighted functions are necessarily weighted. However,
they are determined by specifying a weight vector. The appropriate
structure to look at here, then, is the ring generated by the level
product. This is a graded ring H containing WIPs.

However, there is still more algebraic structure. Since we have inver-
sion under level-product, each weighted family and its divisible closure
has the structure of the rationals. Moreover, because of Theorem 1.3
each weighted family is acted on by translations, and so we finally have
that all of this together with the derivation operation give a differential
graded abelian group acted on by an affine group.

1. Weighted isobaric polynomials. Before we proceed we
introduce a few notations used often in the paper.

Notation. For a nonnegative integer vector a = (au,... ,ax) € 3%,
we denote a F n if Z§:1 jo; = n, and by |a| the sum Z§:1 a;. The
partition associated to v is (1%1,2%2 ...  k®*), which is a partition of n.
We first define the weight of a monomial and then define the weighted
isobaric polynomial.

Definition 1. Given a rational vector w = (wy,ws, ... ,wi) we define
the weight of each variable ¢; as wt(t;) = w;, for each i = 1,... k. The
weight wt(t%) is now defined inductively as

k
(1.1) wh(t®) = Y wt(tyr e T k).
i=1, a; >1

A weighted isobaric polynomial (WIP) of weight w is defined to be

(1.2) Prnw =Y wt(t™)t".

abn

Remark 1. (i) The definition of the weights can be best understood
using a particular lattice which will now be described. The nodes of
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the lattice are the monomials {t{"---t}*}, where o = (au,... ,ax),
aj € 3, aj > 0. The relation

9 = (PR <t = (192, if B < ay,  for every j,

imposes a lattice structure on the set of {t*}. The depth of a monomial
in the lattice is |af, and its level is n = 3, jo;. Let 1 be the bottom
element. After we assign weight w; to each ¢;, t* will be assigned the
coefficient equal to the sum of the coefficients of all t# that have depth
(la| = 1) and for which ¥ < t*. Thus each monomial involving t*
can be associated with a (finite) sublattice £(¢*) with top element ¢,
the lattice of all those monomials whose coefficients contribute to the
coefficient of t*. For any two monomials there is a monomial whose
lattice contains their lattices.* Note also that the lengths of all maximal
chains of the sublattice £(t%) with ¢# < t* are the same and clearly
equal to the corresponding depth.

(ii) Another interpretation of this lattice can be drawn by identifying
t?j with p;-yj , where p; is the jth prime number. In this way, the order
relation becomes the divisibility relation for natural numbers.

Example 1. The lattice £(t3tat3) is

t2tots

2ty 3ty titats

2 tito tits  tols
ty 2] t3
1

FIGURE 1.
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We can now state

Theorem 1.1. Ifw is a weight vector, then the WIP of degree n has
at most P(n) terms, where P(n) is the number of partitions of n, and
the coefficients are given by

o Q Zz QWi
i (t ) B Ak’ﬂ’W(a) B (Oél ‘ | Oék) T

In particular, the coefficients of the families Fj, the GFP and Gy,
the GLP, are given by ( \047%) and n((Ja| — 1)!/1—[;;1(04]-)!)7 respec-
tively, where the weight vector of the GFPs is given by (1,1,...) and
the weight vector of the GLPs is given by (1,2,3,...). It is of interest

that, when w is an integer vector, the numbers Ay ,, ., («) are integers.
This will be a trivial consequence of the proof of Theorem 1.1.

Proof of Theorem 1.1. Let w = (w1, ... ,wy) with w; € 3 be a weight
assignment to the indeterminates ¢1, ... ,¢;. This assignment, together
with the inductive rule for determining the coefficient of a monomial
in the lattice, will define a family of WIPs, denoted by § ., or just §..
To see that the coefficients are as stated in the theorem, we proceed
by induction on the depth to compute the coefficient of t7, where
t7 =t* ---t/*. The monomials that contribute to the coefficient of 7

are just ﬂm, where y9) = (v, ... % —1,...,v). Then by induction

iy (=2
Ak,n,w(r}/( )) = Hz;ﬁj(’%) v — 1 |:§'Y7,wz )w :l

Anl) = 30 2 S i+ 3y = 1)y

H'L;E] (’Y’L ’7] - 1 i)

k
_ N (= DM)D s viws — wj]
- Z [T 22 (v = D — !
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— (|7|_1)'< E ViWi | | Zi%’“%)
[LGa)! \OZ7) =1 (I =1)

|IY|_§?'<Z%M) O

Note that a family §j . is a sequence of polynomials, one for each
degree. For example the first four of these in any sequence are of the
form:

P, =wity
Pg,w = wltf + woats
Pg’w = (41115:13 + (w1 =+ (AJQ) t1ty + wsts

P47w = wlt‘f + (2(4)1 + LUQ) t%tg + a)Qt% + (wl + W3) tltg + w4t4.

