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KRULL RINGS, PRÜFER v-MULTIPLICATION
RINGS AND THE RING OF FINITE FRACTIONS

THOMAS G. LUCAS

ABSTRACT. This paper deals with extending the notions
of Krull domains and PvMDs to rings with zero divisors. Two
of the problems to be addressed involve characterizing when
the Nagata ring R(x) will be a Krull ring and when it will
be a PvMR. For both problems, the characterizations require
consideration of how the ring in question sits in its associated
ring of finite fractions.

1. Introduction. Throughout this paper, R will denote a commu-
tative ring with identity, T (R) will denote the total quotient ring of
R and Z(R) will denote the set of zero divisors of R. We use Q0(R)
to denote the ring of finite fractions over R. One way to view the
ring Q0(R) is to consider it as the subring of T (R[X]) which con-
sists of those fractions f = b(X)/a(X) where a(X), b(X) ∈ R[X] with
deg (b(X)) ≤ deg (a(X)) such that fai = bi for each coefficient ai

of a(X). Another is to view it as a set of equivalence classes of R-
module homomorphisms on semiregular ideals, i.e., on those ideals of
R which contain a finitely generated ideal that has no nonzero annihila-
tors. Each class consists of those homomorphisms which agree on some
semiregular ideal. In the next section we provide a few details of both
these constructions. Note that if R is a McCoy ring, i.e., each finitely
generated ideal containing only zero divisors has a nonzero annihilator,
then Q0(R) = T (R). As each polynomial ring is a McCoy ring, [42,
Proposition 6] and [19, Theorem 1], Q0(R[X]) = T (R[X]).

While the results in this paper will hold for integral domains, the
emphasis is on rings which have nonzero divisors of zero. Recall that
an element of a ring R is said to be regular if it is not a zero divisor and
an ideal is regular if it contains a regular element. Although an element
is either regular or a zero divisor, an ideal need not be regular to have no
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nonzero annihilators. An ideal (or set) that has no nonzero annihilators
is said to be dense. Thus the semiregular ideals are those which contain
a finite dense set. We let J (R) denote the set of semiregular ideals of R
and F(R) denote the set of finitely generated semiregular ideals of R.
Even though a semiregular ideal may contain no regular elements of R,
when the ideal is extended to the polynomial ring R[X], it will contain
regular elements of R[X]. For example, if I is a semiregular ideal of R
and A = (a0, a1, . . . , an) is a finitely generated dense ideal contained
in I, then the polynomial a(X) =

∑
aiX

i is a regular element of R[X].
The ideal A is referred to as the content of a(X). In general, we denote
the content of a polynomial f(X) by C(f), and say that f has unit
content if C(f) = R. Please note that there are quite a few more
terms that we need to define. To provide sufficient background for
the problems at hand and keep the introduction somewhat brief, we
postpone stating most of the definitions until later.

Recall that one of the many ways to characterize, or define, Krull
domains is that an integral domain D is (said to be) a Krull domain
if either D is a field or there is a family of discrete rank one valuation
domains {Vα} for which

(i) ∩Vα = D, and

(ii) each nonzero nonunit of D is a unit in all but finitely many of
the Vαs.

The following statements are known to be equivalent for an integral
domain D [4, 9, 10] and [21].

(1) D is a Krull domain.

(2) DP is a discrete rank one valuation domain for each height one
prime P , each nonzero nonunit is contained in only finitely many height
one primes and D = ∩{DP |P a height one prime of D}.

(3) D is completely integrally closed and its set of divisorial ideals
satisfies the ascending chain property.

(4) Each nonzero ideal is t-invertible.

(5) Each nonzero prime ideal is t-invertible.

(6) Each nonzero prime ideal contains a t-invertible prime ideal.
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(7) D[X] is a Krull domain.

(8) D(X) is a Krull domain.

The ring D(X) is the localization of the polynomial ring D[X] at the
set U(D) = {f(X) ∈ D[X] |C(f) = D}.

In [25], Kennedy defined a ring R to be a Krull ring if it is not equal
to its total quotient ring and there is a family of discrete rank one
valuation rings {Vα} for which

(i) R =
⋂

Vα, and

(ii) each nonunit r ∈ R\Z(R) is a unit in all but finitely many Vαs.

He proved that if R is a Krull ring, then it is completely integrally
closed in T (R) and its set of divisorial regular ideals satisfies the
ascending chain condition. The converse was established by Matsuda
[36, Theorem 1]. We will follow Huckaba in [18] and also allow a ring to
be a Krull ring if it is equal to its total quotient ring. It is rather rare to
have a Krull ring R for which the corresponding polynomial ring R[X]
is also a Krull ring. In fact the polynomial ring R[X] is a Krull ring if
and only if R is a reduced Krull ring with only finitely many minimal
primes (and therefore, R is a finite direct sum of Krull domains) [4,
Theorem 5.7]. An open problem has been to characterize those rings
R for which the corresponding Nagata ring R(X) is a Krull ring [4, p.
114]. We shall provide a solution to this problem in Theorem 6.7 below.
It turns out the answer involves the ring of finite fractions and requires
one to extend Kennedy’s notion of a Krull ring to the pair R ⊆ Q0(R).
We say that a ring R is a Q0-Krull ring if either R = Q0(R) or there
is a family of discrete rank one Q0-valuation rings {Vα} for which the
following hold:

(i) R = ∩Vα.

(ii) For each finitely generated semiregular ideal, there are at most
finitely many Vαs where no element of the ideal has value 0.

(iii) For each Vα, the prime at infinity is not semiregular.

Note that condition (iii) is necessary for R(X) to be a Krull ring,
without it R(X) may not be completely integrally closed in T (R[X]).
In Theorem 4.2 we prove that the following statements are equivalent.
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(1) R is a Q0-Krull ring.

(2) Each semiregular ideal I is contained in at most finitely many
maximal t-ideals and for each maximal t-ideal M , (R{M}, {M}R{M})
is a discrete rank one Q0-valuation pair for which the prime at infinity
is not semiregular.

(3) The set of semiregular divisorial ideals of R satisfies the ascending
chain condition and R is completely integrally closed in Q0(R) as a
subring of T (R[X]).

(4) Each semiregular ideal of R is t-invertible.

(5) Each semiregular prime ideal of R is t-invertible.

(6) Each semiregular prime ideal of R contains a t-invertible semi-
regular prime ideal.

In statement (2), R{M} denotes the subring of Q0(R) consisting of
those t ∈ Q0(R) for which there is an r ∈ R\M such that tr ∈ R and
{M}R{M} denotes those elements of R{M} which can be multiplied into
M by some element of R\M . Later we extend this notion to arbitrary
primes of R. An integral domain D is a Prüfer v-multiplication domain
if each finitely generated nonzero ideal is t-invertible. Huckaba and
Papick [20] and Matsuda [37] extended this notion to rings with zero
divisors by declaring a ring R to be a Prüfer v-multiplication ring if
each finitely generated regular ideal is t-invertible. Huckaba and Papick
studied this condition for additively regular McCoy rings and Matsuda
worked under the assumption that the ring was both a McCoy ring and
a Marot ring. A ring R is additively regular if, for each pair of elements
a, b ∈ R with a regular, there is an element r ∈ R such that ra + b is
regular and R is a Marot ring if each regular ideal is generated by the
regular elements it contains. Huckaba’s book [18] is a good source for
what was known about Krull rings and Prüfer v-multiplication rings
before 1988 or so. Other sources for information on Krull rings include
[3, 22, 41] and [23].

From our list of statements above concerning Q0-Krull rings, we see
that t-invertibility of all semiregular ideals is equivalent to R being
a Q0-Krull ring. It seems natural then to say that R is a Q0-PvMR
(short for Q0-Prüfer v-multiplication ring) if each finitely generated
semiregular ideal is t-invertible.
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The following conditions are equivalent for an integral domain D,
[12, 16] and Corollary 7.11, below.

(1) D[X] is a PvMD.

(2) D(X) is a PvMD.

(3) D is a PvMD.

(4) Either D is a field or DP is a valuation domain for each maximal
t-ideal P .

We wish to improve upon the work of Matsuda and Huckaba and Papick
with an eye toward adapting these four statements about PvMDs to
rings with zero divisors. Our ultimate goal is to find for each pair
1 ≤ i < j ≤ 4, “minimal” conditions to add to statement (j) to make
it equivalent to (i) (nothing “extra” will be needed to show (i) implies
(j)).

Prüfer v-multiplication domains are integrally closed, and the con-
ditions used in defining Prüfer v-multiplication rings and Q0-Prüfer
v-multiplication rings are sufficient to show that a PvMR is integrally
closed in its total quotient ring and a Q0-PvMR is integrally closed in its
ring of finite fractions. Also, if R is a McCoy ring, then Q0(R) = T (R)
and there is no difference between R being a Q0-PvMR and (only) a
PvMR. Thus the two notions coincide for polynomial rings. On the
other hand, the ring R in Example 8.10 below is a PvMR but not a
Q0-PvMR even though Q0(R) = T (R). With regard to statement (1),
a polynomial ring is never integrally closed if the base ring has nonzero
nilpotent elements. Thus we have no choice but to add (some form of)
the condition that R is a reduced ring to each of statements (2) (4) to
have any hope of reaching our goal when i = 1. Consider the following
six statements.

(A) R[X] is a PvMR.

(B) R(X) is a PvMR.

(C) R is a Q0-PvMR.

(C′) R is a PvMR.

(D) Either R = Q0(R) or (R{P}, {P}R{P}) is a Q0-valuation pair for
each maximal t-ideal P .

(D′) Either R = T (R) or (R(P ), (P )R(P )) is a valuation pair for each
regular maximal t-ideal of P .
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We will show that, if no other conditions are added, then (A) ⇒ (B)
⇒ (C) ⇒ (D), (C) ⇒ (C′) ⇔ (D′), (D) ⇒ (D′) and (D′) �⇒ (D) �⇒ (C)
�⇒ (B) �⇒ (A). We shall not attempt to give any additional statements
to add to either (C′) or (D′) to have a statement that is equivalent
to any one of (B), (C) or (D). It turns out that simply adding that
T (R) is von Neumann regular to each of (B), (C), (C′), (D) and (D′)
is exactly what is required to have a statement which is equivalent to
(A). In Theorem 4.3, we show that a condition we may add to (D)
to have a statement equivalent to (C) is that the prime at infinity of
the valuation pair (R{P}, {P}R{P}) is not semiregular. Note that this
is consistent with what is needed to have R be a Q0-Krull domain.
Since a PvMR is integrally closed in its total quotient ring, if R(X) is a
PvMR, it must contain the nilradical of T (R[X]). In Theorem 7.12, we
show that adding the assumptions that R(X) contains the nilradical of
T (R[X]) and has no maximal t-ideals of type III to statement (C) gives
necessary and sufficient conditions for R(X) to be a PvMR. Adding
the same two assumptions to (D) along with adding the statement that
either R = Q0(R) or the prime at infinity of (R{P}, {P}R{P}) is not
semiregular gives necessary and sufficient conditions for R(X) to be a
PvMR. A maximal t-ideal of type III is one which neither contracts to
a minimal prime of R nor is extended from a maximal t-ideal of R.
Necessary and sufficient conditions for R(X) to contain the nilradical
of T (R[X]) can be found in [32]. We shall recall these conditions at
the appropriate time.

2. The ring of finite fractions, etc. A ring that plays a very
significant role in this paper is the ring of finite fractions. We begin
by giving a definition for the ring of finite fractions which is similar to
the definition one finds for the complete ring of quotients in [26]. (For
more on the ring of finite fractions see, for example, [28] or [30].)

First note that both J (R) (=the set of semiregular ideals of R) and
F(R) (=the set of finitely generated semiregular ideals of R) are closed
under finite intersections and finite products. Thus if I1 and I2 are
semiregular ideals and f1 ∈ Hom(I1, R) and f2 ∈ Hom (I2.R), then the
sum f1+f2 and product f1f2 make sense as R-module homomorphisms
from I1I2 into R. Also, it is easy to show that, if f1 and f2 agree on
some dense ideal of R, then they agree on each semiregular ideal on
which both are defined [26, Lemma 1, p. 38]. Define an equivalence
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relation on the set {f | f ∈ Hom(I, R) for some I ∈ J (R)} by setting
f ≡ g if they agree on some dense ideal of R. If f1 ≡ g1 and f2 ≡ g2,
then f1+f2 ≡ g1+g2 and f1f2 ≡ g1g2. The ring of finite fractions over
R consists of these equivalence classes and is denoted by Q0(R). As
with the complete ring of quotients, both R and T (R) embed naturally
into Q0(R); for each pair of elements r, s ∈ R with r regular and each
I ∈ J (R), multiplication by s/r defines an R-module homomorphism
from rI into R. But even more can be said. Let I be a semiregular
ideal of R, and let A = (a0, a1, . . . , an) be a finitely generated dense
ideal contained in I. Let f ∈ Hom(I, R) and set a(X) =

∑
aiX

i and
b(X) =

∑
biX

i where bi = f(ai) for each i. For each r ∈ I we have
rbi = rf(ai) = aif(r), and it follows that (b(X)/a(X))r = f(r). On
the other hand, if g = c(X)/a(X) ∈ T (R[X]) (with a(X) =

∑
aiX

i) is
such that gr ∈ R for each r ∈ I, then multiplication by g defines an R-
module homomorphism from I into R. Since a(X) is a regular element
of T (R[X]), we also have gai = ci for each i. Thus for each semiregular
ideal I there is a natural one-to-one correspondence between the set
Hom (I, R) and the set 〈R : I〉 = {t ∈ T (R[X]) | tI ⊆ R}. Moreover, for
semiregular ideals I1 and I2, f1 ∈ Hom (I1, R) and f2 ∈ Hom (I2, R) are
in the same equivalence class in Q0(R) if and only if the corresponding
elements of T (R[X]) are equal as fractions. It follows that there is a
natural ring isomorphism between the ring of finite fractions over R
defined as above and the subring ∪{〈R : I〉 | I ∈ J (R)} of T (R[X]).
While we shall employ both views in the paper, in the proofs we
shall most often represent individual finite fractions as elements of
T (R[X]). Also, for each ideal I of R, we shall use I−1 to denote the
set {t ∈ Q0(R) | tI ⊆ R} and refer to it as the inverse of I. With
this notation, I Hom (I, R) and II−1 coincide when I ∈ J (R). Note
that, with R and T (R) embedded in Q0(R), we have that the total
quotient ring of Q0(R)[X] and R[X] are the same. Thus, for each ideal
I ∈ J (R), I−1 is also equal to the set {t ∈ T (R[X]) | tI ⊆ R}.

For an ideal I of R, we call the set (R : I) = {t ∈ T (R) | tI ⊆ R} the
regular inverse of I. If I is a regular ideal of R, the regular inverse of
I coincides with the set I−1, but if I is only semiregular, I−1 may be
larger than the regular inverse of I. For each semiregular ideal I, we
let Iv = {r ∈ R | rI−1 ⊆ R} and It = ∪Jv where the union is taken
over the finitely generated semiregular ideals J ⊆ I. If I is regular,
then we have Iv = {s ∈ R | st ∈ R for each t ∈ (R : I)} and It = ∪Jv
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where the union need be taken only over the set of finitely generated
regular ideals J that are contained in I. Obviously Iv is an ideal for
each semiregular ideal I, but so is It. Any union of ideals is closed
under multiplication, that It is closed under addition follows from the
fact that if A and J are finitely generated semiregular ideals, then so
is A + J and (A + J)v contains both Av and Jv. If I = Iv, it is said to
be divisorial, and if I = It, it is said to be a t-ideal of R. A t-prime is
a prime ideal which is also a t-ideal and a maximal t-ideal is a proper
t-ideal which is maximal in the set of proper t-ideals. We use t Max (R)
to denote the set of all maximal t-ideals of the ring R. As we will see
in Theorem 3.1, t Max (R) is nonempty if and only if R �= Q0(R). For
I ∈ J (R), we say that I is Q0-invertible if II−1 = R and t-invertible
if (II−1)t = R.

For a prime ideal P of R, we may form generalized rings of quotients
R{P} and R(P ) in Q0(R) and T (R), respectively, by setting R{P} = {t ∈
Q0(R) | tr ∈ R for some r ∈ R\P} and R(P ) = {t ∈ T (R) | tr ∈ R for
some r ∈ R\P}. Obviously, the two rings coincide when Q0(R) = T (R)
and R{P} ∩ T (R) = R(P ). In particular, if M is a prime ideal of
R(X), then R(X){M} = R(X)(M). For an ideal I of R, we set
{I}R{P} = {t ∈ Q0(R) | tr ∈ I for some r ∈ R\P} and (I)R(P ) =
{t ∈ Q0(R) | tr ∈ I for some r ∈ R\P}. As with the rings themselves,
{I}R{P} ∩ T (R) = (I)R(P ). However, in general, the ideals {I}R{P}
and (I)R(P ) need not be simply extensions of the ideal I, even {P}R{P}
and (P )R(P ) need not be the same as PR{P} and PR(P ), respectively,
nor must either of {P}R{P} and (P )R(P ) be maximal. But if R is
a Marot ring and Q0(R) = T (R), then for each t ∈ R{P}, the set
I = {r ∈ R | rt ∈ R} is a regular ideal of R and thus generated by
regular elements of R. It follows that R{P} = {s/r ∈ T (R) | s ∈ R and
r ∈ R\P is a regular element of R}, also PR{P} = {P}R{P}. (For
more about R{P} see [31] and for more about R(P ) see, for example,
[13] or [18].)

