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ON RECTIFICATION OF CIRCLES AND
AN EXTENSION OF BELTRAMI’S THEOREM

FARZALI IZADI

“The only perfect geometrical figures
are the straight line and the circle.”

Plato

ABSTRACT. The goal of this paper is to describe all local
diffeomorphisms mapping a family of circles, in an open subset
of R3, into straight lines. This paper contains two main
results. The first is a complete description of the rectifiable
collection of circles in R3 passing through one point. It turns
out that to be rectifiable all circles need to pass through some
other common point. The second main result is a complete
description of geometries in R3 in which all the geodesics are
circles. This is a consequence of an extension of Beltrami’s
theorem by replacing straight lines with circles.

Introduction. The problem that the author solved has its origin in
Nomography1: how to reduce a nomogram of aligned points to a cir-
cular nomogram? In more mathematical terms: what are local diffeo-
morphisms that send germs of lines to germs of circles? This question
was initially posed for two-dimensional nomograms by G.S. Khovanskii
and solved by A.G. Khovanskii in that case, cf. [6]. Our result leads to
a solution of the corresponding three-dimensional nomography. On the
other hand, it is a continuation of Möbius’ classical work that describes
all transformations taking lines to lines and circles to circles. It is also
related to Beltrami’s investigations. By Beltrami’s classical theorem,
all the geometries whose geodesics are locally straight lines have con-
stant curvature, cf. [2, 9, 12]. We prove that all geometries in R3

whose geodesics are locally circles must also have constant curvature.
The similar fact in R4 is wrong. This was communicated to the author
by Timorin, cf. [11] for details. We also give a complete description for
all the metrics of these geometries.
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The paper consists of three sections. In Section 1, we give the precise
definition of the rectification for a collection of circles passing through
one point and we prove the fundamental theorem of rectification. This
is our first main result. Section 2 is devoted to the classification
theorems for the rich families of circles, i.e., families that look like
the families of geodesics (they are point-wise rectifiable and, for each
point on each circle, there is an open cone filled by the tangent lines to
other circles). This classification gives rise to the following theorem: up
to a projective transformation of the space of the image and a Möbius
transformation of the space of the inverse image, there exist exactly
three diffeomorphism classes of rectifiable rich family of circles. In
Section 3, we discuss some applications of our results in Riemannian
geometry. First we show how the rectification problem gives rise to an
extension of Beltrami’s theorem. More precisely, we will prove that if U
is a region in R3 such that all geodesics with respect to some metric g
are circles, then g has constant curvature. Then by using this fact, we
will calculate all Riemannian metrics in which the geodesics are circles.

1. Rectification of a bundle of circles in R3. In this section we
study the behavior of the curves in a rectifiable bundle near the center
of the bundle. Our main result in this section is a theorem which is
called “the 54-circles theorem.” In order to prove this theorem, we first
show that the coefficients of the Taylor polynomials of the curves in a
central bundle are polynomial functions in the direction components of
the tangent lines. We also show that these polynomials satisfy some
symmetry relations. Assuming that all curves in the rectifiable bundle
are circles, we prove that all polynomials are divisible by a specific
irreducible polynomial. Using these divisibility conditions together
with the above symmetric relations, the desired result can be easily
obtained.

Let us start with the following definition and notations.

Definition 1.1 (Rectifiable Bundle of Curves). A family of curves
in the three-dimensional space R3, is called rectifiable near a point
p if there exists a neighborhood U of p and a diffeomorphism of U
taking all the curves in the family (more precisely, the portions of the
curves contained in the region U) into straight lines (more precisely, into
portions of lines lying in the image of the region U). Any collection
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of curves passing through the point p is called a bundle of curves with
center p. A bundle is called simple if distinct curves of the bundle have
distinct tangent lines.