Since all of the operations involved in computing the coefficients are
ring operations, we have the following.

Corollary 1.2. If o and w are integer vectors, then Ay o(a) is an
integer.

Remark 2. For a weight w with w; # 0, for any ¢, using the Jacobian
criterion we have that Jacob (P; ) = [[,w; # 0 and thus the family
Fi,w consists of algebraically independent polynomials. This allow us
to construct a new basis for A}, for each such weight vector w, whose

elements are
w = H P)\j,wa
J

for every partition A\. Moreover, if Py, € §rw and, Pyo € o
then Py, + P € Skwtw - If we define addition on these classes by
Skw + Skw = Skwtw We have

Theorem 1.3. {§k.} is a free 3-module under this operation.

Proof. First notice that Ay ,, () = Ag pw(a) if and only if w = W/,

for by Theorem 1.1 this implies that >, ajw; = >, ajw;, and this
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in turn implies, by taking different values for the a’s, that w; = w;.
Thus equality of families implies identity of weights. Clearly the set
of families is a 3-module under the defined operation. Since there is a
homomorphic image of the 3-module of families onto the 3-module of
integer weight vectors, the assertion follows. O

While the WIPs form a graded (and, as we shall see, a differential
graded) group, they are not closed under multiplication, so the best we
can do is speak of the subring of A} generated by WIPs. We shall
see later that this is a proper subring of Aj. The lattice L(t7) is
generated by derivations (1/a;)0;, where 0; : t* — «;t?, and where
B =(,...,; —1,...,ax). Thus A} becomes a differential graded
ring. We also shall need the total differential operator D; where
D; = Dy(Dj_1) and Dy(t*) = >, 0;(t*). We are interested in the
total differential when it is evaluated at a weight vector w = (w;);. We
write this as D;(w®). We shall need the following lemma later.

Lemma 1.4.
Djg(wi™ - wi®) = (laf = 1) Haqwr + -+ + agwy).

(Note that the righthand side of the equation above is just [(a;)! times
the coefficient of a monomial term in a weighted isobaric polynomial
given in Theorem 1.1.)

Proof of Lemma 1.4. Let u = |af, then

Dy (WS- k) = ZajDufl(Wfl ...w;‘f—l...w?k)
j

and by induction it is
= (=21 (Do (X((ewn) ~w) )
=(u—2)! (;(aiwi)<2aj) - (Z}al))
= (u—2)!(u—1)(Zaiwi)

=(|a|—1)!(2aiwi>. u]

3
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2. Weighted isobaric polynomials and Schur functions. In
this section we are interested in the question of which isobaric polyno-
mials (viewed as reflects of symmetric polynomials) belong to some
WIP sequence. We have already seen two families of polynomials,
namely the Generalized Fibonacci Polynomials and Generalized Lucas
Polynomials, which are the reflects of the complete and power symmet-
ric polynomials. However, the rich structure of the ring of symmetric
polynomials leads us to ask if other well known families of symmetric
polynomials are endowed with this property.

Before we proceed let us recall some facts about symmetric polyno-
mials. For a basic overview of the subject the reader is advised to
consult [3], while a more comprehensive treatment is given in [4]. The
ring of symmetric polynomials in k variables x1,xs,... ,z is formed
by those polynomials f € 3[x1,...,Xx| invariant under permutations
of variables. This ring, denoted by Ay possesses a series of linear bases
indexed by partitions. Three bases we encountered already, the ele-
mentary symmetric functions

e, = Z Tiyorxy, and ey = HGM
1<y <ip <+ <ip, <k
with A = (Aq,...) such that Ay < k. The others are the complete
homogeneous polynomials