Recall that, for a pair of rings R ⊆ T , the ring R is said to be a
valuation ring of T [35] if there is a totally ordered Abelian group
〈G, +〉, a symbol ∞ for which g < ∞ = g +∞ = ∞+∞ for each g ∈ G
and a function ν : T → G ∪ {∞} satisfying the following properties.

(i) ν is surjective.

(ii) ν(ab) = ν(a) + ν(b).
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(iii) ν(a + b) ≥ min{ν(a), ν(b)}.
(iv) R = {t ∈ T | ν(t) ≥ 0}.

Since ν is surjective and ν(b) = ν(1 · b) = ν(1) + ν(b) for each b ∈ T ,
ν(1) = 0 and ν(0) = ∞. The inverse image of ∞ is a common
prime ideal of R and T , and the set P = {t ∈ T | ν(t) > 0} is a
prime ideal of R. The pair (R, P ) is said to be a valuation pair of T .
Another consequence of having ν surjective is that the pair (R, P ) has
the property that for each t ∈ T\R, there is an element p ∈ P for
which pt is in R and not P . For our purposes we need only consider
valuation pairs of total quotient rings and of rings of finite fractions.
When T = Q0(R) we refer to (R, P ) as a Q0-valuation pair, and when
T = T (R) we simply say that (R, P ) is a valuation pair. If the group
G is isomorphic to the integers, then R is a discrete rank one valuation
ring when T = T (R) and it is a discrete rank one Q0-valuation ring
when T = Q0(R).

Following the terminology in [33], we say that an element t ∈ Q0(R)
is almost integral over R as an element of T (R[X]) if there is a finitely
generated R-submodule J of T (R[X]) such that each positive power
of t is contained in J . Also from [33], we say that R is completely
integrally closed in Q0(R) as a subring of T (R[X]) if the only elements
of Q0(R) which are almost integral over R as elements of T (R[X])
are the elements of R. Theorem 5 of [33] states that t ∈ Q0(R) is
almost integral over R as an element of T (R[X]) if and only if there is
a semiregular ideal I of R for which tI ⊆ I. Example 10 of [30] shows
that in general we cannot restrict J to being a submodule of Q0(R).

For a valuation pair and a Q0-valuation pair, the prime at infinity is
never a regular ideal, but might be semiregular, see Examples 8.9 and
8.12 below. For Krull rings it does not matter. But for Q0-Krull rings,
a different theory will emerge if we allow the prime at infinity to be
semiregular in the defining valuation pairs. In particular, if (R, P ) is
a discrete rank one Q0-valuation pair, then R is completely integrally
closed in Q0(R) as a subring of T (R[X]) if and only if the prime at
infinity is not semiregular. It is known that if R is not completely
integrally in Q0(R) as a subring of T (R[X]), then the associated Nagata
ring R(X) is not completely integrally closed [33, Corollaries 10 and
15]. An example of a discrete rank one Q0-valuation pair where the
prime at infinity is semiregular is given in Example 8.9. As both
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Krull domains and Krull rings are completely integrally closed, we have
chosen to define Q0-Krull rings in such a way that they are completely
integrally closed (in the sense we stated above with respect to T (R[X])).
This is the reason we require the prime at infinity for each defining Q0-
valuation pair be a prime ideal which is not semiregular. A bonus is
that this allows us to extend the associated valuation maps to the ring
T (R[X]) [15, Theorem 3.3].

In Section 6 we consider the question of when R(X) is a Krull ring.
Note that each ideal of R(X) can be generated by the set of polynomials
it contains. Moreover, if the ideal is finitely generated, then either it has
a nonzero annihilator or its generators can be assumed to be regular,
see, for example, [18, Theorem 14.2]. Hence Q0(R[X]) = T (R[X]), and
there is no difference between R(X) being a Krull ring and it being a
Q0-Krull ring.

3. t-Ideals. For an integral domain D, each proper t-ideal is
contained in a maximal t-ideal and D =

⋂
{DP |P a maximal t-ideal},

see, for example, [24, Exercise 20, p. 42]. We wish to establish similar
results for the t-ideals and the maximal t-ideals of a ring which is not a
domain. If R = Q0(R), then it can contain no proper t-ideals (because
the inverse of each semiregular ideal is simply R). On the other hand,
if R �= Q0(R), then there is an element s ∈ Q0(R)\R. For the element
s, there is a finitely generated semiregular ideal I such that sI ⊆ R.
Since I−1 �= R, Iv = It �= R, i.e., It is a proper t-ideal of R. In contrast,
if J is a semiregular ideal for which Jt = R, then there must a finitely
generated semiregular ideal A ⊆ J with 1 ∈ Av, or equivalently, with
A−1 = R. Most of the results in this section extend known results about
t-ideals and t-invertible ideals of integral domains, see, for example, [14,
34] and [17].

Theorem 3.1. Let R be a commutative ring which contains at least
one proper t-ideal. Then the following hold.

(a) Maximal t-ideals exist and each of these is prime.

(b) Each proper t-ideal is contained in a maximal t-ideal.

(c) If I and J are semiregular ideals of R, then (IJ)t = (IJt)t =
(ItJt)t.
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(d) If J is a proper t-ideal of R and P is a prime minimal over J ,
then P is a t-prime.

(e) R =
⋂
{R{P} |P a maximal t-ideal of R}.

Proof. For the most part, the proofs of the these statements are not
much different from the corresponding proofs dealing with the ideals
of an integral domain. The main difference is that we must restrict to
semiregular ideals.

To prove (a) and (b), we first show that Zorn’s Lemma applies to
the set T of proper t-ideals of R. To this end, let {Jα} be a chain in
T . We must show that J = ∪Jα is a proper t-ideal. Let I be finitely
generated semiregular ideal contained in J . Then some Jα contains I
and, since Jα is a t-ideal, it also contains Iv. Hence Iv ⊆ J and J is a
proper t-ideal. Now apply Zorn’s lemma to get maximal t-ideals. This
also shows that each proper t-ideal is contained in a maximal t-ideal.
It remains to show that each maximal t-ideal is prime.

Let P be a maximal t-ideal and let r ∈ R\P . We will show that there
is a finitely generated semiregular ideal I ⊆ P such that (rR+I)−1 = R.
If no such ideal exists, then Q = ∪{(rR + I)v | I ⊆ P and I ∈ F(R)} is
a proper t-ideal of R that properly contains P since (rR + I)v contains
Iv. This contradicts P being a maximal t-ideal so there is a finitely
generated semiregular ideal I ⊆ P such that (rR + I)−1 = R.

Now let ab ∈ P . By way of contradiction, assume neither a nor b is in
P . By the above, there must be a finitely generated semiregular ideal
I ⊆ P such that both (aR + I)−1 and (bR + I)−1 are equal to R. But
for each finitely generated semiregular ideal J ⊆ P , (abR + J)−1 �= R.
Thus there is an element s ∈ (abR + I)−1\R. Since (aR + I)−1 =
(bR + I)−1 = R, we have a contradiction: sa ∈ (bR + I)−1 = R and
sb ∈ (aR + I)−1 = R implies s ∈ (bR + I)−1 = (aR + I)−1 = R.

To prove (c), follow the same outline as in the related statement for
integral domain. The only difference is we must use semiregular ideals
instead of simply nonzero ones. For those unfamiliar with the proof
for integral domains we provide a brief sketch. First we show that
for finitely generated semiregular ideals A and B, (AB)v = (AvBv)v.
To establish this equality, let t ∈ (AB)−1. Then (tA)B ⊆ R. Hence
tA ⊆ B−1 and we have tABv ⊆ R. Now apply the same reasoning to
show tBv ⊂ A−1 and therefore tAvBv ⊆ R. That (AB)v = (AvBv)v
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now follows from the fact that the v operation preserves order. To finish
the proof let I and J be a pair of semiregular ideals of R and let C
be a finitely generated semiregular ideal contained in ItJt. Then there
are finitely generated semiregular ideals A ⊆ It and B ⊆ Jt such that
C ⊆ AB. Since the v operation preserves containment, there are finitely
generated semiregular ideals A′ ⊆ I and B′ ⊆ J such that A ⊆= A′

v

and B ⊆ B′
v. Hence Cv ⊆ (AB)v ⊆ (A′

vB
′
v)v = (A′B′)v ⊆ (IJ)t. The

conclusion follows from the fact that the t operation preserves order.

The statement in (d) is a direct consequence of (c). Let J be a proper
t-ideal of R and let P be a prime minimal over J . Let I be a finitely
generated semiregular ideal which is contained in P . Since P is minimal
over J , there is a positive integer n and an element r ∈ R\P such that
rIn ⊆ J . Thus (rR + J) is a semiregular ideal that is not contained
in P but does multiply In into J . By (c), taking the “t” of both sides
of (rR + J)In ⊆ J yields (rR + J)t(In)t ⊆ Jt = J ⊆ P . Since rR + J
is not contained in P , (In)t must be contained in P . The result now
follows from (c) since we have (Iv)n = (It)n ⊆ ((It)n)t = (In)t.

For (e), let t ∈ Q0(R)\R and let J = {r ∈ R | tJ ⊆ R}. There is a
finitely generated semiregular ideal I of R for which tI ⊆ R, so the ideal
J is semiregular. Moreover, since tJ ⊆ R and t is not in R, Jt �= R.
Thus by (b), there is a maximal t-ideal P that contains J . Since P
contains every element of R that multiplies t into R, t is not in R{P}.
It follows that R =

⋂
{R{P} |P a maximal t-ideal of R}.

Theorem 3.2. The following are equivalent for a ring R.

(1) R(X) has no proper t-ideals.

(2) R(X) = T (R[X]).

(3) R is a McCoy ring and R = T (R) = Q0(R).

Proof. [(1)⇒(2)]. Assume R(X) has no proper t-ideals. Then
R(X) can contain no regular elements which are not units. Hence
R(X) = T (R[X]).

[(2)⇔(3)]. In general, R(X) ∩ T (R) = R. With regard to Mc-
Coy rings, if R is a McCoy ring, then T (R) = Q0(R). Also R is
a McCoy ring if and only if T (R)(X) = T (R[X]) [18, Theorem 16.4].
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It follows that R(X) = T (R[X]) if and only if R is a McCoy ring and
R = T (R) = Q0(R).

[(2)⇒(1)]. As each regular element of T (R[X]) is a unit and T (R[X])
is a McCoy ring [42, Proposition 6] and [19, Theorem 1], it has no
(proper) t-ideals. Hence, if R(X) = T (R[X]), then R(X) has no t-
ideals.

The following lemma is one of several which will be useful in establish-
ing characterizations of Q0-Krull rings and Q0-Prüfer v-multiplication
rings in terms of t-invertibility.

Lemma 3.3. Let I be a semiregular ideal of R. Then

(a) I is t-invertible if and only if there is a finitely generated semireg-
ular ideal J ⊆ I and a finite dense subset A of I−1 such that (AJ)−1 =
R.

(b) If I is finitely generated, then I is t-invertible if and only if there
is a finite dense subset A ⊂ I−1 for which (AI)−1 = R.

Proof. Since (AI)−1 ⊆ (AJ)−1 whenever J ⊆ I, statement (b) follows
easily from (a).

To prove (a), first assume that I is t-invertible. Then II−1 contains
a finitely generated semiregular ideal B for which B−1 = R. It
follows that there is a finite set {b1, b2, . . . , bn} ⊂ I and a finite set
A = {a1, a2, . . . , an} ⊂ I−1 such that B ⊆ AJ where J is the ideal
generated by the bis. Since B is semiregular and B−1 = R, J is
semiregular, A is dense and (AJ)−1 = R.

Conversely, if there is a finitely generated semiregular ideal J ⊆ I and
a finite (dense) subset A of I−1 such that (AJ)−1 = R, then the ideal
AJ is a finitely generated semiregular ideal contained in II−1 whose v
is R. Hence (II−1)t = R.

Since every proper semiregular t-ideal is contained in a maximal t-
ideal, a semiregular ideal I is t-invertible if and only if no maximal
t-ideal contains II−1. As each maximal t-ideal is prime and (In)−1

contains (I−1)n, each positive power of I is t-invertible whenever I is.
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Lemma 3.4. Let I ∈ J (R). Then the following hold.

(a) If I is t-invertible, then In is t-invertible for each positive integer
n, Hom(I, I) = R, and there is a finitely generated semiregular ideal
J ⊆ I such that Jv = Iv = It.

(b) If I is a t-invertible prime ideal, then each ideal B which properly
contains I is such that Bt = R.

(c) If I is a t-invertible prime ideal and It �= R, then I is a maximal
t-ideal which is also a divisorial ideal and no semiregular prime which
is properly contained in I is t-invertible.

Proof. Assume I is t-invertible. Then (II−1)−1 = R. Now note that
f(II−1) ⊆ II−1 for each f ∈ Hom(I, I) [5]. Hence Hom(I, I) = R.

By Lemma 3.3, there is a finitely generated semiregular ideal J ⊆ I
and a finite dense subset A of I−1 such that (JA)−1 = R. We will
show that Iv = Jv. Since J ⊆ I, it suffices to show J−1 ⊆ I−1. Let
t ∈ J−1 and consider the product tIJA. Since A ⊆ I−1, tIJA ⊆ R.
As (JA)−1 = R, we must have tI ⊆ R. Thus Iv = Jv.

In addition to being t-invertible, assume that I is prime. There is
nothing to prove if It = R, so we may assume It �= R. As (II−1)t = R,
we must have I−1 �= R and Iv �= R. Let B be an ideal that properly
contains I and let r ∈ B\I. Consider the ideal J ′ = J + rR ⊆ B. For
s ∈ J ′−1, sr ∈ R so srJ ⊆ I implies sJ ⊆ I since I is prime. But then
sJA ⊆ IA ⊆ R, i.e., s ∈ (JA)−1 = R. Hence Bt = R and, therefore,
It �= R implies I is a maximal t-ideal which is also divisorial and no
semiregular prime which is properly contained in I is t-invertible.

Theorem 3.5. A ring R satisfies a.c.c. on semiregular divisorial
ideals if and only if for each semiregular ideal I there is a finitely
generated semiregular ideal A ⊆ I such that Av = Iv.

Proof. For a semiregular ideal I, if no finitely generated semiregular
ideal A ⊆ I is such that Av = Iv, then we may build an infinite
ascending chain {Ai} where each Ai is the “v” of a finitely generated
semiregular sub-ideal of I and (Ai)v �= (Ai+1)v for each i.

Conversely, let J = ∪An where {An} is an ascending chain of
semiregular divisorial ideals of R. If Jv = Av for some finitely generated
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semiregular ideal A ⊆ J . Then some Ak must contain A and we have
Av = Jv = J = Ak.

Our next lemma deals with general valuation pairs. It is particularly
useful with regard to t-invertibility of semiregular ideals.

Lemma 3.6. Let (R, P ) be a nontrivial valuation pair of a ring T . If
J is a finitely generated ideal of R which is not contained in the prime
at infinity, then there is an element t ∈ T such that tJ is contained in
R but not in P .

Proof. Let v : T → G ∪ {∞} be a valuation map corresponding to
the valuation pair (R, P ) and let J = (a1, a2, . . . , an) be a finitely
generated ideal of R which is not contained in v−1(∞). Set g =
min{v(a1), v(a2), . . . , v(an)}. Then g ≥ 0 and, since v is surjective,
there is an element t ∈ T such that v(t) = −g. It follows that
0 = min{v(ta1), v(ta2), . . . , v(tan)}. Hence tJ ⊆ R but some tai is
not in P .

Note that having tJ not contained in P does not necessarily imply
that tJ = R as P need not be a maximal ideal of R, even in the more
restricted settings where T is T (R) or Q0(R), see, for example, [18,
Example 27.7].

Theorem 3.7. Let M be a prime ideal of a ring R. Then the pair
(R, M) is a discrete rank one Q0-valuation pair with prime at infinity
not semiregular if and only if M is the only maximal t-ideal of R and
each semiregular ideal of R is t-invertible.