If a bundle of curves with center at the point p is rectifiable at p,
then it is simple. This means that each direction (1, k,m), where
k,m ∈ R∗ = [−∞,+∞] corresponds to a unique curve α(k,m), where
α(k,m) is the intersection of the two surfaces

F (x, y, z) = 0, G(x, y, z) = 0

and (1, k,m) is the direction vector of the tangent line to the curve at
the point p. For simplicity, we take the point p to be at the origin.
Now we are ready to state the following proposition which is useful in
the proof of our main result.

Proposition 1.1. Suppose that a simple bundle of curves α(k,m)

is locally rectifiable near the origin by means of a class Cn diffeomor-
phism. Then for every i, 1 < i ≤ n, there exist 2-variable polynomials
Pi and Qi of degree at most 2i− 1 such that

y(i)(0) = P2i−1(k,m), z(i)(0) = Q2i−1(k,m)

where y and z are expressed in terms of x on the curve α(k,m).

To prove this proposition, we need a lemma that can be easily verified.
It is in fact a sharpening of the implicit function theorem, cf. [10].

Lemma 1.1. Consider a curve α given by the equations F (x, y, z) =
G(x, y, z) = 0, where F and G are smooth functions on R3 such that

(1) F (0, 0, 0) = G(0, 0, 0) = 0, and d = det
[
∂(F,G)
∂(y, z)

]
(0,0,0)

�= 0.

Then by taking x as a local parameter on α near 0, the Taylor
coefficients of y and z, with respect to x are polynomials of degree 2i−1
in the Taylor coefficients of F and G.
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Proof. These can be computed directly by using the implicit function
theorem.

Proof of the proposition. Consider a diffeomorphism Φ rectifying a
bundle of curves α(k,m)(x). Let T be an arbitrary nonsingular linear
mapping of the space. The diffeomorphism T ◦ Φ also rectifies the
bundle α(k,m)(x). By a suitable choice of T we can arrange that the
rectifying diffeomorphism has the identity differential at the origin. The
rectifying diffeomorphism is now given by the map:

T ◦ Φ = (f, g, h) = (u, v, w)

where

(2)
f = x+ · · · ,
g = y + · · · ,
h = z + · · · .

and · · · denotes the higher terms in the expansion of each function. In
the uvw-space the bundle of curves α(k,m)(x) is given by the equations
v = k · u,w = m · u. Consequently, the curves α(k,m)(x) are given by
the equations: F (x, y, z) = 0, G(x, y, z) = 0, where, F = g − kf,G =
h −mf . Now the coefficients apqr and bpqr in the Taylor polynomial
of the functions F and G depend linearly on {k, a010 = 1} and on
{m, b001 = 1} respectively. The assertion now follows from Lemma 1.1.

The next proposition is the second useful fact concerning our main
result.

Proposition 1.2. Under the same assumptions as of Proposi-
tion 1.1, there exist 3 × 3 symmetric matrices A,B, and C such that

y(2)(0) = −〈(B + kA)λ, λ〉, z(2)(0) = −〈(C +mA)λ, λ〉
where λ = (1, k,m) is the tangent vector at the origin.

Proof. In order to prove this, suppose that the curve α(k,m)(x) =
(x, y(x), z(x)) lies on the surface F (x, y, z) = 0, where F is any smooth
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function. So F (α(k,m)(x)) = 0. For simplicity we write α instead of
α(k,m). By differentiating both sides of the equation we get

〈∇F (α(x)), α′(x)〉 = 0,

which implies that

(∗)
〈 d

dx
∇F (α(x)), α′(x)

〉
+ 〈∇F (α(x)), α(2)(x)〉 = 0

where

d

dx
∇F (α(x)) = H(α(x))α′(x) =

(
∂2F

∂xi∂xj

)
α′(x).

This expression holds for any surface F containing the graph of the
curve α(x), in particular for F = v − ku = g − kf , where, f and g are
the same functions in (2). Since

∇F (α(0)) = (−k, 1, 0), α(2)(0) = (0, y(2)(0), z(2)(0))

and H(α(0)) = B + kA, where

B =
(

∂2g

∂xi∂xj

)
(0) and A =

(
∂2(−f)
∂xi∂xj

)
(0).