hyn = E Tiy T4,

1<i) Sig< - <in <k

with h) defined similarly and the power sum symmetric polynomial
Pn = Zle xf. The py’s are a Q-basis. However the basis that
plays the most important role in the theory of symmetric functions
and its connections with other areas of mathematics such as geometry
and representation theory is the family of Schur polynomials. The
polynomial Sy is in fact the character function associated to the
irreducible character of type A\ of the symmetric group Sym (n). We
define them here just by the formulas below. Note: S(,) = h, and
S(iny = e,. Formulas that express one basis in terms of another are
both remarkable and extremely useful. We will make use of them in
the sequel. We will need two. The first is the Jacobi-Trudi formula
that expresses the Schur basis in terms of the complete homogeneous
symmetric polynomials:

Sy = det [hx; —itjli<i, j<t-
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The other is the Frobenius Character Theorem, which expresses the
Schur basis in terms of the power sum symmetric polynomials:

1 "
Sy = o E C (1) X\Pps
m

where C'(u) is the size of the conjugacy class of p, and XX is the
character of Sym (n) afforded by X applied to . Applying the reflection
map = to these formula we obtain S, = det [F;—itjli<ij<r and
Sy = (1/n) >, C(1)XAG), respectively.

The rest of this section is concerned with which Schur reflects, i.e.,
reflects of the Schur polynomials, belong to a WIP family. We show
that Schur reflects determined by partitions A which are hooks, i.e., of
type A = (p,19) verify this property and that for no other partition
is Sy a member of a WIP family. The hook Schur polynomials can
be expressed in terms of the homogeneous and elementary symmetric
polynomials as S¢,_y 1) = ZjZTH(—l)j*T’lejh(n_j) [4, Chapter 3].
Taking the isobaric reflect we obtain

Theorem 2.1.
Stnerary = (1" Y ti8m-jy = (=1)" > t;Fu_j),
j=r+1 j2r+1
0<r<n.

The reflects of the Schur polynomials determined by hooks form
families of weighted isobaric polynomials. If A = (p,19) is a hook
partition we call p the arm and ¢ the leg of the hook. The Schur
polynomial reflects determined by hooks with legs of the same length
belong to the same weighted family, where the length is the number of
the boxes in the leg of the Young diagram. More precisely we have

Theorem 2.2. The Schur reflects indexed by hooks with leg length
(r+ 1) belong to the weighted family determined by the weights w(,) =
(=1)7(0,0,...,1,1,...), with r zeros, the rest ones.
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Proof of Theorem 2.2. We will first show that each term on the
righthand side of (2.1) is a weighted polynomial and describe its weight.

Lemma 2.3. The weight vector for t;F,_; is (0,0,...,1,0,...),
where the jth component is 1.

Proof. Exponents of the monomials in F),_; satisfy |a| =n — j. So
the coefficients of F,,_; are by Theorem 1.1,

al!
Apn—jan,.(a)= k'j"

[Tz (@)

where > io; = n — j. But the coefficient of the monomial in ¢;F,,_;
with exponent § = (a1,...,a; +1,..., ), that is, the coefficients
in Ag nw(6), is the same, ie., Ay ,_j(1,1,.)() = Agpnw(B). On the
other hand,

_ ]! o (s T
Ak,n,w(ﬁ)— (O‘j+1)Hi¢j(ai)! {;az i+ ( J+1) 5|

From these considerations we get that Z#j owi+ (o +1)w; = o+ 1.
Since this is true for all exponents such that Y ia; = n — j we must
have that the weight vector of ¢;F,,_; is (0,0,...,1,0,...). O

We complete the proof of Theorem 2.2 by using the result of Theo-
rem 1.3 which shows that a sum of weighted polynomials is a weighted
polynomial with weight the sum of weights of each term. Therefore the
proof is complete. o

Next we give a complete answer to the question of which Schur reflects
belong to weighted families.

_Theorem 2.4. If A is a partition of n which is not a hook, then
S\ # P, for any weight vector w. The Schur reflect cannot be a
weighted polynomial.

Before we proceed with the proof we need
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Definition 2. (Lexicographic order on P(n)). Let A = (A > Ag >
) and p = (w1 > pe > ---) be two partitions of n. We say that
A < p if and only if, for some index ¢ we have \; = p; for j < 4 and
A < -

Example 3. The lexicographic order on P(4).