Proof. Assume (R, M) is a discrete rank one Q0-valuation pair with
prime at infinity not semiregular. Denote the corresponding valuation
map by ν. Since ν is discrete and rank one, for each ideal I of R,
I−1 = {t ∈ Q0(R) | ν(t) ≥ min{ν(b) | b ∈ I} }. Thus I−1 = R if and
only if I is not contained in M . Since the value group of ν is not trivial,
R �= Q0(R). Thus, R has at least one maximal t-ideal. Moreover, for
each s ∈ Q0(R)\R, the set {r ∈ R | rs ∈ R} must be contained in M .
It follows that M is a maximal t-ideal of R.
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Let J be a semiregular ideal of R. If J is not contained in M , then
there is an element j ∈ J such that ν(j) = 0. Thus there is a finitely
generated semiregular ideal A ⊆ J such that A−1 = R, simply add
jR to any finitely generated semiregular ideal that is contained in J .
Hence Jt = R and J is t-invertible. If J is contained in M , then it is not
contained in the prime at infinity. Thus min{ν(b) | b ∈ J} is positive
(and less than ∞). Let r ∈ J be such that ν(r) = min{ν(b) | b ∈ J},
and let I ⊆ J be a finitely generated semiregular ideal. Then J−1 =
(I + rR)−1 = {t ∈ Q0(R) | ν(t) ≥ −ν(r)}. As some s ∈ J−1 is such
that ν(s) = −ν(r) < 0, J−1 �= R and JJ−1 is not contained in M . It
follows that each semiregular ideal of R is t-invertible. That M is the
unique maximal t-ideal of R follows from Lemma 3.4.

Assume M is the unique maximal t-ideal of R and that every semireg-
ular ideal of R is t-invertible. By Lemma 3.4, M is divisorial. More-
over, if P is a prime which is properly contained in M , then P is not
semiregular.

For each t ∈ Q0(R)\R, the set (R :R t) must be contained in M since
such a set is always a semiregular divisorial ideal. Set I = (R :R t). As
I is semiregular, it must be t-invertible. We will show that tI is not
contained in M . Consider the ideal J = tI + I. For each g ∈ J−1, we
have both gtI and gI contained in R. It follows that gI ⊆ I and we
have g ∈ R by Lemma 3.4. Thus Jv = J . Since M is divisorial, we
have that tI is not contained in M . Therefore (R, M) is a Q0-valuation
pair.

Let G be the totally ordered Abelian group and ν the valuation map
associated with the valuation pair (R, M). Since M is t-invertible and
divisorial, there is an element t ∈ M−1 such that tM is not contained
in M . Thus ν(tp) = 0 for some p ∈ M (and ν(tr) ≥ 0 for all r ∈ M).
It follows that G has a smallest positive member. If G does not have
rank one, then it has a nontrivial subgroup H such that for each h ∈ H
and each g ∈ G, if 0 < g < h, then g ∈ H. For such a subgroup H,
the set {r ∈ R | ν(r) > h for each h ∈ H} is a prime ideal of R. By
the argument in the previous paragraph, such a prime would have to
be semiregular. As M properly contains no semiregular prime of R,
no such subgroup can exist, i.e., G has rank one. It follows that G
is isomorphic to Z and, therefore, (R, M) is a discrete rank one Q0-
valuation pair.
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Theorem 3.8. Let P be a semiregular prime ideal of R. Then the
following hold.

(a) (R{P}, {P}R{P}) is a Q0-valuation pair if and only if, for each t ∈
Q0(R)\R{P}, there is an element p ∈ P for which tp ∈ R{P}\{P}R{P}.

(b) If (R{P}, {P}R{P}) is a nontrivial Q0-valuation pair and I is a
t-invertible ideal of R, then P is a t-prime of R and I is not contained
in the prime at infinity.

(c) If P is a maximal t-ideal and each semiregular ideal contained in P
is t-invertible, then (R{P}, {P}R{P}) is discrete rank one Q0-valuation
pair whose prime at infinity is not semiregular.

Proof. For each p ∈ {P}R{P}, there is an element r ∈ R\P such that
rp ∈ P . Thus p is in {P}R{P} ∩ R if and only if it is in P .

[Proof of (a)]. By definition, (R{P}, {P}R{P}) is a Q0-valuation
pair if and only if, for each t ∈ Q0(R)\R{P}, there is an element
s ∈ {P}R{P} such that st ∈ R{P}\{P}R{P}. It follows that there
is an element r ∈ R\P such that rs ∈ P and rst ∈ R. We cannot have
rst ∈ {P}R{P} since st is not in {P}R{P}.

[Proof of (b)]. Assume (R{P}, {P}R{P}) is a nontrivial Q0-valuation
pair, and let I be a t-invertible ideal of R. To show that P is a t-prime
it suffices to show that Jv ⊆ P for each finitely generated semiregular
ideal J ⊆ P . As J is finitely generated and (R{P}, {P}R{P}) is a
nontrivial Q0-valuation pair, there is an element t ∈ Q0(R)\R{P} such
that tJ ⊆ R{P}. No element of R\P can multiply t into R{P}, but some
element r ∈ R\P must multiply tJ into R since J is finitely generated.
Thus rt ∈ J−1\R{P}. It follows that Jv ⊆ {P}R{P} ∩ R = P .

A necessary and sufficient condition for an ideal A to be contained in
the prime at infinity of (R{P}, {P}R{P}) is that AQ0(R) ⊆ {P}R{P}.
Since P is a t-prime and I is t-invertible, P does not contain II−1. Thus
II−1 is not contained in {P}R{P}. It follows that I is not contained
in the prime at infinity of (R{P}, {P}R{P}).

[Proof of (c)]. Let P be a maximal t-ideal of R such that each
semiregular ideal contained in P is t-invertible. Thus P is t-invertible.
By Lemma 3.4, P is divisorial and no semiregular prime which is
properly contained in P is t-invertible. Thus no prime which is properly
contained in P is semiregular.
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Consider the pair (R{P}, {P}R{P}). Let h ∈ Q0(R)\R{P}. The set
J = (R :R h) is always a semiregular ideal of R. Since h is not in R{P},
J is contained in P , and, therefore J is t-invertible. Consider the ideal
hJ + J . For g ∈ (hJ + J)−1, we must have gJ ⊆ J since J = (R :R h)
and both gJ and ghJ are contained in R. But as J is t-invertible,
Hom (J, J) = R. Hence g ∈ R. It follows that P cannot contain hJ .
Thus (R{P}, {P}R{P}) is a Q0-valuation pair. The prime at infinity
cannot be semiregular since no prime which is properly contained in P
is semiregular. That (R{P}, {P}R{P}) is discrete rank one follows the
same line of reasoning used in the proof of Theorem 3.7.

4. Q0-Krull rings and Q0-Prüfer v-multiplication rings. A key
step in establishing that Krull rings (domains) can be characterized as
those rings (integral domains) which are completely integrally closed
and satisfy a.c.c. on regular divisorial ideals is being able to prove
that having a.c.c. on regular divisorial ideals is enough to guarantee
that each regular divisorial ideal is contained in at most finitely many
maximal t-ideals. A standard proof of this runs as follows: First
pick a regular (nonzero) element r from the regular divisorial ideal I.
Next consider the chain of regular ideals rM−1

1 ⊆ r(M1 ∩ M2)−1 ⊆
r(M1 ∩ M2 ∩ M3)−1 ⊆ · · · where M1, M2, . . . are the maximal t-
ideals that contain I. Each of the ideals in this chain is divisorial
and r−1(M1 ∩ · · · ∩Mn) is the inverse of r(M1 ∩ · · · ∩Mn)−1. So there
is an integer n for which r(M1 ∩ · · · ∩ Mn)−1 = r(M1 ∩ · · · ∩ Mn+1)−1

and so r−1(M1∩· · ·∩Mn) = r−1(M1∩· · ·∩Mn+1). Now simply cancel
r−1 and use the fact that the Mis are distinct maximal t-ideals. As
we are dealing with semiregular ideals rather than regular ones, the
same proof does not carry over directly to our situation since I need
not contain a regular element. All is not lost however. A similar style
of proof will work under the additional assumption that the ideal I
contains a t-invertible ideal J , the ideal J can be substituted for the
regular element r. Moreover, one of our characterizations of Q0-Krull
rings is that R is a Q0-Krull ring if and only if each semiregular ideal is
t-invertible. In Example 8.10 we construct a Krull ring which has a.c.c.
on semiregular divisorial ideals but has a semiregular divisorial ideal
which is contained in infinitely many maximal t-ideals (so this ring is
not a Q0-Krull ring).
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Lemma 4.1. Let R be a ring with a.c.c. on semiregular divisorial
ideals. If I is a divisorial semiregular ideal that contains a t-invertible
ideal J , then the set of maximal t-ideals that contain I is finite.

Proof. Assume I is a divisorial semiregular ideal that contains a t-
invertible ideal J . Construct a chain (JM−1

1 )v ⊆ (J(M1 ∩ M2)−1)v ⊆
(J(M1∩M2∩M3)−1)v ⊆ · · · where M1, M2, M3, etc., are the maximal
t-ideals that contain I. A consequence of Theorem 3.5 is that each Mn

must be divisorial. Since R has a.c.c. on semiregular divisorial ideals,
the chain stabilizes at some n. Since each intersection M1∩M2∩· · ·∩Mn

is a semiregular divisorial ideal of R and an intersection of distinct
maximal t-ideals, it suffices to show that if A and B are comparable
divisorial ideals that contain I, then (JA−1)v = (JB−1)v implies
A = B. By way of contradiction assume A is properly contained
in B and (JA−1)v = (JB−1)v. Then A−1B is not contained in
R, but we do have J−1B ⊆ (JB−1)−1 = (JA−1)−1 and therefore,
JJ−1BA−1 ⊆ R. Since J is t-invertible, (JJ−1)t = R. Thus, by
Theorem 3.5, (JJ−1)v = R as well. But the latter equality is equivalent
to saying that (JJ−1)−1 = R which then implies that BA−1 ⊆ R.
Therefore (JA−1)v = (JB−1)v implies A = B. Hence I is contained in
only finitely many maximal t-ideals.

Lemma 4.1 together with Lemma 3.4 and Theorems 3.5 and 3.8
provide enough tools to give several ways of characterizing Q0-Krull
rings. If one deletes the reference to the prime at infinity being
semiregular, relaxes the condition about R being completely integrally
closed in Q0(R) as a subring of T (R[X]) to simply R being completely
integrally closed in T (R) and replaces “semiregular” by “regular” and
“Q0(R)” by “T (R)”, then statements (2) through (6) in Theorem 4.2
are all equivalent to R being a Krull ring, see [36, Theorem 1], [3,
Proposition 2.11] and [23, Theorem 3.6].

Theorem 4.2. The following are equivalent for a ring R.

(1) R is a Q0-Krull ring.

(2) Each semiregular ideal I is contained in at most finitely many
maximal t-ideals and for each maximal t-ideal M , (R{M}, {M}R{M})
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is a discrete rank one Q0-valuation pair whose prime at infinity is not
semiregular.

(3) The set of semiregular divisorial ideals of R satisfies the ascending
chain condition and R is completely integrally closed in Q0(R) as a
subring of T (R[X]).

(4) Each semiregular ideal of R is t-invertible.

(5) Each semiregular prime ideal of R is t-invertible.

(6) Each semiregular prime ideal of R contains a t-invertible semireg-
ular prime ideal.

Proof. All of the statements hold if R = Q0(R), so throughout the
proof we will assume that R �= Q0(R). Obviously (2) implies (1), (4)
implies (5) and (5) implies (6). A simple consequence of Lemma 3.4 is
that (6) implies (5). To complete the proof we prove that (3) and (4)
are equivalent, (4) implies (2), (5) implies (4) and, finally, (1) implies
(3).

[(3)⇒(4)]. Assume that the set of semiregular divisorial ideals of R
satisfies the ascending chain condition and R is completely integrally
closed in Q0(R) as a subring of T (R[X]). Since R is completely
integrally closed in Q0(R) as a subring of T (R[X]), Hom(I, I) = R
for each semiregular ideal I. Combining this statement with the fact
that Hom(II−1, II−1) = (II−1)−1 [5], we also have (II−1)−1 = R
and, therefore, (II−1)v = R.

Let I be a semiregular ideal of R. There is nothing to prove if
It = R, so we may assume It �= R. Let A1 ⊂ A2 ⊂ A3 · · · be a
chain of finitely generated semiregular ideals contained in I. Then
(A1)v ⊆ (A2)v ⊆ (A3)v ⊆ · · · is a chain of semiregular divisorial ideals
which are all contained in It. By a.c.c. this chain must stabilize at
some integer n. It follows that It = Av for some finitely generated
semiregular ideal A ⊆ I. In particular we have that each proper t-ideal
is a semiregular divisorial ideal. It follows that (II−1)t = (II−1)v = R.

[(4)⇒(3)]. Assume that each semiregular ideal of R is t-invertible. By
Lemma 3.4, if B is t-invertible, Hom (B, B) = R and there is a finitely
generated semiregular ideal A ⊆ B for which Av = Bt = Bv. That R is
completely integrally closed in Q0(R) as a subring of T (R[X]) follows
from [33, Theorem 5].
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Let {Jα} be a chain of semiregular divisorial ideals. Then I = ∪Jα

is a t-ideal of R. Hence I is t-invertible. Thus, by Lemma 3.4, there is
a finitely generated semiregular ideal J ⊆ I such that Jv = I = Iv and
it follows that the chain stabilizes.

[(4)⇒(2)]. Assume that each semiregular ideal of R is t-invertible.
Then R is completely integrally closed in Q0(R) as a subring of
T (R[X]) and satisfies a.c.c. on semiregular divisorial ideals. By Theo-
rem 4.1, each semiregular divisorial ideal is contained in at most finitely
many maximal t-ideals. By Theorem 3.8, for each maximal t-ideal P ,
(R{P}, {P}R{P}) is a discrete rank one Q0-valuation pair with prime
at infinity not semiregular.

[(5)⇒(4)]. Assume that each semiregular prime ideal of R is t-
invertible. Let J be a semiregular ideal of R. Since {P}R{P} ∩ R = P
for each maximal t-ideal P , it suffices to show that {P}R{P} never
contains {JJ−1}R{P}. There is nothing to prove for those maximal t-
ideals which do not contain J . Let P(J) be the set of maximal t-ideals
which contain J . Note that, by Lemma 3.4, no prime which is properly
contained in a maximal t-ideal is semiregular. Thus each P ∈ P(J) is
minimal over J . Let P be a fixed element in the set P(J). As P is a
t-invertible maximal t-ideal, PP−1 is not contained in P and, therefore,
PRP must be a principal (regular) ideal of RP . It follows that there
is a positive integer n such that JRP = PnRP . Hence for each r ∈ J
and each p ∈ Pn, there are elements s, t ∈ R\P such that rs ∈ Pn and
pt ∈ J . It follows that {J}R{P} = {Pn}R{P}.

Note that, for each r ∈ {Pn}R{P}, there is an element t ∈ R\P
such that tr ∈ Pn, Hence for each s ∈ (Pn)−1, tsr ∈ R. There-
fore s ∈ ({Pn}R{P})−1 = ({J}R{P})−1. As P does not contain
Pn(Pn)−1, (Pn)−1{J}R{P} is contained in R{P} but not in {P}R{P}.
In particular, there are elements p ∈ Pn, t ∈ (Pn)−1 and s ∈ R\P
such that sp ∈ J and tp ∈ R\P . Thus spt ∈ R\P . To com-
plete this portion of the proof, all we need do is show that J−1 con-
tains (Pn)−1. As R = ∩{R{Q} |Q ∈ tMax (R)}, it suffices to show
(Pn)−1{J}R{Q} ⊆ R{Q} for each maximal t-ideal Q. We have taken
care of the case Q = P . Hence it only remains to consider the case
where Q �= P . But, for Q different from P , (Pn)−1 ⊆ R{Q} since Pn

is not contained in Q. Thus (Pn)−1{J}R{Q} ⊆ R{Q}. It follows that
J−1 contains (Pn)−1 and, therefore, J is t-invertible.
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[(1)⇒(3)]. Assume R is a Q0-Krull ring, and let {(Vα, Mα)} be a
family of discrete rank one Q0-valuation pairs such that R = ∩Vα,
each finitely generated semiregular ideal is contained in at most finitely
many of the Mαs, and for each pair, the prime at infinity is not
semiregular. It follows that each semiregular ideal of Vα is t-invertible.
By combining Lemma 3.4 and Theorem 3.5 we see that each Vα is
completely integrally closed in Q0(R) as a subring of T (R[X]) and
each satisfies a.c.c. on semiregular divisorial ideals. Since R = ∩Vα,
R is completely integrally closed in Q0(R) as a subring of T (R[X]).
To complete the proof all we need prove is that R satisfies a.c.c. on
semiregular divisorial ideals.