By (∗) we get

y(2)(0) = 〈(−k, 1, 0), α(2)(0)〉 = −λHα((0))λT ,

where λ = (1, k,m). Hence

y(2)(0) = −〈(B + kA)λ, λ〉.

Similarly, for calculating z(2)(0), we let G = w −m · u = h −m · f ,
where f and g are the same functions as in (2). Clearly, ∇Gm(α(0)) =
(−m, 0, 1) and H(α(0)) = C+mA, where C = (∂2h/∂xi∂xj)(0). Hence
z(2)(0) = −〈(C +mA)λ, λ〉.

Remark 1.1. These propositions can be easily extended to arbitrary
dimensions, but we don’t need to do this.
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Before stating the first main result, we give a definition.

Definition 1.2. Let us say that 54 lines passing through the origin
are generic if there exists a unique homogeneous cone of degree 9
containing them all. In this case, the corresponding 54 points in RP2

are called 9-good.

One can easily show that for almost all 54 lines passing through
the origin, the above condition holds. Having said this, we have the
following:

Theorem 1.1 (The 54-circles theorem). Consider a simple bundle
of circles passing through the origin such that the set of tangent lines
of the circles contains 54 generic lines, then there exists a local diffeo-
morphism about the origin mapping all the circles into straight lines if
and only if all the circles in the bundle pass through one common point
distinct from the origin.

Proof. In one direction the proof is obvious. In fact, if the bundle
passes through the second point Q, then we can make an inversion
with respect to a sphere centered at this point. But in the opposite
direction, it is rather complicated and follows as:

The bundle of circles passing through the origin in R3 can be written
explicitly by a system of equations consisting of two spheres. The
simplicity condition easily implies that this system depends only on
two parameters, namely the components of tangent vector at the origin.
Using this fact, the above system of equations can be expressed in the
following form

(3)
{
y = kx+A(x2 + y2 + z2)
z = mx+B(x2 + y2 + z2),

where A = A(k,m) and B = B(k,m) are some functions of the
parameters k and m. We show that the rectifiability of the bundle
is equivalent to the linearity of the functions A and B. We wish to
solve the equations for the circles in the bundle up to terms of fourth
order. By differentiating both equations with respect to x for the Taylor
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series of y(x) and z(x) we obtain

y(x) = kx+ φ2(k,m)x2 + φ3(k,m)x3 + φ4(k,m)x4 + · · ·
z(x) = mx+ ψ2(k,m)x2 + ψ3(k,m)x3 + ψ4(k,m)x4 + · · ·

where, by letting f = 1 + k2 +m2, we have

(4)
φ2 = Af

ψ2 = Bf

(5)
φ3 = 2A(kA+mB)f
ψ3 = 2B(kA+mB)f

(6)
φ4 = A(A2 +B2)f2 + 4A(kA+mB)2f
ψ4 = B(A2 +B2)f2 + 4B(kA+mB)2f

where φl and ψl are polynomials of degrees at most 2l − 1 in the two
variables k and m (Proposition 1.1), and A,B are, at the outset, just
rational functions in k and m. We want to show that A and B are
polynomials of degree 1.