(1) < (1%,2) < (2%) < (1%,3") < (41).

This order induces a corresponding order on the monomials t* with
(1%1,... ,k*) F n. Furthermore we shall write the WIPs by ordering
its monomials starting with the smallest. For example Py, = cult‘lL +
(2&)1 —I—u}g)t%tQ +w3t§—|—(w1 +W3)t1t3 —I—w4t4. Next we place ina all

monomials t* = ¢{ - -t such that a; # 0 and «; = 0, for j > 1.

Example 4. The arrangement of boxes in P(4).

]t}< \t%t2<t§<\ t1t3<‘t4‘

It is easy to see that ordering the boxes according to their indices gives
a saturated chain under the lexicographic order of all monomials t¢,
with (1*1,... k%) - n. We note that the smallest monomial in each
box corresponds to a hook and only to a hook. This follows from the
way we defined the boxes: the smallest monomial in, say [boxi], is
t"~%t; which corresponds to the hook (i,1"~?).

Proof of Theorem 2.4. We use a formula which expresses the Schur
polynomial basis in terms of the elementary symmetric polynomial basis
of the ring of symmetric polynomials. This is the famous Jacobi-Trudi
identity: S\ = det (ex,—;4;) where A’ is the conjugate partition of A
obtained by transposing the Young diagram. Under the reflection iso-
morphism, i.e., & = (—1)""'t;, we get Sy = det ((—=1)N "1ty ;. ).
In the expression above the smallest monomial is obtained from the
main diagonal of the determinant (as the transition matrix from the
bases Sy and ey is upper triangular [4, Chapter 6] and also the
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Appendix). The smallest monomial is #° where (1°1,... %) = X
and its coefficient is (—1)"~* # 0.
Assume now that S \ is a weighted polynomial, that is, there exists a

weight w such that Sy = P, . Recall that, from Theorem 1.1, in P,
the coefficient of t“ is

aw=(, 1)

|

Assume that the smallest monomial #° belongs to [box s|, i.e, d, # 0
and 6; = 0 for 7 > s. Since A is not a hook, )\’ is not a hook either and
so t9 is not the first monomial in box s. Moreover, we must have
that A(3) = 0 for any (8 such that (1°1,... kPr) < (1%1,... %)
in the lexicographic order. In particular A(3®%) = 0, for g =
(n—1,0,...,1,...,0), with 1 in the ith place, for i =1,2,... s, that

is, the first monomials in boxes 1,2,...,s. This is to say
—i+1 -1 lw; .
noikly oot len oo,
1 n—1i1+1
From this system of equation we get
wp =wy =+ =ws =0,
which in turn gives
9] iy diwi
A(d) = = =0
(9) <51,62,... ,0s 0] ’

a contradiction. 0

Theorems 2.2 and 2.4 tell us that a Schur reflect is a WIP if and
only if it is indexed by a hook. On the other hand every WIP can be
written as an expression in the Schur reflect basis. It turns out that
these expressions are both remarkable and simple and involve only hook
Schur reflects.

Theorem 2.5.
n—1

(2.2) Phw= Z(—l)”‘l(wi - wz'+1)g(n_i71i), where wy = 0.
i=0
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Prqof. Since each S(n_i’li) is a weighted polynomial of weight
(-1)*(0,0,...,1,1,...) with the first 1 in the (¢ + 1)th position, we
obtain that the righthand side is a weighted polynomial of level n with
weight vector:

Z(_l)i+i+1(wi _wi+1)(0a0,' ce ala 1,' . ) = (w1;w2a < ) = w. o

i

3. Recursion properties and generating functions. In [7] it
was shown that the CSP reflects and the PSP reflects satisfy Newton
identities, that is, are recursive. This is in fact a property possessed by
all WIPs.

Theorem 3.1. Let Py, ., = Py pw € Skw, then
Pn,w = tlpn—l,w + -+ tn—lpl,w + thwn.