By Theorem 3.5, it suffices to show that each semiregular divisorial
ideal is the “v” of some finitely generated semiregular ideal. Let I = Iv

be a semiregular divisorial ideal of R. Then, for each Vα, IVα is
t-invertible. Moreover, for all but finitely many Vα, (IVα)t = Vα.
For those Vα where (IVα)v �= Vα, we can choose a finitely generated
semiregular Jα ⊆ I such that (JαVα)v = (IVα)v. As we need do
this only finitely many times, the sum J of these Jαs is again finitely
generated and (JVα)v = (IVα)v whenever (IVα)v �= Vα. It is possible
that (JVβ)v �= Vβ while (IVβ)v = Vβ . But this can happen at most
finitely many times and, for each such Vβ , there is a finitely generated
semiregular ideal Iβ ⊆ I such that (IβVβ)v = (IVβ)v. Let J ′ be the
sum of J and the Iβs. We will show that Iv = J ′

v. To this end let
t ∈ J ′−1. Then t ∈ (J ′Vα)−1 for each α. As (IVα)v = (J ′Vα)v for
each α, tIVα ⊆ Vα. That t is in I−1 now follows from the fact that
R =

⋂
Vα.

A consequence of our next theorem is that, if R is a Q0-PvMR, then
either R = Q0(R) or (R{M}, {M}R{M}) is a Q0-valuation pair for each
maximal t-ideal M , thus establishing the implication (C) ⇒ (D) from
our list in the introduction. Statement (3) shows what must be added
to (D) for it to gain equivalence with (C).

Theorem 4.3. The following are equivalent for a ring R.

(1) R is a Q0-PvMR.

(2) Either R = Q0(R) or (R{P}, {P}R{P}) is a nontrivial Q0-
valuation pair for each prime t-ideal P .
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(3) Either R = Q0(R) or for each maximal t-ideal M of R,
(R{M}, {M}R{M}) is a Q0-valuation pair whose corresponding prime
at infinity is not semiregular.

Proof. [(1)⇒(2)]. Assume R �= Q0(R) is a Q0-PvMR, and let
P be a prime t-ideal. First note that R ∩ {P}R{P} = P for if
t ∈ R ∩ {P}R{P}, then there is an element r ∈ R\P such that rt ∈ P .
If R{P} = Q0(R), then {P}R{P} is an (prime) ideal of Q0(R). It
follows that if J is a finitely generated semiregular contained in P ,
then JJ−1 ⊆ JQ0(R) ⊆ {P}R{P}. But, as R is a Q0-PvMR and P is
a t-ideal, P does not contain JJ−1. Hence, {P}R{P} cannot contain
JQ0(R), and therefore R{P} �= Q0(R).

Let s ∈ Q0(R)\R{P}. Then for each finitely generated semiregular
ideal B of R, if sB ⊆ R, then B ⊆ P . Also for some finitely
generated semiregular ideal J , sJ ⊆ R. Let I = sJ + J . If I is
not contained in P , then there is an element b ∈ J ⊆ {P}R{P} such
that bs ∈ R{P}\{P}R{P}. Thus we may assume that P contains sJ .
Since R is a Q0-PvMR and J is finitely generated, there is a finite
dense set A contained in I−1 such that (AI)−1 = R. Thus AJ ⊆ R
and sAJ ⊆ R. Since P is a t-ideal, AI is not contained in P . We must
have AJ ⊆ P , for otherwise s is in R{P}. Thus sAJ is not contained in
P and there is an element r ∈ AJ ⊆ P such that sr ∈ R{P}\{P}R{P}.
Therefore, (R{P}, {P}R{P}) is a Q0-valuation pair.

[(2)⇒(3)]. Assume R �= Q0(R) and that (R{P}, {P}R{P}) is a
nontrivial Q0-valuation ring for each t-prime P . Let M be a max-
imal t-ideal of R. We must show that the prime at infinity of
(R{M}, {M}R{M}) is not semiregular. Let P∞ be the prime at infinity
of (R{M}, {M}R{M}), and let P = P∞ ∩ R. By way of contradiction,
assume P is semiregular. We first show that if such is the case, then
P is a t-ideal. To this end, let J be a finitely generated semiregular
contained in P and let t ∈ Q0(R). Since J ⊆ P∞, tJ ⊆ R{M}. Thus
there is an element s ∈ R\M such that stJ ⊆ R since J is finitely gen-
erated. Hence, st ∈ J−1. It follows that stJv ⊆ R. As s is not in M ,
tJv ⊆ R{M}. Thus JvQ0(R) ⊂ R{M} is a common ideal of Q0(R) and
R{M}. This is only possible if Jv is contained in P∞. Hence, Jv ⊆ P
and P is a t-ideal.
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Since {P}R{M} ⊆ {P}R{P}, {P}R{P} must be the prime at infinity
for the Q0-valuation pair (R{P}, {P}R{P}), i.e., (R{P}, {P}R{P}) is a
trivial Q0-valuation pair contradicting our assumption that each such
valuation pair is nontrivial. Therefore, P∞ is not semiregular and R is
a Q0-PvMR.

[(3)⇒(1)]. Assume R �= Q0(R), and let M be a maximal t-ideal of R.
Further assume that the prime at infinity of (R{M}, {M}R{M}) is not
semiregular. Then, for each finitely generated semiregular J ⊆ M ,
JJ−1 is not contained in M . Let J ⊆ M be a finitely generated
semiregular. As the prime at infinity of (R{M}, {M}R{M}) is not
semiregular, it does not contain J . Hence there is an element t ∈ Q0(R)
such that tJ is contained in R{M} but is not contained in {M}R{M}.
Since J is finitely generated, there is an element s ∈ R\M such that
stJ ⊆ R but is not contained in M . Thus st ∈ J−1 and M does not
contain JJ−1.

As with Q0-Krull rings, a Q0-PvMR is always a PvMR, but the
converse is false. In Example 8.9, we construct a ring R for which
(R{M}, {M}R{M}) is a nontrivial Q0-valuation pair for each maximal
t-ideal M , yet R is not Q0-PvMR. What fails, of course, is that the
prime at infinity of (R{M}, {M}R{M}) is a semiregular ideal.

5. Maximal t-ideals of R[X] and R(X). For an integral domain
D, the maximal t-ideals of D[X] are of two types. There are maximal
t-ideals of the form PD[X] where P is a maximal t-ideal of D and
there are maximal t-ideals of the form f(X)K[X] ∩ D[X] where f(X)
is an irreducible polynomial of K[X], with coefficients in D if one
desires, where K is the quotient field of D [17, Proposition 1.1]. These
second types are referred to as “uppers to zero” since such an ideal
contracts to (0) when intersected with D. Note that for each irreducible
polynomial f(X), the ideal f(X)K[X] ∩ D[X] yields an upper to zero
but it need not yield a maximal t-ideal. It turns out that an upper
to zero is a maximal t-ideal if and only if it contains a polynomial
g(X) for which C(g)−1 = D, by the aforementioned [17, Proposition
1.1]. In the ring D(X) we also have two types of maximal t-ideals,
those of the form PD(X) where P is a maximal t-ideal of D, and those
which are extensions of uppers to zero of D[X] that do not contain
polynomials with unit content. Similar things happen for rings which
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are not domains. However, the second type of maximal t-ideal can
come in two different forms.

When R �= Q0(R), there are three types of maximal t-ideals in the
rings R[X] and R(X); there are two types when R = Q0(R). For a
maximal t-ideal M of R(X) (R[X]), we say that M is of type I, if
M = PR(X), PR[X], for some maximal t-ideal P of R. We say that
M is of type II, if P = M ∩ R is a minimal prime of R, and M is of
type III, if P = M ∩ R is neither a minimal prime nor a semiregular
ideal of R. If R = Q0(R), then R has no proper t-ideals. Thus in this
case there are no maximal t-ideals of type I in R[X] and R(X). The
next several results will provide proofs for these assertions.

For an integral domain D, it is well known that (ID[X])−1 =
I−1D[X] for each nonzero ideal I of D [39, Proposition 7.1]. Our
next lemma establishes a similar result for semiregular ideals.

Lemma 5.1. Let A be a semiregular ideal of R. Then the following
hold.

(a) (AR[X])−1 = A−1R[X] and (AR(X))−1 = A−1R(X).

(b) AvR[X] = (AR[X])v and AvR(X) = (AR(X))v.

Proof. Let f(X)/g(X) be an element of (AR[X])−1. It suffices
to show that f(X)/g(X) is in I−1R[X] for each finitely generated
semiregular ideal I ⊆ A. Let I = (a0, a1, . . . , an) ⊆ A be a finitely
generated semiregular ideal. Let a(X) =

∑
aiX

i. Since a(X) ∈ AR[X]
is a regular element, we may assume that g(X) = a(X). Thus we have
[f(X)/a(X)]A ⊆ R[X]. We first show that f(X)/a(X) is in I−1R[X].
Let di(X) = aif(X)/a(X). Then, for each i and j, di(X)aj = dj(X)ai.
Hence the coefficients dik of di(X) and the coefficients djk of dj(X) are
such that dikaj = djkai. For each k, set rk(X) =

∑
dikXk. Since

dikaj = djkai, hk = rk(X)/a(X) ∈ I−1. Moreover, hkai = dik for each
i and k. Hence h(X) =

∑
hkXk ∈ I−1R[X]. That h(X) is equal to

f(X)/a(X) follows from the fact that for each i, aih(X) = di(X) =
aif(X)/a(X).

To see that (AR(X))−1 = A−1R(X), let f(X)/g(X) ∈ (AR(X))−1

and again let a(X) =
∑

aiX
i where I = (a0, a1, . . . , an) ⊆ A is

an arbitrary finitely generated semiregular ideal. In this case, we
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may assume that g(X) = a(X)u(X) for some u(X) ∈ U . Since
I is finitely generated, there is a polynomial v(X) ∈ U for which
v(X)u(X)[f(X)/g(X)]I ⊆ R[X]. From part (a), we have v(X)f(X)/
a(X) ∈ I−1R[X]. As both u(X) and v(X) are units of R(X),
f(X)/g(X) is in I−1R(X). Therefore, (AR(X))−1 = A−1R(X).

Now suppose j(X) ∈ R[X] is in (A−1R[X])−1. Then tj(X) ∈ R[X]
for each t ∈ A−1. It follows that each coefficient of j(X) is in A.
Hence AvR[X] = (AR[X])v. Since each ideal of R(X) is generated
by polynomials, the same proof is enough to verify that AvR(X) =
(AR(X))v.

For polynomials f(X) ∈ R[X] and h(X) ∈ Q0(R)[X], the Dedekind-
Mertens formula [10, Theorem 28.1] guarantees the existence of a
positive integer n for which C(fh)C(f)n = C(f)n+1C(h). In the
formula, C(h) denotes the R-submodule of Q0(R) generated by the
coefficients of h(X). We will make use of this formula in the proof of
our next lemma, and in several others.

Lemma 5.2. Let A = (a0, a1, . . . , an) be a finitely generated
semiregular ideal of a ring R, and let f(X) ∈ R[X]\{0}. Then the
following hold.

(a) ([A, f(X)]R[X])−1 �= R[X] if and only if [A, C(f)]−1 �= R.

(b) [(A, f(X))R(X)]−1 �= R(X) if and only if [A, C(f)]−1 �= R.

Proof. If [A, C(f)]−1 �= R, then ([A, f(X)]R[X])−1 �= R[X] and
[(A, f(X))R(X)]−1 �= R(X) since R = Q0(R)∩R[X] = Q0(R)∩R(X).

Let g ∈ [(A, f(X))R(X)]−1\R(X). Since A is finitely generated,
there is a polynomial u(X) ∈ U such that gu(X)A ⊆ R[X] and
gu(X)f(X) ∈ R[X]. It follows that gu(X) ∈ ([A, f(X)]R[X])−1\R[X].
As A−1R[X] = (AR[X])−1, we may assume g is a polynomial with
coefficients in Q0(R). Applying the Dedekind-Mertens formula, we
have that C(f)nC(fg) = C(f)n+1C(g) ⊆ R for some minimal integer
n ≥ 0. Thus each coefficient of g is in (C(f)n+1)−1 and some
coefficient is not in (C(f)n)−1. As C(g)C(f)n ⊆ [A, C(f)]−1, we have
[A, C(f)]−1 �= R.
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Lemma 5.3. Let I be an ideal of R and let R = R/I. If f(X) ∈
R[X]\Z(R[X]) is such that C(f)R = R, then there is a polynomial
u(X) ∈ U such that for each s(X) ∈ R[X], s̄(X)/f̄(X) = s̄(X)/u(X).

Proof. Let f(X) ∈ R[X] be such that C(f)R = R. Write f(X) =
fnXn+· · ·+f1X+f0 and let r0, r1, . . . , rn ∈ R be such that

∑
f̄i r̄i = 1̄.

Thus there is an element b ∈ B such that b +
∑

firi = 1. Set
u(X) = bXn+1 + f(X). The result now follows easily from the fact
that b̄ = 0.

Lemma 5.4. Let f(X) =
∑

fjX
j ∈ R[X] be a regular element of

R[X], and let B be an ideal of R which is contained in f(X)R(X)∩R.
For the ring R = R/B, if C(f)−1 �= R, then C(f)−1 �= R.

Proof. Let h̄ ∈ C(f)
−1\R and for each coefficient fi of f(X), let

ri ∈ R be such that h̄ f̄i = r̄i. It follows that, for each i and j,
there is an element bi,j ∈ B such that firj = fjri + bi.j . Set r(X) =∑

rjX
j and bi(X) =

∑
bi.jX

j for each i. As BR(X) ⊆ f(X)R(X),
(r(X)/f(X))fi = ri + bi(X)/f(X) ∈ R(X). Since r̄(X)/f̄(X) = h̄ /∈
R, r(X)/f(X) ∈ (R(X) : C(f))\R(X). Therefore by Lemma 5.1,
C(f)−1 �= R.

For an ideal I of the polynomial ring R[X], the content of I is simply
the ideal of R generated by the content of each member of I. As each
ideal of R(X) can be generated, as an ideal of R(X)) by polynomials,
we can define a similar ideal for each ideal J of R(X). In this case, we
set C(J) = ∪{C(g) | g(X) ∈ J ∩ R[X]}.

Theorem 5.5. Let P be a maximal t-ideal of R. Then PR[X] is a
maximal t-ideal of R[X] and PR(X) is a maximal t-ideal of R(X).

Proof. Let I be a finitely generated regular ideal contained in PR[X].
Then there is finitely generated semiregular ideal A ⊆ P such that
I ⊆ AR[X]. Thus Iv ⊆ (AR[X])v = AvR[X] ⊆ PR[X] by Lemma 5.1.
Thus PR[X] is a t-ideal of R[X]. A similar argument shows that
PR(X) is a t-ideal of R(X).
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To see that PR[X] is a maximal t-ideal let M be a maximal t-ideal
that contains PR[X]. Then, for each polynomial f(X) ∈ M and each
finitely generated semiregular ideal A ⊆ P , ([A, f(X)]R[X])−1 �= R[X]
since M is a t-ideal. But then by Lemma 5.2 we also must have
(A, C(f))−1 �= R. As P is a maximal t-ideal of R, it follows that
f ∈ PR[X] and hence PR[X] is a maximal t-ideal of R[X]. As above,
similar reasoning shows that PR(X) is a maximal t-ideal of R(X).

Theorem 5.6. Let M be a maximal t-ideal of R[X], and let
P = M ∩ R. Then the following hold.

(a) P is semiregular if and only if M = PR[X] and P is a maximal
t-ideal of R. Hence, if R = Q0(R), then each finitely generated ideal
contained in P has a nonzero annihilator.

(b) If P is not a maximal t-ideal, then each finitely generated ideal
contained in P has a nonzero annihilator, M contains a regular polyno-
mial f(X) for which C(f)−1 = R and M is the contraction to R[X] of
a maximal t-ideal N of Q0(R)[X] such that R[X](M) = Q0(R)[X](N).

(c) If P is not a maximal t-ideal of R[X] and (R[X](M), (M)R[X](M))
is a valuation pair, then P is a minimal prime of R.

(d) If P is a minimal prime of R and R is reduced, then (R[X](M),
(M)R[X](M)) is a discrete rank one valuation pair.

Proof. [Proof of (a)]. By Theorem 5.6, if P is a maximal t-ideal or
R, then PR[X] is a maximal t-ideal of R[X]. Hence M = PR[X] and
P is semiregular.

For the converse, assume P is a semiregular ideal of R. Let A =
(a0, a1, . . . , an) be a finitely generated semiregular ideal contained in P ,
and let a(X) =

∑
aiX

i. Then, for each polynomial h(X) ∈ M , there
is an integer m ≥ 0 such that the polynomial r(X) = h(X) + Xma(X)
is regular. Since M is a t-ideal, ([A, r(X)]R[X])−1 �= R[X]. Thus, by
Lemma 5.2, [A, C(r)]−1 �= R. It follows that C(M)t �= R and, therefore,
M ⊆ C(M)tR[X] ⊆ (C(M)R[X])t �= R[X]. As M is a maximal t-
ideal of R[X], we must have M = C(M)tR[X] = (C(M)R[X])t with
C(M)t = P a maximal t-ideal of R.
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As Q0(R) has no maximal t-ideals, each maximal t-ideal of Q0(R)
must contract to a prime ideal which is not semiregular, i.e., an ideal
all of whose finitely generated subideals have nonzero annihilators.