Multiplying equations (5) by f yields

(7)
fφ3 = 2Af(kA+mB)f = φ2(kφ2 +mψ2)
fψ3 = 2Bf(kA+mB)f = ψ2(kφ2 +mψ2)

According to Proposition 1.1, the functions (φ2, ψ2), (φ3, ψ3) and
(φ4, ψ4) are polynomials of degree at most 3, 5, and 7 in k,m respec-
tively. Equations (7) are satisfied for all values of (1, k,m) correspond-
ing to circles in the bundle, i.e., by at least 54 directional vectors corre-
sponding to 54 generic lines. Since 2-variable polynomials of degree 5
which coincide at 54 directional vectors, coincide identically, so these
equations are in fact identities. These identities imply either: f divides
(kφ2 +mψ2), or: f divides both φ2 and ψ2. In the latter case equations
(4) show that A and B are polynomials of degree 1. So we may assume
that fg = kφ2 +mψ2 for some polynomial g.
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Now
fg = kφ2 +mψ2

= kAf +mBf

= (kA+mB)f
(by equation (4))

Thus kA+mB = g is a polynomial.

Multiplying equations (6) by f yields

fφ4 = (Af)((Af)2 + (Bf)2 + 4(Af)(kA+mB)2f
= φ2(φ2

2 + ψ2
2) + 4φ2g

2f.

Similarly
fψ4 = ψ2(φ2

2 + ψ2
2) + 4ψ2g

2f.

By the same reasoning as before, these equations are again identities.
This shows that either: f divides (φ2

2 + ψ2
2), or: f divides both φ2 and

ψ2. In the second case, as before, we are done, so we may assume that
f |(φ2

2 + ψ2
2).

Equation (5) gives

mφ3 + kψ3 = 2mA(kA = mB)f + 2kB(kA = mB)f
= 2f(mA+ kB)(kA+mB)
= 2f(km(A2 +B2) = 2(k2 +m2)AB).

So f(mφ3 + kψ3) = 2km(φ2
2 + ψ2

2) + 2(k2 + m2)φ2ψ2. Since we
already know that f |(φ2

2 + ψ2
2) it follows that f |φ2ψ2. Thus we also

have f |(φ2 ±ψ2)2 and thus f |φ2 ±ψ2 and finally f |φ2 and f |ψ2. Since
these polynomials are polynomials of degree 3 in k and m, A(k,m) and
B(k,m) would be polynomials of degree 1, in k and m ,i.e.,

A(k,m) = ak + bm+ c, B(k,m) = dk + em+ f.

Now by using the symmetric relations in Proposition 1.2 we see that
b = d = 0 and a = e. Hence the functions A and B are in the form

A(k,m) = αk + β, B(k,m) = αm+ γ.

These linear functions show that our rectifiable bundle of circles nec-
essarily has the form

(8)
{
S1 + kS2 = 0
S1 +mS3 = 0,
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where S1 = 0, S2 = 0 and S3 = 0 are the equations for certain non-
tangent spheres passing through the point (0, 0, 0). We denote by Q the
second point of intersection of the spheres S1 = 0, S2 = 0 and S3 = 0.
All the circles in the bundle pass through Q. In order to rectify such
a bundle of circles, it suffices to map the point Q to infinity via an
inversion. Now the proof of theorem is complete.

Remark 1.2. The analogous result fails in R4. Suppose that this is
not the case. Then for every point p the bundle of all circles (geodesics)
passing through the point p, being rectifiable by the exponential map,
should pass through some other common point. Now it can be easily
shown, as in the proof of Theorem 1.1, that there exists a germ of local
diffeomorphism mapping all the circles in a neighborhood into straight
lines. This would give rise to a four-dimensional extension of Beltrami’s
theorem which in turn implies that the corresponding metric in R4 has
constant curvature. But there is a famous example of a metric in R4,
i.e., Fubini-study metric which has circle geodesics but non-constant
curvature, cf. [1] or [3] for details.

2. Classification theorems. Consider the space S of equations of
spheres in R3 i.e., the space of non-zero polynomials of the form

V =
{
a

( 3∑
i=1

x2
i

)
+ 〈b, x〉 + c | a, c ∈ R, b ∈ R3

}
.