Proof. This is, essentially, the lattice definition that assigns coeffi-
cients to monomials in a weighted family. Let A(a)t® be a monomial
in P, ., and consider all monomials t? in Pj s on the righthand side
such that t,_;t% = t*. In the lattice £(t”) we need only consider the
nodes that contain ¢; such that j = 1,... ,k and only those nodes 0;t*
for which ¢;0;t% = t*. But these are just the nodes of depth (Ja| — 1),
which by Theorem 1.1, are those whose coefficient sum is the coefficient
of t*. On the other hand, every vector a that occurs in a monomial
Pj, in ) t,_;P;, occurs as a vector for some monomial in P, . |

Theorem 3.2. A generating function for the WIPs in the family
Fw, Qy) = ano P, ,y"™ with Py, =1 is given by

wit1y + watey® 4+ watsy® + - - - + witry”
1 - p(y) ’
where p(y) = t1y + toy® + t3y> + - + tpyk.

Qy) =1+

The polynomial f(1/y) = 2% — tj2*~! — .. — 3, with x = 1/y will
be called the core polynomial. The significance of the core polynomial
will be discussed below and in the next section.
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We shall organize the proof of Theorem 3.2 around the following two
lemmas.

Lemma 3.3. A generating function for the family ., where
wey = (1,1,...,1,...) is the function H(y) = (1/1—py), where
(py) =ty + t2y® + tay® + - + tryt

Proof. This is a consequence of Theorem 3.1 in [5] where it was shown
that {F,(t)} is the “positive” multiplicative function in the core group
of the group of units (under the convolution product) in the ring of
arithmetic functions. This sequence is the generating function for the
negative sequence,

1

A

which itself is the generating function for the “negative” sequence.
Letting « = 1/y gives the result. ]

Lemma 3.4. Let w be an arbitrary weight vector. Then P, ., =
wpty * Fy,, where wpt, * F, = Z;L:O w;t;Fn_; and F, € &J(O).

(The *-product is discussed in the next section where it is called
the “level product.” If ¢ and 6 are two arithmetic functions their
convolution product is defined by ¢ 6(n) = >, ¢(d)0(n/d).)

Proof. An easy induction using Theorem 3.1 gives the result. u]

Proof of Theorem 3.2. Tt is clear that Y w,t,y™ is the generating
function for wy,t,. Using Lemmas 3.3 and 3.4, we obtain the result we
want by multiplying the generating functions. ]

4. Root polynomials and convolutions. This section is mo-
tivated by work which appeared in [1] and [7] and [12]. In [5] the
subgroup generated by the completely multiplicative arithmetic func-
tions in the group of units of the ring of arithmetic functions (the
core subgroup), where multiplication is convolution, is discussed. Each
multiplicative function in this group is uniquely determined locally (at

k k—1 _

primes) by a particular polynomial f(z,a) = 2" — a;x co— ag.
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This is the core polynomial (see Section 3, particularly Theorem 3.2),
where the parameters are evaluated at (a1,as,...,ar). What was re-
ferred to as the “negative” of the multiplicative function in that paper
is an arithmetic function whose values are just the coefficients of the
core polynomial. It was proved in [5] that the “positive” part was de-
termined locally by the values of the isobaric reflects of the CSPs, that
is by the GFPs at these coefficients, or rather by “truncations” of the
GFPs, that is, GFPs parametrized by partitions of n into parts no one
of which is greater than a fixed k. (Truncation is equivalent to setting
the isobaric generators tgi1,tk+2,... equal to zero in the GFPs, or in
any isobaric family).

Carroll and Gioia [1] gave a numerical description of the rational
roots of the core functions. In this part of the paper, we consider
isobaric polynomials with rational coefficients and find among them
polynomials which play the same role for the rational roots of the
multiplicative arithmetic functions in the core group as the GFPs play
for the core group itself, embedding the core group into a divisible
group. We do more. Given a family of WIPs, we shall provide each of its
members with unique rational roots induced by convolution. We shall
call the products that produce these roots, level products, since they are
products of polynomials of the same level which preserve level. This
gives a far-reaching generalization of the results in the 1988 paper of
Carroll and Gioia [1] which applies to the theory of arithmetic functions
as well as to the theory of symmetric polynomials. The property of
GFPs described above with respect to the core group in the convolution
ring of arithmetic functions can be stated as follows.