[Proof of (b)]. If P is not a maximal t-ideal of R, then by (a) it
cannot be semiregular. Hence, each finitely generated ideal contained
in P must have a nonzero annihilator. If each regular f(X) ∈ M∩R[X]
is such that C(f)−1 �= R, then (C(M))t �= R. Hence M would be
properly contained in (C(M))tR[X] ⊆ (C(M)R[X])t �= R[X]. Thus
some regular f(X) in M ∩R[X] must be such that C(f)−1 = R. Since
P is not semiregular, for each s ∈ Q0(R), the ideal (R :R s) is not
contained in M . Hence each element of Q0(R) is contained in R[X](M).
So R[X](M) contains Q0(R)[X].

Now suppose g(X) ∈ Q0(R)[X] is such that g(X)f(X) ∈ R[X].
Then by the Dedekind-Mertens formula we have C(g)C(f)n+1 =
C(gf)C(f)n for some integer n ≥ 0. As both C(gf) and C(f) are ideals
of R, C(g) must be contained in [C(f)n+1]−1. But [C(f)n+1]−1 = R
since C(f)−1 = R, and it follows that each finitely generated regular
ideal J ⊆ M that contains f(X) is such that J−1 ∩Q0(R)[X] = R[X].

Let N = (M)R[X](M)∩Q0(R)[X]. Then N ∩R[X] = (M)R[X](M)∩
R[X] = M . Obviously, R[X](M) ⊆ Q0(R)[X](N). To establish the
reverse containment, let r ∈ Q0(R)[X](N). Then there is an element
s ∈ Q0(R)[X]\N such that rs ∈ Q0(R)[X]. Since R[X](M) contains
Q0(R)[X], there is an element t ∈ R[X]\M such that both tsr and ts
are in R[X]. As N ∩ R[X] = M , ts ∈ R[X]\M . Thus r ∈ R[X](M).

To complete the proof, we need to show that N is a maximal t-ideal
of Q0(R)[X].

We first show that each finitely generated regular ideal contained in N
has a nontrivial inverse. To this end, let I = (a1(X), a2(X), . . . , an(X))
⊆ N be a finitely generated regular ideal of Q0(R)[X]. Since R[X]
is a Marot ring and I is finitely generated, there is a regular ele-
ment s(X) ∈ R[X]\M such that s(X)I ⊆ M . Consider the ideal
B = s(X)I + f(X)R[X]. As M is a maximal t-ideal of R[X], there is
an element t(X)/r(X) ∈ B−1\R[X]. Since C(f)−1 = R, t(X)/r(X)
cannot be a polynomial in Q0(R)[X]. Neither can s(X)t(X)/r(X)
unless it is also in R[X]. As Bv ⊆ M and s(X) is not in M ,
s(X)B−1 is not contained in R[X], nor is it contained in Q0(R)[X].
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It follows that the inverse of I as an ideal of Q0(R)[X] properly contains
Q0(R)[X]. Hence Nt �= Q0(R)[X].

Let M ′ = Nt ∩ R[X] and assume M ′ �= M . Since M is a maximal
t-ideal of R[X], we must have M ′

t = R[X]. Thus there is a finitely
generated regular ideal J ⊆ M ′ such that J−1 = R[X]. Set J ′ =
JQ0(R)[X]. Since Nt �= Q0(R)[X], J ′ −1 �= Q0(R)[X]. Let t ∈
J ′ −1\Q0(R)[X]. As tJ ⊆ Q0(R)[X] and J is finitely generated, there
is a finitely generated semiregular ideal A of R such that tJA ⊆ R[X].
Since J−1 = R[X], we must have tA ⊆ R[X]. But then we have
t ∈ (AR[X])−1 = A−1R[X] ⊆ Q0(R)[X], a contradiction.

Finally, we show that N = Nt. By way of contradiction, let
a(X) ∈ Nt\N . Since Q0(R)[X] is a Marot ring and N is a regular ideal
of Q0(R)[X], we may assume a(X) is regular. Since N = (M)R[X](M)∩
Q0(R)[X] and Q0(R)[X] is contained in R[X](M), a(X) must be a unit
of R[X](M). Thus there are regular elements r(X), s(X) ∈ R[X]\M
such that a(X) = r(X)/s(X). Thus r(X) = a(X)s(X) ∈ (Nt ∩
R[X])\M , a contradiction.

[Proof of (c)]. Assume (R[X](M), (M)R[X](M)) is a valuation pair.
By way of contradiction, assume P is neither minimal nor semiregular.
Then there is a polynomial f(X) =

∑
fiX

i ∈ M ∩ R[X] which is
regular and such that C(f)−1 = R. Let Q be a minimal prime
ideal which is contained in P and let a ∈ P\Q. Since R[X] is a
Marot ring, the regular elements of (M)R[X](M) map onto the positive
elements of the corresponding value group. From this it follows that
PR[X](M) = (P )R[X](M) must be contained in the prime at infinity
of (R[X](M), (M)R[X](M)), otherwise there is an element b ∈ P with
positive value under the valuation ν and a regular element a with the
same value. In such a case b/a would have value 0 and therefore
not be in (M)R[X](M) so not in PR[X](M). But we would have
b = (b/a)a in the prime ideal PR[X](M) forcing a to be in PR[X](M),
which is impossible. Hence we have PR[X](M) = PT (R[X]) ⊃
QT (R[X]) = QR[X](M). Thus there is a element r(X) ∈ R[X]\M
such that r(X)(a/f(X)) = s(X) ∈ R[X]. Thus r(X)/f(X) ∈ (R[X] :
(f(X), a))\R[X].

Set R = R/Q. Then r̄(X)/f̄(X) ∈ (R[X] : (f̄(X), ā))\R[X]. Since
Q is prime and a is not in Q, the Dedekind-Mertens formula implies
that s̄(X)/ā = r̄(X)/f̄(X) ∈ (R : C(f)

m
+ aR)R[X] for some m.
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Let {g0, g1, . . . , gn} be a set of generators for C(f)m. For each i, let
ti ∈ R be such that (r̄(X)/f̄(X))ḡi = t̄i. Then r̄(X)ḡi = t̄if̄(X).
So, for each pair i and j, there is an element qi,j ∈ Q such that
girj = fjti + qi,j . Set g(X) =

∑
gjX

j , t(X) =
∑

tjX
j and qi(X) =∑

qi,jX
j . Then for each i, (r(X)/f(X))gi = ti + qi(X)/f(X). Since

QT (R[X]) ⊆ R(X)(M), there is an element h(X) ∈ R[X]\M such
that h(X)qi(X)/f(X) ∈ R[X] for each i. Thus h(X)r(X)/f(X) ∈
(R[X] : C(g)) = C(g)−1R[X]. Since neither h(X) nor r(X) are in
M but f(X) is, h(X)r(X)/f(X) is not in R[X], i.e., we would have
h(X)r(X)/f(X) ∈ C(g)−1R[X]\R[X]. But, as C(g) = C(f)m and
C(f)−1 = R, we also have C(g)−1R[X] = R[X]. Thus P must be a
minimal prime of R, i.e., M is of type II.

[Proof of (d)]. Assume P is a minimal prime of R and that R is
reduced. We first show that PR[X](M) = PT (R[X]). This is rather
easy since R being reduced implies that r ∈ P if and only if P does not
contain Ann (r). Hence, for each r ∈ P , M does not contain Ann (r),
and therefore r/t ∈ R(X)(M) for each regular element t ∈ R. It follows
that PR(X)(M) = PT (R[X]).

Set R = R/P , and let K denote the quotient field of R. Then
both R(X)(M)/PT (R[X]) and T (R[X])/PT (R[X]) embed naturally
into K(X). In R[X], M is an upper to zero and therefore, R[X]M
is a discrete rank one valuation domain (with quotient field K(X)).
Let ν denote the valuation associated with R[X]M . Define a map
ν from T (R[X]) to Z ∪ {∞} as follows: Let g(X)/f(X) ∈ T (R[X])
with f(X), g(X) ∈ R[X], and f(X) regular. If g(X) is not in
PR[X], set ν(g(X)/f(X)) = ν(ḡ(X)/f̄(X)). If g(X) ∈ PR[X], set
ν(g(X)/f(X)) = ∞.

To complete the proof all we need show is that (R[X](M), (M)R[X](M))
is the valuation pair associated to ν. Since PT (R[X]) is a common
prime of T (R[X]) and R[X](M), we simply need to show that R[X]M ∩
(T (R[X])/PT (R[X])) = R[X](M)/PT (R[X]). Let g(X)/f(X) ∈
T (R[X]) be such that ḡ(X)/f̄(X) ∈ R[X]M . Thus there are polynomi-
als h(X), j(X) ∈ R[X] with j(X) ∈ R[X]\M such that ḡ(X)f̄(X) =
h̄(X)/j̄(X). Thus ḡ(X)j̄(X) = f̄(X)h̄(X). It follows that there is a
polynomial p(X) ∈ PR[X] such that g(X)j(X) = f(X)h(X) + p(X).
Thus (g(X)/f(X))j(X) = h(X) + p(X)/f(X). As PT (R[X]) ⊂
R[X](M) and j(X) is not in M , g(X)/f(X) is in R[X](M).
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A similar result holds for the maximal t-ideals of R(X). For part
(d) it seems critical that we assume R(X) contains the nilradical of
T (R[X]). Otherwise, it may be that R(X)(M) does not contain the
nilradical of T (R[X]). This would prevent it from being a valuation
ring.

Theorem 5.7. Let M be a maximal t-ideal of R(X), and let
P = M ∩ R. Then the following.

(a)P is semiregular if and only if M = PR(X) and P is a maximal
t-ideal of R. Hence, if R = Q0(R), then each finitely generated ideal
contained in P has a nonzero annihilator.

(b) If P is not a maximal t-ideal, then each finitely generated ideal
contained in P has a nonzero annihilator and M contains a regular
polynomial f(X) for which C(f)−1 = R.

(c) If P is not a maximal t-ideal of R(X) and (R(X)(M), (M)R(X)(M))
is a valuation pair, then P is a minimal prime of R.

(d) If P is a minimal prime of R and R(X) contains the nilradi-
cal of T (R[X]), then (R(X)(M), (M)R(X)(M)) is a discrete rank one
valuation pair.

Proof. [Proof of (a)]. By Theorem 5.6, if P is a maximal t-ideal of R,
then PR(X) is a maximal t-ideal of R(X), in which case M = PR(X).
For the converse we use the fact that each ideal of R(X) can be
generated by polynomials. Thus all we need do is apply Lemma 5.1(b)
and Lemma 5.2(b) in place of Lemma 5.1(a) and Lemma 5.2(a).

[Proof of (b)]. The proof here is no different from that given for
Theorem 5.6(b).

[Proof of (c)]. A slight modification is needed to adapt the proof of
Theorem 5.6(c) to the ring R(X). We begin as above by assuming
(R(X)(M), (M)R(X)(M)) is a valuation pair and, by way of contra-
diction, that P is neither minimal nor semiregular. Then there is a
polynomial f(X) =

∑
fiX

i ∈ M ∩ R[X] which is regular and such
that C(f)−1 = R. Let Q be a minimal prime ideal which is con-
tained in P , and let a ∈ P\Q. Since R(X) is a Marot ring and
P is not semiregular, PR(X)(M) = (P )R(X)(M) must be contained
in the prime at infinity of (R(X)(M), (M)R(X)(M)). Hence we have
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PR(X)(M) = PT (R[X]) ⊃ QT (R[X]) = QR(X)(M). Thus, there is an
element r(X) ∈ R(X)\M such that r(X)(a/f(X)) = s(X) ∈ R(X).
(Here is where we need to make a modification.) It follows that there
is a polynomial u(X) ∈ U such that both u(X)r(X) and u(X)s(X)
are polynomials. Since u(X) is a unit of R(X), we may (now) assume
both r(X) and s(X) are polynomials. Thus, similar to the above,
r(X)/f(X) ∈ (R(X) : (f(X), a))\R(X).

To complete the proof simply make the usual modifications when
dealing with the ring R(X) rather than R[X] and conclude that P
must be a minimal prime ideal of R so that M is type II.

[Proof of (d)]. Assume R(X) contains the nilradical of T (R[X]) and
that P is a minimal prime of R. The first part of the proof deals with
the nilradical of T (R[X]).

Let p be a nonzero element of P , and let N be the nilradical of R.
Since P is a minimal prime, it does not contain the ideal (N :R p) and,
therefore, neither does M . But since R(X) contains the nilradical of
T (R[X]), n/f(X) ∈ R(X) for each nilpotent element n and each regular
element f(X) ∈ R(X). Thus, there is an element s ∈ (N :R p)\M
such that sp/f(X) ∈ R(X) for each regular element f(X). Hence
PT (R[X]) = PR(X)(M) (an equality which is crucial to the proof).

Continue to the completion of the proof by following the same steps
used in establishing Theorem 5.6(d).

We next show that each maximal t-ideal of Q0(R)[X] contracts to a
maximal t-ideal of R[X] which is either of type II or III. This provides
a converse to the statement in Theorem 5.6(b).

Theorem 5.8. Let N be a maximal t-ideal of Q0(R)[X], and let
M = N ∩ R[X]. Then M is a maximal t-ideal of R[X] and M ∩ R is
not semiregular.

Proof. By Theorem 5.6, each finitely generated ideal of Q0(R)
contained in N has a nonzero annihilator. Hence, M ∩ R is not
semiregular. We next show that Mt �= R[X]. For this, let J be a finitely
generated regular ideal contained in M . As N is a maximal t-ideal of
Q0(R)[X], there is an element t ∈ (JQ0(R)[X])−1 �= Q0(R)[X]. As in
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the proof of Theorem 5.6(b), there is a finitely generated semiregular
ideal A of R such that tJA ⊆ R[X]. Hence tA ⊆ J−1. But since t is
not in Q0(R)[X], tA is not contained in R[X]. Thus J−1 �= R[X].

Let M ′ be a maximal t-ideal of R[X] that contains M . Then, by
Theorem 5.6, there is a maximal t-ideal N ′ of Q0(R)[X] such that
M ′ = N ′ ∩ R[X] and R[X](M ′) = Q0(R)[X](N ′). All we need show is
that N ⊆ N ′. By way of contradiction, let g ∈ N\N ′. Then there is a
finitely generated semiregular ideal A of R such that gA ⊆ R[X]. As
M = N ∩ R[X], gA ⊆ M . Hence gA ⊆ M ′ ⊆ N ′. Since N ′ is a prime
ideal of Q0(R)[X] and g is not in N ′, N ′ contains A, a contradiction
of the second statement in Theorem 5.6(a). Thus N = N ′ and M is a
maximal t-ideal of R[X].

Obviously, if a maximal t-ideal M of R[X] contains a polynomial with
unit content, then MR(X) = R(X). If R is an integral domain, then
all of the other maximal t-ideals of R[X] extend to maximal t-ideals of
R(X), and each maximal t-ideal of R(X) is the extension of a maximal
t-ideal of R[X]. This need not be the case when R is not a domain.
In Example 8.2, we show that, even if a maximal t-ideal of R[X] does
not contain a polynomial with unit content, it may not extend to a
maximal t-ideal of R(X). In fact, the ring in this example is such that
every maximal t-ideal of R[X] is of type III while every one of R(X) is
of type II.

6. When R(X) is a Krull ring. A simple consequence of the
Dedekind-Mertens formula is that, if r/f(X) is in R(X) for some
r ∈ R and (regular) polynomial f(X) ∈ R[X], then there is a finitely
generated ideal B of R and an integer n ≥ 0 such that r ∈ C(f)B and
rC(f)n = BC(f)n+1. For B, one can use the content of g(X) ∈ R[X]
where g(X) is such that r/f(X) = g(X)/u(X) for some u(X) ∈ U . The
converse holds when R is integrally closed in Q0(R), see [32, Theorem
8]. For an element r ∈ R and finitely generated semiregular ideal A,
we say that r ∈ R is well generated by A if there is a finitely generated
ideal B of R and an integer n ≥ 0 such that r ∈ AB and rAn = BAn+1.

For a finitely generated semiregular ideal A of a ring R with A−1 = R,
we set W(A) = {r ∈ R | some s ∈ (N :R r) is not well generated by
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A}. When R is reduced, (N :R r) is simply the annihilator of r so that
W(A) = {r ∈ R | some s ∈ Ann (r) is not well generated by A}.

We wish to characterize when R(X) is a Krull ring completely in
terms of properties which are satisfied by the elements and ideals of R.
If R is not reduced, one of the main complications when dealing with
R(X) is that, even if the nilradical of R coincides with the nilradical
of Q0(R), R(X) need not contain the nilradical of T (R[X]). This can
happen even when R is the integral closure of a Noetherian ring [2,
Example]. Thus it is important to know conditions on the elements
and ideals of R which are both necessary and sufficient for R(X) to
contain the nilradical of R. Such conditions are known. A direct proof
of the following result can be found in [33, Theorem 11]. Essentially,
it is a combination of Theorem 8 and Corollary 9 of [32].