Clearly, every element of this form is defined up to a factor. Thus
the space V is isomorphic to the projective space RP 4. A projective
subspace L of V of dimension k, k = 1, 2, 3, is called a k-dimensional
linear system of spheres. Among all different linear systems, there
are three systems which are closely related to the three geometries
of Lobachevski, Euclid, and Riemann: the linear system of all spheres
orthogonal, respectively to a fixed sphere of positive radius:

∑3
i=1 x

2
i =

1, zero radius:
∑3

i=1 x
2
i = 0, and imaginary radius:

∑3
i=1 x

2
i = −1.

These three different linear systems can be expressed as:

1. A(
∑3

i=1 x
2
i ) + 〈B, x〉 +A = 0.

2. 〈B, x〉 +D = 0.

3. A(
∑3

i=1 x
2
i ) + 〈B, x〉 −A = 0.
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Definition 2.1. A three-dimensional net of spheres is any set of
spheres, the equations of which lie in some three-dimensional linear
system but not in any two-dimensional linear system.

Definition 2.2 (Characteristic map). A characteristic map of three-
dimensional net is a map Φ : R3 → RP 3 defined by

Φ(X) = [S1(X) : S2(X) : S3(X) : S4(X)]

where, S1, S2, S3, S4 are any 4 independent quadratic polynomials in
the space V . A characteristic map Φ depends on the choice of the
polynomials Si and is therefore defined up to a projective transforma-
tion.

Definition 2.3 (Degenerate point). The point (x1, x2, x3) of a
characteristic map Φ is called a degenerate point of three-dimensional
net of spheres if Φ has the zero Jacobian at that point. The degenerate
points of the three linear systems of spheres indicated above consist,
respectively, of the points on the sphere

∑3
i=1 x

2
i = 1, the point (0, 0, 0),

and the empty set.

Definition 2.4 (Rich family of circles in R3). Let ∆ be a family of
circles in some domain U . ∆ is called a rich family, if there exists a
subfamily Γ ⊆ ∆ such that

1. For each P ∈ U there exists a circle γ ∈ Γ such that P ∈ γ.

2. If γ ∈ Γ and P ∈ γ, then there exists an open cone KP (it is
assumed that the cone depends continuously on the point P ) such that
the tangent line of γ at the point P lies inside KP , and any other
direction in KP corresponds to a circle in Γ.

The next two theorems give a complete description of all local
diffeomorphisms which rectify a rich family of circles in a domain U .

Theorem 2.1. A rich family of circles in R3 in a neighborhood
of the point P is rectifiable if and only if there exists a germ of a
diffeomorphism Φ : (R3, P ) → RP3 given by

Φ(X) = [S1(X) : S2(X) : S3(X) : S4(X)].
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where

Si(X) = ai(x2 + y2 + z2) + bix+ ciy + diz + ei, i = 1, . . . , 4.

with a non-zero Jacobian such that every circle in the family is the
inverse image of a line under Φ.

Proof. Let us first suppose that the rich family of circles is rectifiable.
Let c = 0 be the equation for some circle in the family passing through
the point P , with a tangent lying inside the cone Kp. Let A and B
be two points on the circle c = 0 lying close to P but on different
sides. The circles in the family passing through the points A and B
form rectifiable bundles by our assumption. Hence by Theorem 1.1
they pass through the points C and D respectively distinct from A and
B. Through each point Q close to the P , i.e., Q contained in both KA

and KB, there exist circles in the family of circles passing through the
points A, C and in the family of circles passing through the points B,
D. Again by Theorem 1.1 all circles in the family passing through the
point Q pass a single point S distinct from the point Q. Now suppose
that the lines containing the segments AC and BD intersect at some
point O. According to the different positions of the point O, we have
the following different cases.

Case (1). The point O lies outside c. By definition of the power of
the point O with respect to the circle c, we have: OA ·OC = OB ·OD.
Let us denote this number by r2. Let S be a sphere of radius r centered
at the point O. It is easy to see that R2 + r2 = OM

2
, where R and M

are the radius and center of the circle c respectively.