Let p be a fixed prime, and let X be a positive element in the
core. Then X(p") = Fgn(ai,...,ax) where 1,a1,...,a; are the
coefficients of the kth degree determining polynomial. We have that
X(p™) is Fgn(ti,...,t;) evaluated at the point (ai,...,ax), where
Fy n(t1,...,tx) is determined by the generic kth degree polynomial
xF — ti2F 1 — ... —t,. In fact the entire group of units in the
ring of arithmetic functions is determined by the sequence {F),(¢)}.
The ‘negative’ elements are determined by the coeflicients of the core
polynomial. The ‘positive’ elements are determined by the sequence
{Fyn} itself, as just pointed out, while the complement of the core
group in the group of units consists of functions determined by the
sequence {Fj p}n. For these functions the role of the core polynomial
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is played by a power series, and so the remaining units can be regarded
as being determined by limits of core functions, giving an analogy with
the relationship between rational and irrational numbers.

Recall that the convolution product of two multiplicative function is
given locally by

Xi o Xa(p™) = D Xa(p') X (" ).
=0

By induction, the sth convolution power of a multiplicative arithmetic
function X is given by

k

X =" Cyla) [T,

akrn i=1

Cula) = (ah__. ,ai,(s— |a|>>’

We extend the definition of the convolution product for two sequences of
polynomials {P,, }n>0 and {Qy }n>0 yielding another sequence { Ry, }n>0
with

where

=0

We will call the convolution product of two sequences of isobaric
polynomials a level product, since the level is preserved. Let P, =
> o A(a)t* be an isobaric polynomial. If P, belongs to a weighted
family the coefficients A(a) are given by Theorem 1.1. Let ¢ € Q be
the group of rationals. Define the sequences B? =q(g+1)---(g+J)
and Bz(j) =q(g—1)---(q—j), for j > 0; otherwise, both BY, Bq_(j)
are zero.

Theorem 4.1. Let Hy,(t,q) denote the gth convolution root of
Fy (1), where Fy ,,(t) € GFP, then

1, ol
(42) Hk,n(t7 Q) = 2 W B(\a|—1) (ah . ,ak> .
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Corollary 4.2.
Hyn(t,1) = Fin(2).

Proof of Corollary 4.2. When ¢ = 1, then B(1|a|71) = |a|'. The
Corollary then follows from Theorem 1.1 (see remark following that
theorem). O

Corollary 4.3. If X belongs to the core of the group of units of the
convolution ring of arithmetic functions, then Hy ,(a,q) = X*/9(p"),
where a = (a,...,ay) is the set of coefficients of the core polynomial
of X. O

The proof of Theorem 4.1 follows from a more general result. Namely
that each polynomial in a weighted family of isobaric polynomials has
a unique g-root for every rational number q.

Theorem 4.4.
}Jkﬂuw = ZE:‘LKJLW(OOta

abrn

where

laf—1
1 a|—1>
(@) ; (T \ j () Plal—-1) (w1 k)

is the qth level root of Py . € Skw and Hyo = 1.

Theorem 4.1 follows from Theorem 4.4. The following lemmas will
be used in proving this.

Lemma 4.5.

Dj(wa)\w:(l,l,‘..) = (7

Proof. At depth 0 the value is 1. If after (j — 1) derivations the
value is (|a|!/(Ja| — 7 + 1)!), then in the jth step the exponent sum is
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decreased by 1, so by derivation, (|a| — j) appears as the only new
factor in the value of Djw®. i

Lemma 4.6.

o] =1

(ol =D! flaf = 1Y 4 g
2 G ( : >B(J) = Bllal-1)-

j=0 J

Proof. Consider the following Stirling functions [z], = x(z — 1) ---
(x—=m+1),and [z]* = z(x+1)---(z +n —1). From the theory of
Stirling numbers of first and second kind we have the relation

= ()4

[z];,
Jj=1 i-1
e.g., [11, p. 15]. This translates into

. % (P+1)!
Bly=>_ (?) (§+ 1 B

Jj=0

Letting now p = |a| — 1 in the equation above gives the result we
wanted. O

Theorem 4.4 is a consequence of the following theorem, which shows
an interesting closure property.

Theorem 4.7.
Hk:,n,w (t, Q) * Hk:,n,w (t, q/) = Hk,n,w (t, q + q/),
Before we proceed we need these lemmas.