Theorem 6.1 (cf., [32, Theorem 8 and Corollary 9]). Let R be a
nonreduced ring with nilradical N . If R is integrally closed in Q0(R),
then the following are equivalent.

(1) R(X) contains the nilradical of T (R[X]).

(2) For each nonzero nilpotent n ∈ R and each finitely generated
semiregular ideal A of R, there is a finitely generated ideal B of R and
an integer m ≥ 1 such that n ∈ AB and nAm = BAm+1.

(3) For each nonzero nilpotent n ∈ R and each finitely generated
semiregular ideal A of R, there is a finitely generated ideal B of R
and a finitely generated semiregular ideal C of R such that n ∈ AB
and nC = BCA, i.e., each nonzero nilpotent is well generated by each
finitely generated semiregular ideal of R.

(4) For each nonzero nilpotent n ∈ R and each finitely generated
semiregular ideal A of R, n ∈ A and A/Ann (n) generates a Q0-
invertible ideal in the Q0-integral closure of R/Ann (n).

We need three more theorems before giving our characterization of
when R(X) is a Krull ring.

Theorem 6.2. Let R be a nonreduced ring, and let f(X) ∈
R[X]\U be such that C(f)−1 = R. For a finitely generated ideal B,
if (R(X) : (f(X), B)) �= R(X), then (N :R B)R(X) is not contained
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in f(X)R(X). The converse holds if R(X) contains the nilradical of
T (R[X]).

Proof. Throughout the proof we let I = (N :R B).

Assume IR(X) ⊂ f(X)R(X), and let R = R/I and B = BR. Since
N is a radical ideal, B is a semiregular ideal of R. (Also as f(X) does
not have unit content, I does not equal R.) By Lemma 5.4 we must
have C(f)

−1
= R. From this we have (R(X) : (f̄(X), B)) = R(X) by

Lemma 5.2. Now each element of (R(X) : (f(X), B)) can be written
in the form g(X/u(X)f(X) for some g(X) ∈ R[X] and u(X) ∈ U .
The image of each such element in T (R(X)) must be in R(X). Hence
there are polynomials h(X) and v(X) with v(X) ∈ U such that
v(X)g(X) − h(X)u(X)f(X) is a polynomial with coefficients in I.
As IR(X) ⊂ f(X)R(X), v(X)g(X) must be in f(X)R(X). Hence
g(X)/f(X) ∈ R(X) and, therefore, (R(X) : (f(X), B)) = R(X).

For the converse, assume R(X) contains the nilradical of T (R[X])
and IR(X) is not contained in f(X)R(X). It follows that there is
an element r ∈ I\f(X)R(X). Since R(X) contains the nilradical of
T (R[X]), r/f(X) is in (R(X) : (f(X), B)) and not in R(X).

For reduced rings, Theorem 6.2 can be stated more simply, as

Theorem 6.3. Let R be a reduced ring and let f(X) ∈ R[X]\(U ∪
Z(R[X])) be such that C(f)−1 = R. For a finitely generated ideal
B of R, (R(X) : (f(X), B)) = R(X) if and only if Ann (B)R(X) is
contained in f(X)R(X).

Theorem 6.4. Let R be a ring which is Q0-integrally closed, and let
A be a finitely generated semiregular ideal for which A−1 = R. If Q is
a t-prime of R(X) that contains a polynomial f(X) whose content is
A, then Q ∩ R ⊆ W(A).

Proof. Since R is integrally closed in Q0(R), an element of s ∈ R is
well generated by A if and only if s/f(X) ∈ R(X). Let r ∈ Q∩R. Since
Q is a t-prime of R(X), (R(X) : (f(X), r)) �= R(X). It follows that
the ideal (N :R r)R(X) is not contained in f(X)R(X). Hence, some
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element of (N :R r) is not well generated by A, i.e., Q ∩ R ⊆ W(A).

The next two theorems are primarily concerned with finitely gen-
erated ideals in R[X] and R(X), respectively, whose contents are t-
invertible.

Theorem 6.5. Let I = (a0(X), a1(X), . . . , an(X)) be a finitely
generated ideal of R[X] and let m = 1 + max{deg ai(X) | 0 ≤ i ≤ n}.
Then the polynomial a(X) =

∑
ai(X)Xmi ∈ I is such that C(a) =

C(I). Moreover, if C(I) is t-invertible, then there is a polynomial b(X)
with coefficients in C(I)−1 such that C(ab)−1 = R and no maximal t-
ideal of type I can contain II−1.

Proof. By the construction of a(X), each coefficient of a(X) is a
coefficient of some ai(X), and, for each i, each coefficient of ai(X) is a
coefficient of a(X). Hence, C(a) = C(I).

Assume C(I) is t-invertible. Then there is a finite dense subset B =
{b0, b1, . . . , br} of I−1 such that (BC(I))−1 = R. Set p = 1+deg a(X)
and b(X) =

∑
bkXpk. As p > deg a(X), each coefficient of a(X)b(X)

is the product of a single coefficient of a(X) and an element of B.
It follows that C(ab) = BC(I) and, therefore, C(ab)−1 = R. As
a(X)b(X) is in II−1, it must be that no maximal t-ideal of type I
can contain II−1.

Since each finitely generated ideal of R(X) can be generated by a
finite set of polynomials, a similar result holds for finitely generated
ideals of R(X).

Theorem 6.6. Let I = (a0(X), a1(X), . . . , an(X)) be a finitely
generated ideal of R(X) where each ai(X) is in R[X], and let m =
1 + max{deg ai(X) | 0 ≤ i ≤ n}. Then the polynomial a(X) =∑

ai(X)Xmi ∈ I is such that C(a) = C(I). Moreover, if C(I) is t-
invertible, then there is a polynomial b(X) with coefficients in C(I)−1

such that C(ab)−1 = R and no maximal t-ideal of type I can contain
II−1.
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We are now ready to give our characterization of when R(X) is a
Krull ring.

Theorem 6.7. The following are equivalent for a ring R.

(1) R(X) is a Krull ring.

(2) R is a Q0-Krull ring, R(X) contains the nilradical of T (R[X])
and, for each finitely generated semiregular proper ideal A for which
A−1 = R, the set W(A) is a finite union of minimal primes of R.

(3) R is a Q0-Krull ring for which each nilpotent element is well
generated by each finitely generated semiregular ideal and for each
finitely generated semiregular proper ideal A for which A−1 = R, the
set W(A) is a finite union of minimal primes of R.

Proof. Note that (2) and (3) are equivalent simply by Theorem 6.1
and the definition of an element being well generated by a finitely
generated semiregular ideal.

[(1)⇒(2) and (3)]. Assume that R(X) is a Krull ring. We first show
that R is a Q0-Krull ring. By Theorem 4.2 it suffices to show that
each semiregular ideal of R is t-invertible. For such an ideal I, IR(X)
is a regular ideal of R(X) and [IR(X)]−1 = I−1R(X). Since R(X)
is a Krull ring, we have [II−1R(X)]t = ([IR(X][IR(X)]−1)t = R(X).
Since each maximal t-ideal of R extends to a maximal t-ideal of R(X),
we must have (II−1)t = R.

Since Krull rings are completely integrally closed, R(X) must contain
the nilradical of T (R[X]). All that remains is to show that W(A)
is a finite union of minimal prime ideals for each finitely generated
semiregular ideal A for which A−1 = R.

Let A be a finitely generated semiregular (proper) ideal of R for which
A−1 = R. By Theorem 6.2, if f(X) ∈ R[X] is such that C(f) = A,
then each maximal t-ideal Q of R(X) that contains f(X) must be such
that Q ∩ R is contained in W(A). Since R(X) is a Krull ring, there
can only be finitely many such t-primes and each must contract to
a minimal prime ideal of R by Theorem 5.7. But, by Theorem 6.2
and Theorem 3.1, for each r ∈ W(A), there is a maximal t-ideal that
contains both f(X) and r. Hence, the set W(A) is a union of finitely
many minimal primes of R.
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[(2)⇒(1)]. Assume that R(X) contains the nilradical of T (R[X])
and that R is a Q0-Krull ring such that, for each finitely generated
semiregular ideal A for which A−1 = R, the set W(A) is a finite
union of minimal prime ideals of R. It is always the case that
R(X) = ∩{R(X)(M) |M ∈ tMax (R(X))}. We will show that, for
each M ∈ t Max (R(X)), (R(X)(M), (M)R(X)(M)) is a discrete rank
one valuation pair and that each regular ideal of R(X) is contained in
at most finitely many such maximal t-ideals.

Throughout the proof we let M be a maximal t-ideal of R(X) and
P = M ∩ R.

Assume M is of type I. Then each semiregular ideal which is contained
in P is t-invertible since R is a Q0-Krull ring. It follows that the prime
at infinity of the valuation pair (R{P}, {P}R{P}) is not semiregular.
Thus the valuation associated with (R{P}, {P}R{P}) may be extended
to R(X) [15, Theorem 3.3]. Moreover, the resulting valuation pair is
(R(X)(M), (M)R(X)(M)) which is discrete and rank one.

Now assume M is not of type I. It is relatively easy to show that
M cannot be of type III. Since it is not of type I, each finitely
generated ideal B ⊆ P has a nonzero annihilator and there is a
polynomial f(X) ∈ M ∩ R[X] which is a regular element and is such
that C(f)−1 = R, Theorem 5.7. Hence the set W(C(f)) is a finite union
of minimal prime ideals of R. As P must be contained in W(C(f)),
P must be a minimal prime ideal of R. Thus M is of type II. But
then (R(X)(M), (M)R(X)(M)) is a discrete rank one valuation pair by
Theorem 5.7.

It remains to show that each regular element of R(X) is contained
in at most finitely many maximal t-ideals. It suffices to show that if
f(X) ∈ R[X] is such that C(f) is semiregular, then only finitely many
maximal t-ideals contain f(X). First note that for each minimal prime
Q of R and each regular g(X) ∈ R[X], there are at most finitely many
uppers to zero of (R/Q)(X) which contain the image of g(X). Hence
there are at most finitely many maximal t-ideals of R(X) that both
contract to Q and contain g(X).

Let f(X) ∈ R[X] be a regular element, and assume that M contains
f(X).

If M is of type II, then it does not contain C(f). As R is a Q0-Krull
ring, C(f) is t-invertible. Hence, by Theorem 6.5, there is a polynomial
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b(X) with coefficients in C(f)−1 such that C(bf) is semiregular and
C(bf)−1 = R. As C(f)b(X) ⊆ R(X), M must contain b(X)f(X).
By Theorem 6.4, P must be contained in W(C(bf)). Since W(C(bf))
is a finite union of minimal prime ideals of R, P must be one of these
primes. It follows that there are at most finitely many maximal t-ideals
of type II that contain f(X).

By Theorem 5.7, if M is of type I, then C(f)−1 �= R, M = PR(X)
and P must contain C(f). As R is a Q0-Krull ring, at most finitely
many t-primes of R contain C(f). Hence, only finitely many maximal
t-ideals of type I can contain f(X).

For reduced rings we have the following.

Theorem 6.8. Let R be a reduced ring. Then R(X) is a Krull
ring if and only if R is a Q0-Krull ring and, for each finitely generated
semiregular ideal proper A with A−1 = R, the set W(A) is a finite
union of minimal primes of R.

7. When R[X] and R(X) are Q0-Prüfer v-multiplication rings.
The first result of this section is related to Theorems 6.2 6.4 above. It
provides a way to check for maximal t-ideals of type III in the ring
R(X) entirely in terms of the ideals of R.

Theorem 7.1. Let P be a prime ideal of R, and let a(X) ∈
R[X]\(U ∪Z(R[X])) be such that C(a)−1 = R. Then the following are
equivalent provided R is integrally closed in Q0(R) and R(X) contains
the nilradical of T (R[X]).

(1) [(a(X), P )R(X)]t = R(X).

(2) There is a finitely generated ideal B ⊆ P such that each element
of (N :R B) is well generated by C(a).

(3) There is a finitely generated ideal B ⊆ P such that (N :R B) ⊆
a(X)R(X).

Proof. Note that a necessary and sufficient condition to have
[(a(X), P )R(X)]t = R(X) is for (a(X), P )R(X) to contain a finitely
generated regular ideal with trivial inverse. We may take such an ideal
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to be generated by a(X) and some finitely generated subideal of P .
The equivalence of the three statements now follows from Theorem 6.2.

By Theorem 7.1, what we need to consider when checking whether
R(X) has any maximal t-ideals of type III are prime ideals which are
not semiregular and pairs of finitely generated ideals of R where one is
semiregular with trivial inverse and the other is contained in the prime.
Let A be a finitely generated semiregular ideal of R for which A−1 = R.
Denote by G(A) the set of those finitely generated ideals B for which
each element of (N :R B) is well-generated by A.

Theorem 7.2. Let R be a ring. If R is integrally closed in its ring of
finite fractions and each nilpotent element of R is well-generated by each
finitely generated semiregular ideal, then R(X) contains no maximal t-
ideals of type III if and only if, for each finitely generated semiregular
ideal proper A with A−1 = R, each prime ideal P ∈ Spec(R)\Min (R)
contains a member of G(A).

Proof. Let A be a finitely generated semiregular ideal for which A−1 =
R, and let B be a finitely generated ideal which is not contained in the
set G(A). Then by Theorem 6.2, we have that [(a(X), B)R(X)]t �=
R(X) for each polynomial a(X) for which C(a) = A. By Theorem 3.1,
any prime which is minimal over such an ideal [(a(X), B)R(X)]t must
be a t-prime of R(X). As A−1 = R, each of these primes must contract
to a prime of R which is not semiregular. If some such prime contracts
to a prime that is not a minimal prime of R, then R(X) has maximal
t-ideals of type III. With this, the equivalence of the two statements is
clear.

For reduced rings it is also the case that, if I is a finitely generated
regular ideal of R[X] (or R(X)), then no maximal t-ideal of type II can
contain II−1.

Theorem 7.3. Let R be a reduced ring. Then the following hold.

(a) If I is a finitely generated regular ideal of R[X], then no maximal
t-ideal of type II contains II−1.
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(b) If I is a finitely generated regular ideal of R(X), then no maximal
t-ideal of type II contains II−1.

Proof. First we prove the statement in (a). Since R[X] is a Marot
ring, we may assume that I is generated by a finite set of regular
polynomials {a0(X), a1(X), . . . , an(X)}. Let M be a maximal t-ideal
of R[X] of type II that contains I. Since R is a reduced ring and
P = M∩R is a minimal prime of R, RP is a field and, therefore, R[X]M
is a discrete valuation domain of rank one. Hence IR[X]M is principal.
Without loss of generality, we may assume a0(X) generates IR[X]M . It
follows that there are elements s(X), r1(X), r2(X), . . . , rn(X) ∈ R[X]
with s(X) ∈ R[X]\M such that ri(X)a0(X) = s(X)ai(X) for each i.
It follows that s(X)/a0(X) ∈ I−1. As s(X) is not in M , II−1 is not
contained in M .

All of the above statements are valid in R(X) as well, hence no
maximal t-ideal of type II in R(X) can contain II−1.

Recall that, for a ring R, R is said to be a Prüfer ring if, equivalently,
each ring between R and T (R) is integrally closed in T (R), or each
finitely generated regular ideal is invertible [13, Theorem 13]; R is
a Q0-Prüfer ring if each ring between R and Q0(R) is integrally
closed in Q0(R) [31]. A ring R for which R(X) is a Prüfer ring is
referred to as a strongly Prüfer ring [4] (or as a strong Prüfer ring
[31]). It is known that R is a strongly Prüfer ring if and only if
each finitely generated semiregular ideal of R is Q0-invertible [31].
Previously, Papick and Zafrullah independently established a similar
result for PvMDs. Namely, an integral domain D is a PvMD if and
only if D[X]N (D) is a Prüfer domain for the set N (D) = {f(X) ∈
D[X] |C(f)−1 = D} [40, Theorem] and [43, Theorem 11]. Huckaba
and Papick proved that, if R is an additively regular McCoy ring,
then it is a PvMR if and only if R[X]N is a Prüfer ring for the set
N = {f(X) ∈ R[X] | (R : C(f)) = R, and C(f) is a regular ideal
of R} [20, Theorem 3.6]. In our next result we establish a similar
characterization of Q0-PvMRs. To this end we let S denote the set
of those polynomials f(X) ∈ R[X] which are regular and such that
C(f)−1 = R.
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Theorem 7.4. The following are equivalent for a ring R.

(1) R is a Q0-PvMR.

(2) R is integrally closed in Q0(R) and Q0(R)[X]S = T (R[X]).

(3) R[X]S is a Prüfer ring.

Proof. We begin by showing the equivalence of (1) and (2).

[(1)⇒(2)]. Assume R is a Q0-PvMR. Then, by Lemma 3.3, if J is a
finitely generated semiregular ideal of R, then Hom (J, J) = R. Thus,
R is integrally closed by Theorem 3.6 of [29]. For an alternate proof
simply use Theorems 3.1 and 4.3 and the fact that valuation pairs are
always integrally closed.