Case (2). The point O is on the circle c. In this case, the sphere S is
just a single point O. In other words, we have a sphere of radius zero.

Case (3). The point O lies inside c. In this case, one can easily show
that R2−r2 = OM

2
, where r,R,O and M are the same as the case(1).

Now by mapping the spheres in cases (1) and (3) to the unit sphere
at the origin, and similarly the point O in case (2) into origin, we can
easily see that the equations of circles lie on the following three different
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spheres:

Ax+By + Cz +D(1 − x2 − y2 − z3) = 0,
Ax+By + Cz +D(0 + x2 + y2 + z2) = 0,
Ax+By + Cz +D(1 + x2 + y2 + z2) = 0.

To complete the proof we only need to show that for each rich family
of rectifiable circles the characteristic map is the same from one point
to another. To prove this last assertion, suppose that P,Q ∈ U such
that P �= Q. Since any curve joining the two points P and Q is a finite
curve or a segment, we can cover this curve by a finite number of balls
such that the center of each ball lies in the next. Each characteristic
map is a analytic function and any two characteristic maps coincide
in the intersection of their domain, so they coincide identically by the
theorem of analytic continuation.

Thus the equations for all the circles in our rectifiable family lie in
two different linear combinations of the equations of spheres (including
planes) S1 = 0, S2 = 0, S3 = 0 and S4 = 0. Moreover, we can easily see
that near a degenerate point of a rich family there does not exist any
rectifiable rich subfamily (this can be verified separately for the three
linear systems of circles). Near a nondegenerate point of the family,
the family is rectified by the characteristic transformation

Φ(x, y, z) = [S1(x, y, z) : S2(x, y, z) : S3(x, y, z) : S4(x, y, z)].

where

Si(X) = ai(x2 + y2 + z2) + bix+ ciy + diz + ei, i = 1, . . . , 4.

It remains to show that, up to a projective transformation, there
exists no other rectifying map. This is an immediate consequence of
the following lemma.

Lemma 2.1. A local diffeomorphism of the space which sends a rich
family of lines into lines is a projective transformation.

Proof. It is well known that a homeomorphism which sends all lines
into lines is a projective transformation. The proof of this fact based



CIRCLES AND BELTRAMI’S THEOREM 893

on constructing an everywhere Möbius flat net, cf. [7]. To this end,
suppose that four lines li, i = 1, . . . , 4, in a plane Π are in general
position. Suppose F is a map which sends these four lines into another
four lines F (li), i = 1, . . . , 4, in general position. Now for any projective
transformation T , T (li), i = 1, . . . , 4, are also in general position.
Then there exists a projective transformation U such that U maps
T (li) into F (li). So without loss of generality, we may assume that
T (li) = F (li), i = 1, . . . , 4. For each i, i = 1, . . . , 4, let us denote
this line by mi. Suppose that A,B,C,D and a, b, c, d are four vertices
of the quadrilateral formed by li and mi, i = 1, . . . , 4, respectively.
Since both maps F and T map the diagonals of the first quadrilateral
to the diagonals of the second one, it follows that F (P ) = T (P ), where
P and F (P ) are the intersection points of the pairs of the diagonals
respectively. Continuing in this way, we get a countable dense subset
of some neighborhood such that F = T on this subset. Since both
F and T are continuous, we have F = T on this neighborhood. Now
the proof of Lemma 2.1 is based on the same argument. If P is a
point in the neighborhood U , then we apply the same reasoning for
any plane Π passing through the point P . First of all, we can map
any four lines in general position into a parallelogram via a projective
transformation. Secondly, by definition of a rich family of lines for any
point a ∈ U , there exists a line l passing through the point a. Since
a ∈ l, there exists a cone Ka such that l lies inside Ka. For any other
point b ∈ l, there exists another cone Kb such that l lies inside Kb.
Now we can easily construct a parallelogram such that all four sides as
well as its diameters contained in our rich family. Finally, we construct
a Möbius flat net inside this parallelogram, all of whose lines lie in the
rich family. This implies that the mapping F is locally projective. The
connectedness of the region U now implies that F is projective.