Lemma 4.8.

n+1
n+1\ 4 q _ npatd
> ( > By B (1) = Bl(my-
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Proof. As in Lemma 4.6 this is a consequence of the theory of
Stirling numbers. Here the relevant result is that [z + ylp41 =

Z;iol ("j‘l) [#]n+1—4[yl;- An analogous formula for [z 4+ y]"™! shows

n+1l n41 ! _ npatq
that 3520 (")) Bl Bli-y = By - ©
Lemma 4.9. Let o = (aq,...,qr) with a; >0 and |o| = > a; = n.

Then

(4.3) > 11 (g) Dy’ Dyw® P = (";"i ; q) Dy qw®

|8l=m, B<a i

where m < n and p, ¢ € N.

Proof. We will prove this lemma by induction.

Let P(q) be the following statement: “(4.3) is true for every p.” First
we will show that P(0) is true, i.e.,

(4.0 > T(5) wstrer = (1 20) D

|Bl=m, B<a i

Before we proceed let us note the case where p = 0, which will
be used in the sequel. In this case the identity (4.4) becomes

>l (g;)wﬁwo"ﬁ = (J)w", that is, >l (g) = (). The lat-
ter is true since the lefthand side of it is the coefficient of ™ in the
product (14z)* -+ (142)** = (1+a:)z°” = (1+4z)™, which is clearly
(). For the general case we may write Dyw’ = ZW—’H:P f5(B)w7,
where f,(3) is a polynomial in the $’s. More precisely, if s; = 8; — v,
then f,(8) = ¢ [[[Bils, = ¢]] (fl)(ﬁl — 7i)!, where ¢ is a constant.

This constant counts the number of paths in the lattice £(¢®) from ¢°
to t*. Equivalently, ¢ is the enumeration of {ay,...,01 —s1+1,...}
such that oy precedes a; — 1 and so on. Hence

(51+"'+Sk)!_ p!

sl sl H(ﬂi_')’i)!.

In fact we have showed that

(4.5) Dy’ =p > ] (5) W,

[B—~|=p @
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We can now rewrite Equation 4.4 as
SII(5) X I )wrr
[Bl=m i [B=vl=p 1
() 2 1)~

la=d|=p ¢

For § fixed on the righthand side we must have equality of the corre-
sponding coefficients, i.e.,

61' o n—p ;
ﬁz:m];[< ><6 _az_'_ﬁl) (m_p>]‘:[<6z)
and if we rewrite the lefthand side we obtain
@i 0i _(n—p Q;
|[3|¥m];[ (5i> (ai - 5@) - (m —p) 1:[ (5z>

which gives the identity we showed for p = 0. To show the induction
step we differentiate the expression in P(q) (4.3) to get

S IR [ D

|8|= 18]=
n—p—dg
= D w®
( m—p > p+q+1

and by the induction step

3 TT() otnee

|Bl=m i
n—p—gq n—-p—q-—1
= —_ D @
K m—p ) ( m—p—1 ﬂ provie

n—-p—q—1
:< pd )Dp+q+1wa

m-—=p

which is exactly P(g+1), and thus the proof of Lemma 4.9 is complete.
O
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We need one more lemma which is a binomial identity.

Lemma 4.10. Let p, q and n be such that p+ q < n. Then
"z”:"(pH)(n—p—i)( n+1 )
=\ q pt+qg+1

Proof. If we make the convention that (Z) =0if a < b, we can think
of the lefthand side as being the sum

>()(",)

This is in fact the coefficient of zPy? in
n

i nei _ (L))" — (1 y)"
;(14—:6) 14+y)" "= P .

Let us denote by a(i,j) the coefficient of 2%y’ in the expression above,
ie.,
(1+a)" = (14 y)"
r—=y

= ali, j)aty’.
]

We have that
(L+2)" T = Q4" = ali,f) @y — a2ty

= Z[a(z’ —1,j) —a(i,j — 1)) 'y’

Here a(i,j) = 0 if one of i, j is negative. By equating coefficients, we

obtain .
n+
) = a(0.4) =
alivo =a.0) = (717).
and if both i, 7 > 0, then we get a(i — 1,7) = a(i,j — 1). An easy
inductive argument shows that

. . . . . n+1
a(i,j)=a(i+1,j-1)=--=a(i+40) = (i+j+1)

and the proof of the lemma is complete. o



SYMMETRIC POLYNOMIALS 923

Proof of Theorem 4.7. By the definition of the level product we have
that

Hpw(t,q) * How(t,q') Zanwtq Hiw(t.q)

S e
aFn B<a

where § < « means (§; < «; for every i. Therefore we need to show
that

> LUB)LY (a — B) = LT (a).