Let g(X) = gnXn + · · · + g1X + g0 be a regular element of R[X].
Then C(g) is in F(R). Hence, there is a finite dense subset A =
{a0, a1, . . . , am} of C(g)−1 such that (AC(g))−1 = R. Set a(X) =∑

aiX
i(n+1) and f(X) = a(X)g(X). It is easy to see that C(f) =

AC(g). Thus, f ∈ S. Moreover, 1/g(X) = a(X)/f(X) ∈ Q0(R)[X]S .
Therefore Q0(R)[X]S = T (R[X]).

[(2)⇒(1)]. Assume that R is integrally closed in Q0(R) and that
Q0(R)[X]S = T (R[X]). Let J = (j0, j1, . . . , jn) be a finitely gener-
ated dense ideal of R and let g(X) =

∑
jiX

i. Since Q0(R)[X]S =
T (R[X]), there are polynomials f(X) ∈ S and b(X) ∈ Q0(R)[X]
such that 1/g(X) = b(X)/f(X). Hence f(X) = b(X)g(X). By the
Dedekind-Mertens formula there is an integer k such that C(g)kC(f) =
C(g)kC(gb) = C(g)k+1C(b) = C(g)k(C(g)C(b)). It follows that each
element of C(g)C(b) is integral over R. Thus C(g)C(b) is contained in
R. Since C(f) ⊆ C(g)C(b), the ideal J = C(g) is t-invertible.

[(2)⇒(3)]. Assume R is integrally closed in Q0(R) and that Q0(R)[X]S
= T (R[X]). We will show that each finitely generated regular ideal of
R[X]S is principal. Let I = (g1(X), g2(X), . . . , gn(X))R[X]S be a
finitely generated regular ideal of R[X]S with each gi(X) in R[X]. As
in Theorem 6.5, there is a polynomial g(X) ∈ I with C(g) = C(I).
Hence, as in the proof of (2) implies (1), there is a polynomial b(X) ∈
C(g)−1R[X] = C(I)−1R[X] such that b(X)g(X) ∈ S. Thus b(X)g(X)
is a unit of R[X]S and, for each coefficient ji of g(X), jib(X) ∈ R[X].
Therefore, ji ∈ g(X)R[X]S and I = C(g)R[X]S = g(X)R[X]S is a
principal ideal of R[X]S .
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[(3)⇒(1)]. Assume R[X]S is a Prüfer ring, and let g(X) = gnXn +
· · · + g1X + g0 be a regular element of R[X]. Then C(g)R[X]S is
invertible.

Let b0(X), b1(X), . . . , bn(X) ∈ (C(g)R[X]S)−1 be such that the sum∑
bi(X)gn−i equals 1. Since each bi(X) is in (C(g)R[X]S)−1, there

is a polynomial f(X) ∈ S such that f(X)bi(X)gj ∈ R[X] for each
i and j. Thus, by Lemma 5.1, f(X)bi(X) is in C(g)−1R[X]. Let
A =

∑
C(f(X)bi(X)). Then C(f) ⊆ AC(g) ⊆ R. It follows that C(g)

is t-invertible and, therefore, R is a Q0-PvMR.

We have two more theorems to prove before we characterize when
R[X] is a PvMR.

Theorem 7.5. Let R be a ring, and let M be a prime ideal of R[X]
which is maximal with respect to containing only zero divisors. Then
the ideal N = M + XR[X] is a maximal t-ideal of R[X].

Proof. Every polynomial ring is a McCoy ring, so each finitely
generated ideal that is contained in M has a nonzero annihilator. As a
polynomial is a zero divisor if and only if the annihilator of its content
is nonzero, M must be the extension of a prime ideal of R which is not
semiregular.

Write M = PR[X], and let N = M + XR[X] = PR[X] + XR[X].
Let J be a regular finitely generated ideal contained in N , and let J0

be the ideal of constant terms of J . Since J is finitely generated, so
is J0. Since N contains X, P contains J0. It follows that J ⊆ I =
J0R[X] + XR[X] ⊆ N . To show that N is a t-ideal, it suffices to show
that N contains Iv.

First note that, as P is not semiregular, Ann (J0) �= (0), and, for each
nonzero r ∈ Ann (J0), (r/X)I ⊆ R[X]. Hence I−1 �= R[X].

Now let f ∈ I−1\R[X]. Since X is in I, we may assume f = r/X for
some r ∈ R. But then the only way to have fJ0 contained in R[X] is if
r ∈ Ann (J0). Thus I−1 = (1/X)Ann (J0)R[X] + R[X], and we have
that Iv �= R[X].

It follows that N ⊆ Nt = ∪Iv where the union is taken over all
finitely generated ideals of N that contain X. Let P ′ = Nt ∩ R. Since
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N contains X, Nt = P ′R[X] + XR[X]. Thus it suffices to show that
P ′ = P . To this end, let B be a finitely generated ideal contained
in P ′. Since Nt �= R[X], (BR[X] + XR[X])−1 �= R[X]. But this is
possible only if Ann (B) �= (0). Thus, P ′R[X] is contained in the set
of zero divisors of R[X]. As P ′R[X] contains M and M is maximal
with respect to containing only zero divisors, we must have P ′ = P
and consequently N = Nt.

That N is a maximal t-ideal of R[X] follows from the same reasoning
as that used to show that it is a t-ideal.

Recall that a prime ideal of a ring R contains only zero divisors if
and only if the extension of the prime to T (R) is contained in the zero
divisors of T (R). Thus, R[X] has no maximal t-ideals of type III if
and only if T (R[X]) is zero dimensional. For reduced rings we may say
even more.

Theorem 7.6. The following are equivalent for a reduced ring R.

(1) The polynomial ring R[X] has no maximal t-ideals of type III.

(2) T (R[X]) is von Neumann regular.

(3) The space Min (R) of minimal primes of R is compact in the
Zariski topology.

(4) Q0(R) is von Neumann regular.

Proof. Quentel established the equivalence of (2) and (3) in [42,
Corollary 1]. He also proved that the total quotient ring of a re-
duced ring is von Neumann regular if and only if the ring is a McCoy
ring whose space of minimal primes is compact in the Zariski topol-
ogy [42, Proposition 9]. Thus, if Q0(R) is von Neumann regular,
Min (Q0(R)) is compact. As Min (Q0(R)) is naturally isomorphic to
both Min (Q0(R)[X]) and Min (T (R[X])), having Q0(R) von Neumann
regular implies T (R[X]) is von Neumann regular.

Assume T (R[X]) is von Neumann regular. By [27, Corollary 5] and
[28, Theorem 3], Q0(R)[X] is integrally closed in T (R[x]). But by the
above, Min (Q0(R)) is compact and therefore the total quotient ring of
Q0(R), namely, itself, must be von Neumann regular by [1, Theorem
2.1].



1296 T.G. LUCAS

For an alternate proof that (2) implies (4) in Theorem 7.6, simply
show that each idempotent of T (R[X]) must be in Q0(R), and from
there show directly that for each element f ∈ Q0(R) there is unit
s ∈ Q0(R) such that f2s−1 = f .

Theorem 7.7. Let R = Q0(R) be a reduced ring. Then the following
are equivalent.

(1) R[X] is a PvMR.

(2) For each maximal t-ideal M and each finitely generated ideal A
contained in M , Ann (A)R[X]M = R[X]M .

(3) Each maximal t-ideal of R[X] contracts to a minimal prime of R,
i.e., each is of type II.

(4) R[X]M is a discrete rank one valuation domain for each maximal
t-ideal M .

(5) R is von Neumann regular.

Proof. Assume R is von Neumann regular. Then not only is R[X] a
PvMR, but it is a Prüfer ring as well [11]. Each maximal ideal of R[X]
is regular of height one and contracts to a minimal prime of R. Thus,
for each maximal ideal M of R[X], R[X]M is a localization of a PID.
Namely, R[X]M is a localization of RP [X] where P = M ∩ R. Thus
(5) implies all four of (1) (4).

The equivalence of (1) and (3) follows from Theorem 5.6.

We next show that (4) implies (5).

[(4)⇒(5)]. Since R = Q0(R), each regular element of R is a unit.
Thus, it suffices to show that, for each nonzero zero divisor r, there is
an element b ∈ R such that br2 = r.

By Theorem 5.6, if M is a prime of R[X] which is maximal with
respect to containing only zero divisors of R[X], then M = PR[X]
where P is a prime ideal of R which is not semiregular and N =
XR[X] + M is a maximal t-ideal of R[X]. If (4) holds, then P must
be a minimal prime of R. Thus, by Theorem 5.6, each maximal t-
ideal must contract to a minimal prime of R since R = Q0(R). Hence
T (R[X]) is zero dimensional and, therefore, Min (R[X]) is compact
[42, Proposition 9]. As Min (R) is naturally isomorphic to Min (R[X])
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we also have that Min (R) compact. For reduced rings, it is known
that Min (R) being compact is equivalent to having for each nonzero
zero divisor r ∈ R, a finite set {a1, a2, . . . , an} ⊆ Ann (r) such
that Ann (r, a1, a2, . . . , an) = (0) [42, Proposition 4]. Consider the
polynomial a(X) = r +

∑
aiX

i and the quotient r/a(X). Simple
calculations show that (r/a(X))2 = r/a(X), (r/a(X))r = r and
(r/a(X))ai = 0 for each i. Thus r/a(X) = e is a finite fraction which is
a nonzero idempotent such that er = r. Moreover, as eai = 0 for each i,
e is not equal to 1. As R = Q0(R), e is in R. Now consider the quotient
e/a(X). Since eai = 0 for each i and (trivially) er = er, b = e/a(X)
is a finite fraction with the property that br = e and br2 = er = r.
Therefore, R is von Neumann regular.

For the remainder of the proof, we let M be a maximal t-ideal of R[X]
and P = M ∩ R. Since R = Q0(R), (IR[X])−1 = I−1R[X] = R[X]
for each finitely generated semiregular ideal I. Thus, each finitely
generated ideal contained in M∩R has a nonzero annihilator. It follows
that PR[X] is not semiregular. Also, since R is a reduced ring, if I
is finitely generated, no minimal prime of R can contain both I and
Ann (I).

[(2)⇒(3)]. If P is not a minimal prime of R, then there is a minimal
prime Q ⊂ P and an element a ∈ P\Q. As each element of P is a zero
divisor, Q must contain the annihilator of (a). Thus Ann (a)R[X]M
cannot equal R[X]M .

[(3)⇒(2) and (4)]. If P is a minimal prime of R and A is a finitely
generated ideal contained in P , then we have Ann (A)RP = RP . Since
P = M ∩ R, R[X]M is (isomorphic to) a localization of RP [X]. Hence
Ann(A)R[X]M = R[X]M . Also, since R is reduced, RP is a field. Thus
R[X]M is a localization of a PID and, therefore, a rank one discrete
valuation domain. So we have that (3) implies both (2) and (4).

We are now ready to characterize when R[X] is a PvMR in terms of
statements (C), (C′), (D) and (D′).

Theorem 7.8. The following are equivalent for a ring R.

(1) R[X] is a PvMR.

(2) T (R) is von Neumann regular and R is a Q0-PvMR.
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(3) T (R) is von Neumann regular and R is a PvMR.

(4) T (R) is von Neumann regular, and either R = T (R) or (R{P},
{P}R{P}) is a valuation pair for each maximal t-ideal P .

(5) T (R) is von Neumann regular, and either R = T (R) or (R(P ),
(P )R(P )) is a valuation pair for each regular maximal t-ideal P .

(6) R is a reduced Q0-PvMR and Min (R) is compact.

(7) R is a reduced Q0-PvMR and R[X] has no maximal t-ideals of
type III.

(8) R is a reduced McCoy ring and a PvMR and R[X] has no maximal
t-ideals of type III.

(9) R is a reduced McCoy ring and a PvMR and Min (R) is compact.

Proof. If T (R) is von Neumann regular, then R is a McCoy ring so
Q0(R) = T (R). Hence (2) and (3) are equivalent as are (4) and (5).
That (2) implies (4) follows from Theorem 4.3. The equivalence of (6)
and (7), and of (8) and (9) follows from Theorem 7.6. If R is a McCoy
ring, T (R) = Q0(R), and R is a PvMR if and only if it is a Q0-PvMR.
Thus, both (8) and (9) imply both (6) and (7). For the converse, note
that a Q0-PvMR must be integrally closed in Q0(R). Thus if R is both
reduced and a Q0-PvMR, R[X] will be integrally closed. If we add
the assumption that Min (R) is compact, R[X] can be integrally closed
only if T (R) is von Neumann regular [1, Theorem 2.1]. But this means
that R must be a McCoy ring [42, Proposition 9]. Hence, statements
(6) (9) are equivalent. Each is equivalent to (2) (and (3)) since T (R)
is von Neumann regular if and only if R is a reduced McCoy ring with
Min (R) compact.

[(1)⇒(2) and (3)]. Assume R[X] is a PvMR. Then R[X] is integrally
closed and, therefore, R is a reduced ring. Moreover, if A is a finitely
generated semiregular ideal of R, then AR[X] is t-invertible. As
(AR[X])−1 = A−1R[X], we must have (AA−1)t = R. Hence, R is
a Q0-PvMR.

By Theorems 5.6 and 5.8, there is a one-to-one correspondence be-
tween the maximal t-ideals of Q0(R)[X] and the maximal t-ideals of
R[X] which are not of type I. Moreover, if M is maximal t-ideal of
R[X] which is not of type I, then M = N ∩ R[X] for some max-
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imal t-ideal N of Q0(R)[X] and R[X](M) = Q0(R)[X](N). Thus
(R[X](M), (M)R[X](M)) = (Q0(R)[X](N), (N)Q0(R)[X](N)) is a val-
uation pair of T (R[X]). By Theorem 5.6, both M and N must be of
type II. Hence, by Theorem 7.7, Q0(R) must be a von Neumann regular
ring. It follows that Min (R) is compact, in which case R[X] integrally
closed implies that T (R) is von Neumann regular [1, Theorem 2.1].

[(2)⇒(1)]. Assume T (R) is von Neumann regular and that R is a
Q0-PvMR. Then each prime of R that contains only zero divisors is a
minimal prime of R. Hence R[X] has no primes of type III. That R[X]
is a PvMR now follows from Theorems 6.5 and 7.3.

[(4)⇒(2)]. If T (R) is von Neumann regular, then each semiregular
ideal of R is regular. Thus, if (R{P}, {P}R{P}) is a valuation pair, then
the prime at infinity is not semiregular. Hence, R is a Q0-PvMR by
Theorem 4.3.

In [42], Quentel constructs a reduced ring R which is its own total
quotient ring but is not von Neumann regular even though Min (R)
is compact. From [42, Proposition 9], it follows that R is not a
McCoy ring, and from [1, Theorem 2.1] the polynomial ring R[X]
is not integrally closed. However, the total quotient ring T (R[X]) is
von Neumann regular, so R[X] does not have any maximal t-ideals of
type III, but R[X] is not a PvMR since, among other things, it fails to
be integrally closed in T (R[X]).

We are now in a position to establish necessary and sufficient con-
ditions in order that R(X) be a Prüfer v-multiplication ring. Unlike
the case for polynomial rings, it is possible for R(X) to be a PvMR
without having T (R) von Neumann regular. The trivial case is when
R = Q0(R) and is a McCoy ring (but Min (R) is not compact), but
nontrivial examples exist. We construct a nontrivial example below in
Example 8.13. We begin by restricting to reduced rings.

Theorem 7.9. Let R be a reduced ring. Then the following are
equivalent.

(1) R(X) is a PvMR.

(2) R is a Q0-PvMR and R(X) has no maximal t-ideals of type III.
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(3) R is a Q0-PvMR and, for each finitely generated semiregular ideal
A with A−1 = R, each prime ideal P ∈ Spec (R)\Min (R) contains a
member of G(A).

(4) R(X) has no maximal t-ideals of type III and either R = Q0(R)
or, for each maximal t-ideal P , (R{P}, {P}R{P}) is a Q0-valuation pair
for which the corresponding prime at infinity is not semiregular.

(5) For each finitely generated semiregular ideal A with A−1 = R,
each prime ideal P ∈ Spec (R)\Min (R) contains a member of G(A),
and either R = Q0(R) or for each maximal t-ideal P , (R{P}, {P}R{P})
is a Q0-valuation pair for which the corresponding prime at infinity is
not semiregular.

Proof. The proof given for (1) implies (3) in Theorem 7.8 can be
adapted easily from the polynomial ring setting to the setting at hand
to show that (1) implies (2). From Theorem 4.3, it is easy to see that
(2) and (4) are equivalent. The equivalence of (2) and (3) and of (4) and
(5) is from Theorem 7.2. All that remains is to show (2) ((3), (4) or (5))
implies (1). But, by Theorems 6.6 and 7.3, if R is a Q0-PvMR with no
maximal t-ideals of type III, then each finitely generated regular ideal
of R(X) is t-invertible.