We proved that

Theorem 2.2. Up to a projective transformation of the space of the
image and a Möbius transformation of the space of the inverse image,
there exist exactly three local diffeomorphisms which rectify rich families
of circles. They are given by:

1. Φ(x, y, z) = [x : y : z : 1 − x2 − y2 − z2]
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2. Φ(x, y, z) = [x : y : z : 1]

3. Φ(x, y, z) = [x : y : z : 1 + x2 + y2 + z2].

3. Applications in Riemannian geometry. As is well known,
there are three classical geometries in which the geodesics in some
local coordinate system are straight lines. Beltrami’s theorem together
with the Minding-Riemann theorem, both of which are n-dimensional
results, ensure that these geometries are the only ones with these
properties. Fixing n = 3, we will show that there are precisely
three classical geometries whose geodesics are circles. This will be a
consequence of the three-dimensional extension of Beltrami’s theorem
which we are going to prove by replacing straight lines with circles.
However, this result, unlike the previous statement, does not hold in
arbitrary dimension. In fact, there is a very natural metric in R4 whose
geodesics are circles, but it does not have constant curvature and hence
it does not coincide with the three classical geometries.

3.1 Riemannian geometry. In this subsection, we give a proof
of the three-dimensional extension of the Beltrami theorem. Next, we
recall the three metrics in which the geodesics are straight lines. In the
end, we use these metrics to calculate the corresponding metrics with
circle geodesics.

Theorem 3.1 (Three-dimensional extension of the Beltrami theorem
for circles). Let U be a region in R3 and g a Riemannian metric on U .
If all geodesics in U are circles (or parts of circle), then g has constant
curvature.

Proof. First of all, note that all geodesics (circles) passing through one
point are rectifiable by the exponential map. Secondly, by Theorem 1.1
any rectifiable bundle in R3 passes through some other common point
distinct from the center. On the other hand, all geodesics in a region
U form a rich family of circles. Now by using Theorem 2.1 together
with Theorem 2.2 we get the three different characteristic maps. By
Theorem 2.2, every characteristic map is a geodesic map (mapping
the geodesics of the first space to the geodesics of the second). The
Beltrami theorem now implies that U has constant curvature k. By
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the Minding-Riemann theorem we see that U isometric to a part of the
elliptic space if k > 0, Euclidean if k = 0, and hyperbolic if k < 0.

Remark 3.1. First of all, this result is absolutely different from that
of Beltrami’s. In the Beltrami theorem the geodesics are already given
and we look for the corresponding rectification. But here we deal with
a six-dimensional family of circles in R3 and we wish to choose among
this family all four-dimensional families such that they could be families
of geodesics. The problem of choosing these families relies heavily on
the rectification problem.

Secondly, the Beltrami theorem holds in any dimension, but our result
can not be extended to dimension 4. As we have already mentioned, a
very natural example of Riemannian metrics in dimension 4 in which
the geodesics are circles but the curvature is not constant, is the Fubini-
Study metric.

To have a view of the nature of the metric g in the space of rectifiable
families of circles we need to draw our attention to some models of
geometries in which the geodesics are straight lines, cf. [8].

Remark 3.2. The following discussion is also true for n = 2. Clearly
for k = 0, the model is the Euclidean space R3 with the corresponding
Riemannian metric

ds2 = dz2
1 + dz2

2 + dz2
3 .

Hence by the affine characteristic map Φ(z) = x we have

ds2 =
3∑

i=1

dx2
i .