BLa

By replacing Ls with their formulas, see the definition in the statement
of Theorem 4.4, we therefore need to show that

o SHEEE (0

B<a 1 s=0 t=0

’ ai/@
% BZ(S)Bq—(t)D(T—S—l) wﬁD(p—T—t—l) w

p—1
Z ( ) Q-HJ) D(pfjfl) wa,

7=0

where we denote for simplicity |«| = p and |§] = r. Fix now an index j
in the righthand side above. An important fact is that for each such j
the expression of D,,_;_jw® gives a homogeneous polynomial of degree
(j+1)inws,...,wk. So it suffices to show that the two corresponding
homogeneous polynomials of the same degree on both sides coincide.
To obtain the homogeneous polynomial of degree (j41) on the lefthand
side we need to pick indices s and ¢ such that (s+ 1)+ (t4+1) = j+1,
ie., t = j — s — 1. The homogeneous polynomial of degree (j + 1) on
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the lefthand side is therefore

SIS0

7 =

x B (B 1\ Dirms 1y WDy gy 0P

—(s)

As before, we consider (3) = 0 if a < b. We can rewrite Y p<a 8
P, > |5|=r, <o and the expression above becomes

> E OGIS(60)

X qu(s)qu(jfsfl)D(T—S—l) W'BD(p—r—jJrs) W

& i (r—l) <p—7°—1>
r=0 s=0 8 ‘7 —s—1
q q
X BZ () BZ(; s 1) >

|Bl=r, B<a

Q; _
% H (6 >D<rs1> WDy g0 P,

i

which by using Lemma 4.9 is

_1 .
r—1\/p—r—-1 q J j+1 )
Z < S > (J —S— 1>B_(S)B—(j—8—1) s+1 D,_j_1w

r=0 s=0

p—1 /. p
. ] + 1 q q/ o T — ]. p —7r — ]_
B = <s + 1>B(S)B(js1)Dp—j—1w TZ:% s j—s—1)

and by Lemma 4.10 is

p—1 .
j+1 / p—1
= B? . BY D, ;i qw®
Z(s+1) —(s)P=(j—s—1) T P=i—1¥ < j )’
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which finally by Lemma 4.8 is

p—1 +q’ a
= < j >Bq(]q) Dp,j,lw .
This is exactly the homogeneous polynomial of degree (j + 1) in the
righthand side of (4.6) and thus the proof of Theorem 4.7 is complete.
]

5. Algebraic structure. Let H, , denote the algebra generated
by all H, . under addition and the level product. As a consequence of
Theorem 4.7 each H,, ., has a level-product inverse in H.

Theorem 5.1.
H71 (ta q) = Hn,u.) (ta _Q) o

n,w

So from Theorems 4.7 and 5.1 we have that for a fixed weight w and a
given level n the polynomials Hy, o, = {Hn w(t, q)}qen form an abelian
group under the level product isomorphic to the rationals, £, under
addition. The group 7 = {F.}. acts on this group by translation
in the following way: 7 acts on a family of WIPs by (say) a right
translation, Theorem 1.3, and in a natural way the gth roots follow
along. Theorem 5.1 applies to a family of WIPs, as well, giving the
subgroup determined by a weighted isobaric family under the level
operation. All of this together with the derivation operators 9; give
a structure of differential graded group to H = @,, ®, Hn,. acted on
by an affine group.

ENDNOTES

1. The term isobaric is due to Pdlya [10]; the cycle index of a finite group
appearing in Pélya’s Counting Theorem is an isobaric polynomial.

2. We thank the referee for pointing out this isomorphism.

3. The Core group is the subgroup of the group of units in the ring of arithmetic
functions generated by the completely multiplicative arithmetic functions.

4. This lattice can be thought as a lattice of Young diagrams (1%1,... k%) in
which a “smaller” diagram is one with one less row; it is clearly not a Young lattice.
As far as we know these lattices have not been introduced before into the study of
symmetric functions.
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