For k < 0, we use the gnomonic projection of D3 onto H3, where

D3 =
{
z ∈ R3 :

3∑
i=1

z2
i < 1

}
,

and H3 = {z ∈ R4 : z2
1 + z2

2 + z2
3 − z2

4 = −1, z4 > 0}. Identify R3 with
R3 × {0} in R4. The gnomonic projection µ of D3 onto H3 is defined
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to be the composition of vertical translation of D3 by e4 followed by
the radial projection to H3. An explicit formula for µ is given by

µ(y) =
y + e4
‖y + e4‖

where

‖y + e4‖2 = 1 − |y|2 = 1 −
3∑

i=1

y2
i .

First we note that the element of hyperbolic arc length of H3 is

‖dz‖2 =
3∑

i=1

dz2
i − dz2

4 .

If y.dy denotes the standard inner product between y = (y1, y2, y3) and
dy = (dy1, dy2, dy3), then

(9) |dz|2 =
3∑

i=1

dz2
i − dz2

4 =
(1 − |y|2)|dy|2 + (y.dy)2

(1 − |y|2)2 .

For k > 0, we similarly use the gnomonic projection of R3 onto S3, the
unit sphere. To do this, we identify R3 with R3 ×{0} in R4. Then the
gnomonic projection

ν : R3 −→ S3

is defined to be the composition of the vertical translation of R3 by e4
followed by the radial projection to S3. An explicit formula for ν is
given by

ν(y) =
y + e4
|y + e4|

where |y + e4| is the Euclidean norm of y + e4. Since the element of
spherical arc length of S3 is the element of Euclidean arc length of R4

restricted to S3, the arc length ds of S3 is given by

ds2 =
4∑

i=1

dz2
i .
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Thus

(10) ds2 =
4∑

i=1

dz2
i =

∑3
i=1 dy

2
i

1 + |y|2 − (y.dy)2

(1 + |y|2)2 .

This gives rise to an elliptic model in which all geodesics are straight
lines in R3.

Now we are ready to calculate the Riemannian metrics of our three
geometries in which the geodesics at every point are circles.

Clearly for k = 0 this is the standard metric

ds2 =
3∑

i=1

dx2
i .

For the hyperbolic case, we set k = −1 and use the affine characteristic
map Φ : R3 → R3 defined by

Φ(x) =
x

1 + |x|2 = y

where

|x|2 =
3∑

i=1

x2
i .

Let w = (1 + |x|2)−1. Then yi = xiw, and dyi = dxiw − 2xi(x.dx)w2,
i = 1, 2, 3.

Substituting these expressions into hyperbolic metric with geodesics
as straight lines namely in (4.1) we get the following metric with
geodesics as circles.

ds2 =
1

1 + |x|2 + |x|4
(
|dx|2 − 3(x.dx)2

1 + |x|2 + |x|4
)
.

Finally for the elliptic case we set k = 1, and we use the affine
characteristic map Φ : R3 → R3 defined by

Φ(x) =
x

1 − |x|2 = y.
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Let t = (1 − |x|2)−1. Then yi = xit, and dyi = dxit + 2xi(x.dx)t2,
i = 1, 2, 3. Substituting these expressions into elliptic metric with
geodesics as straight lines namely in (4.2) we get the following metric
with geodesics as circles.

ds2 =
1

1 − |x|2 + |x|4
(
|dx|2 +

3(x.dx)2

1 − |x|2 + |x|4
)
.

3.2. Open questions. In the end, I state some open problems posed
by A.G. Khovanskii and Andrei Gabrielov. This work opens a large field
for further investigations. Some most obvious questions to be asked are
as follows: Firstly, what is going on in higher dimension (both of the
above main results are wrong in R4, for details see the recent paper by
Timorin [11], in fact there are at least five different geometries having
circle geodesics in R4.) Secondly, are there some results in the same
spirit for more general classes of curves (say, algebraic curves of given
degree with fixed leading term - the existence of a unique asymptotic
cone seems to be important)?
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ENDNOTES

1. A discipline which was discovered by the French Civil Engineer, Docagne

(1880). It turned out to have practical applications in many branches of science

and technology, cf. [4, 5].
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