We have two corollaries; the first follows from combining Theorems
7.8 and 7.9, and the second can be thought of as a corollary to the first.

Corollary 7.10. The following are equivalent for a ring R.

(1) R is a PvMR and T (R) is von Neumann regular.

(2) R[X] is a PvMR.

(3) R(X) is a PvMR and T (R) is von Neumann regular.

Corollary 7.11. Let D be an integral domain. Then D is a PvMD
if and only if D(X) is a PvMD.

For nonreduced rings we must add some assumptions to assure that
the nilradical of T (R[X]) is contained in R(X).
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Theorem 7.12. Let R be ring. Then the following are equivalent.

(1) R(X) is a PvMR.

(2) R is a Q0-PvMR, and R(X) both contains the nilradical of
T (R[X]) and has no maximal t-ideals of type III.

(3) R is a Q0-PvMR such that each nilpotent element is well-
generated by each finitely generated semiregular ideal and, for each
finitely generated semiregular ideal A with A−1 = R, each prime ideal
P ∈ Spec (R)\Min (R) contains a member of G(A).

(4) R(X) contains the nilradical of T (R[X]) and has no maximal t-
ideals of type III, and either R = Q0(R) or, for each maximal t-ideal
P , (R{P}, {P}R{P}) is a Q0-valuation pair for which the corresponding
prime at infinity is not semiregular.

(5) Each nilpotent element of R is well generated by each finitely
generated semiregular ideal, and, for each finitely generated semiregular
ideal A with A−1 = R, each prime ideal P ∈ Spec (R)\Min (R) contains
a member of G(A), and either R = Q0(R) or for each maximal t-ideal
P , (R{P}, {P}R{P}) is a Q0-valuation pair for which the corresponding
prime at infinity is not semiregular.

Proof. As with the characterization of when R(X) is a Krull ring, (2)
and (3) are easily seen to be equivalent by Theorems 6.1 and 7.2 and
the definition of what it means for an element to be well generated by
a finitely generated semiregular ideal. The same goes for (4) and (5).

[(1)⇒(2) and (3)]. Assume R(X) is a PvMR. Then R(X) is integrally
closed, so R(X) must contain the nilradical of T (R[X]). Let A be a
finitely generated semiregular ideal of R. By Lemma 5.1, (AR(X))−1 =
A−1R(X). Thus, A must be a t-invertible ideal of R. Hence, R is a
Q0-PvMR. It remains to show that R(X) has no maximal t-ideals of
type III. But, as in the case where R is assumed to be reduced, the
proof given for (1) implies (3) in Theorem 7.7 carries over to the case
when R may have nonzero nilpotents. Hence R(X) has no maximal
t-ideals of type III.

[(2)⇔(4)]. The equivalence of (2) and (4) follows from Theorem 4.3.
And thus we have that (2), (3), (4) and (5) are equivalent.

[(2)⇒(1)]. Assume R is a Q0-PvMR, and R(X) contains the nilradi-
cal of T (R[X]) and has no maximal t-ideals of type III. Let NT denote
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the nilradical of T (R[X]), and let I be a finitely generated regular ideal
of R(X). As I is regular, it will contain NT . In fact, for each regular
element a(X) ∈ I, a(X)NT = NT . Since R(X) is a Marot ring and a
localization of R[X], I = (a0(X), a1(X), . . . , an(X)) where each ai(X)
is both a polynomial and a regular element of R(X). By Theorem 6.6,
no maximal t-ideal of type I contains II−1. We must show the same is
true for each maximal t-ideal of type II. Let M be a maximal t-ideal of
type II which contains I, and let P = M ∩ R. It follows that R(X)M

is a localization of RP [X]. Moreover, MR(X)M ∩ RP = PRP , the
nilradical and only maximal ideal of RP . Let M ′ = M ∩ R[X]. As
PRP is both the nilradical and only maximal ideal of RP , a polyno-
mial in RP [X] either has unit content or is a zero divisor with content
contained in PRP . Consider the ring R(X)M/PR(X)M . This ring is
naturally isomorphic to the ring RP [X]M ′/PRP [X]M ′ . As PRP is the
maximal ideal of RP , RP [X]M ′/PRP [X]M ′ is a discrete valuation do-
main of rank one. It follows that IR(X)M/PR(X)M is principal. We
may assume it is generated by the image of a0(X). Then for each i,
there is a ti ∈ R(X)M such that tia0(X) − ai(X) ∈ PR(X)M . Hence
there is an element s ∈ R(X)\M such that stia0(X)−sai(X) ∈ PR(X)
and sti ∈ R(X) for each i. Since P is a minimal prime ideal of R, for
each finitely generated ideal A ⊆ P there is an element r ∈ R\P such
that rA is contained in the nilradical of R. Since M ∩ R = P , such an
element is not contained in M . Hence we may further assume that the
element s is such that each stia0(X) − sai(X) is nilpotent. As R(X)
contains NT and a0(X) is a regular element of R(X), s/a0(X) is in
I−1 and s ∈ II−1\M . It follows that I is t-invertible and that R(X)
is a PvMR.

In Example 8.1, we present an example of a nonreduced Q0-PvMR R
such that R(X) has no type III maximal t-ideals but does not contain
the nilradical of T (R[X]).

8. Examples. Our first two examples are formed using the tech-
nique of idealization of a module [32]. The first is similar to Exam-
ple 5 in [32], and the second is similar to Example 4.4 in [15], see
also, [24, Exercise 6, p. 62]. Our first example is of a nonreduced
Q0-PvMR such that the corresponding Nagata ring has no maximal
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t-ideals of type III, yet cannot be a PvMR since it does not contain the
nilradical of its total quotient ring.

Example 8.1. Let D = K[Y, Z] and let B = K(Y, Z) where K is a
field. Let R = D(+)B be the ring formed by idealization, i.e., R is the
ring formed from D × B with addition and multiplication defined by
(r, a) + (s, b) = (r + s, a + b) and (r, a)(s, b) = (rs, rb + sa). Then the
following hold.

(a) Identifying B with the set {(0, b) | b ∈ B}, we have that Z(R) = B.
Thus the total quotient ring of R can be identified with the ring
K(Y, Z)(+)K(Y, Z).

(b) Each semiregular ideal of R is regular, so Q0(R) = T (R).

(c) For each nonzero ideal J of D, JR = J(+)B and (JR)−1 =
J−1(+)B. These are the only regular ideals of R.

(d) R is a Q0-PvMR and R(X) has no type III maximal t-ideals.

(e) R(X) is not a PvMR since it does not contain the nilradical of
T (R[X]). In particular, the element (0, 1)/((Y X +Z), 0) is a nilpotent
element which is not contained in R(X).

Proof. Since D is an integral domain, the zero divisors of R consist
of those elements (r, b) such that there is a nonzero element c ∈ B for
which rc = 0 [15, Proposition 4.3]. Thus Z(R) = B and T (R) can be
identified with K(Y, Z)(+)K(Y, Z). We also have (0, a)(0, b) = (0, 0)
for each a, b ∈ B. Hence each semiregular ideal is regular and we have
Q0(R) = T (R). Also each prime ideal of R is of the form P (+)B where
P is a prime of D [15, Proposition 4.2].

For each nonzero element d ∈ D, d−1K(Y, Z) = K(Y, Z). Hence each
regular ideal of R is of the form JR = J(+)B where J is a nonzero
ideal of D. The inverse of such an ideal JR is simply J−1(+)B where
J−1 is the inverse of J as an ideal of D [18, Theorem 25.10]. Hence, the
maximal t-ideals are the prime ideals of the form PR = P (+)B where
P is a height one prime of D. Since D = K[Y, Z], each such prime
is principal. Thus (R(P ), (P )R(P )) is a discrete rank one valuation
ring. It follows that R is a Q0-PvMR. As the only zero divisors are
the nilpotent elements, R(X) has no maximal t-ideals of type III. As
the annihilator of each nonzero nilpotent element is the ideal B, the
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only finitely generated ideals which well-generate a nonzero nilpotent
element are the invertible ideals of D. As D is integrally closed and
not a Prüfer domain, R(X) does not contain the nilradical of T (R[X]).
Hence R(X) is not a PvMR.

The ring constructed in our second example is also nonreduced. It is
trivially a Q0-PvMR since it coincides with its ring of finite fractions.
The associated Nagata ring is a PvMR which is not a Prüfer ring.
Another rather unusual property of this ring is that while the Nagata
ring has no maximal t-ideals of type III, the corresponding polynomial
ring has no maximal t-ideals of type II.

Example 8.2. Let D = K[Y, Z], and let P be the set of nonzero
principal primes of D. For each Pα ∈ P, let Kα denote the quotient
field of D/Pα. Let R = D(+)B be the idealization of the D-module
B =

∑
Kα. For each b ∈ B, let Pb denote the set of those Pα ∈ P such

that the Pα-component of b is not zero. Then the following hold.

(a) R = Q0(R) but it is not a McCoy ring.

(b) R(X) contains the nilradical of T (R[X]).

(c) R(X) has no maximal t-ideals of type III and R[X] has no
maximal t-ideals of type II.

(d) R(X) is a PvMR but not a Prüfer ring. In particular, the ideal
(Y, Z)R(X) is regular but not invertible.

Proof. Each semiregular ideal of R is of the form J(+)B where J is
an ideal of D which is contained in no height one prime [32, Theorem
3]. Moreover, (J(+)B)−1 = J−1(+)B = D(+)B since D is a Krull
domain. It follows that R = Q0(R).

For each nonzero nilpotent b of R, the annihilator of b is the ideal
J(+)B where J is the (finite) intersection of the principal prime ideals
Pα ∈ Pb. As the sum is finite and each D/Pα is a one-dimensional
Noetherian domain, the total quotient ring of R/Ann (b) is naturally
isomorphic to the ring

∑
Kα where the sum is done over the ideals Pα

in Pb and, under this isomorphism, the integral closure of R/Ann (b)
is a finite direct sum of integrally closed one-dimensional Noetherian
domains. Hence, each semiregular ideal of R/Ann (b) is regular and
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extends to an invertible ideal in the integral closure of R/Ann (b). That
R(X) contains the nilradical of T (R[X]) now follows from Theorem 6.1,
i.e., [33, Theorem 11], or [32, Corollary 9]. Each prime ideal of R is of
the form P (+)B where P is a prime ideal of D [15, Proposition 4.2].
If P is a maximal ideal of D, then P (+)B is semiregular. Otherwise,
P (+)B has a nonzero annihilator. We first show that R[X] has no
maximal t-ideals of type II.

As with R, the prime ideals of R[X] are all of the form Q(+)B[X]
where Q is a prime ideal of D[X]. Since R = Q0(R), R[X] has no
maximal t-ideals of type I. Since B is the unique minimal prime ideal
of R, to show that R[X] has no maximal t-ideals of type II it suffices
to show that if Q is an upper to zero of D[X], then Q(+)B[X] is
not a maximal t-ideal of R[X]. Let Q be an upper to zero of D[X].
Since D = K[Y, Z], there is an irreducible polynomial f ∈ D[X] with
CD(f)−1 = D such that Q = fD[X]. Let Pα be a height one prime
of D such that f is not a constant modulo Pα. Since D is a UFD,
Pα = (p) is a principal prime ideal. Consider the ideal (f, p)R[X]. Let
b ∈ B\{0} be such that pb = 0. Since f is not a constant modulo Pα,
b/f is not in Kα[X]. Thus b/f ∈ (f, p)−1\R[X]. It follows that Q(+)B
is not a maximal t-ideal of R[X].

The nilradical of T (R[X]) can be identified with
∑

Kα(X) which we
will denote by B(X). As with R[X], R(X) has no maximal t-ideals of
type I. For each finitely generated regular ideal J of R(X), there is a
finitely generated ideal I of D(X) such that J = IR(X) = I(+)B(X).
Moreover, I cannot be contained in the extension of a height one prime
of D and J−1 = I−1(+)B(X), see, for example, [18, Theorem 25.10].
It follows that Jv = Iv(+)B(X). Hence each maximal t-ideal of R(X)
is the extension of a maximal t-ideal of D(X). As D is a Krull domain,
the maximal t-ideals of D(X) are all height one primes. In R(X), the
extension of a height one prime of D has a nonzero annihilator. Hence
each maximal t-ideal of R(X) is the extension of an upper to zero of
D(X), i.e., each maximal t-ideal of R(X) is of type II. That R(X) is a
PvMR follows from Theorem 7.9.

To construct the last two examples of this paper we use a variation
on the technique used to construct rings of the form A + B, see [18,
Section 26]. Before doing these examples, we do several others that
use the more standard version of this construction (although not in the
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form given in [18], instead see, for example, [29] or [30]). We start with
the most general variation. The basic idea is to begin with a ring D
and a nonempty subset P of Spec D. Next let A = {i = (α, n) |Pα ∈ P
and n ≥ 1}, and then, for each i = (α, n) ∈ A, let Ki denote the
quotient field of D/Pα. Now let I be an ideal of D which is contained
in the intersection of the Pαs (this is the beginning of the “variation”
from [18]). Then B =

∑
Ki is a D/I-module and we can form a

ring R = (D/I) + B from the direct sum of D/I and B by defining
multiplication as (r, a)(s, b) = (rs, rb + sa + ab). Given a ring D, a
nonempty subset P of SpecD and an ideal I which is contained in each
Pα ∈ P, we say that R = (D/I)+B is the A+B ring corresponding to
D, P and I. When I = (0), we will simply say that R = D + B is the
A+B ring corresponding to D and P. In the event that I = ∩Pα, then
the A+B ring R is isomorphic to the ring A′ +B where A′ denotes the
canonical image of D in the direct product

∏
Ki (and A′ +B is simply

the sum of A′ and B as subrings of
∏

Ki). In [18], it is the ring A′ +B
that is constructed. In most of the examples constructed in [18], the
ideal I is the zero ideal (due to having ∩Pα = (0)). In all but our next
to last example, we will take I to be the zero ideal. In our last example
we will be concerned with a subring of R rather than R.

For an element (r, a) of R, we let (r)i denote the image of r in Ki and
let (a)i denote the ith component of a. Also, to simplify the notation,
we may use the “r” in (r, a) to denote both an element of D and the
image of that element in D/I. For each i ∈ A we let ei denote the
element of B for which (ei)i = 1 and all other components are 0. To
simplify the proof that the rings presented in our examples have the
various properties attributed to them, we give the following theorem
which establishes some of the basic properties of A + B rings.

Theorem 8.3. Let D be a ring, P = {Pα} be a nonempty subset
of Spec D and I an ideal of D which is contained in ∩Pα. Let
R = (D/I) + B be the A + B ring corresponding to D, P and I. Then
the following hold.

(a) A finitely generated ideal J = ((r1, a1), (r2, a2), . . . , (rm, am)) is
semiregular if and only if no Pα/I contains the ideal J ′ = (r1, r2, . . . , rm)
D/I, J = J ′R and J ′ is a semiregular ideal of D/I.
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(b) Let S = D/I\(Z(D/I)∪ (∪Pα/I)). Then T (R) can be identified
with the ring (D/I)S + B.

(c) Q0(R) can be identified with the ring E + B where E =
∪{Hom(J ′, D/I) | J ′ is an ideal of D/I for which J ′R is semiregular}.

(d) Let J = ((r1, a1), (r2, a2), . . . , (rn, an)) be a finitely generated
semiregular ideal of R, and let J ′ = (r1, r2, . . . , rn)D/I. Then J−1

can be identified with J ′−1 + B. In particular, Jt �= R if and only if
J ′

t �= D/I, J is Q0-invertible if and only if J ′ is Q0-invertible, and J
is t-invertible if and only if J ′ is t-invertible.

(e) If J is a semiregular ideal of R, then there is a semiregular ideal
J ′ of D/I for which J = J ′R = J ′ + B with J ′ contained in no prime
of the set P. Moreover, J−1 = J ′−1 + B and J is t-invertible if and
only if J ′ is a t-invertible ideal of D/I.

(f) An ideal J of R is regular if and only if there is a regular ideal
J ′ of D/I such that J = J ′R = J ′ + B with some element of J ′ not
contained in the union of the primes ∪Pα/I. Moreover, J is invertible
if and only if it is regular and J ′ is invertible as an ideal of D/I.

Proof. Statements (a), (b) and (c) are from Theorem 19 of [33].
As in the proof given there, we note that for each i = (α, n), Ki is
naturally isomorphic to the quotient field Ki of (D/I)/(Pα/I). Thus
B is naturally isomorphic to B =

∑
Ki. It follows that (D/I) + B is

naturally isomorphic to (D/I)+B. Hence in establishing the remaining
statements we may assume I = (0).

The statements in (e) follow easily from (d) and the earlier results on
t-invertibility, namely, Lemma 3.3. Those in (f) follow easily from (b)
and (d).

For the proof of (d), let J = J ′R be a finitely generated semiregular
ideal of R, and let f ∈ Hom (J ′, D) and b ∈ B. For each j let frj = sj

and fix an i = (α, n). Since J ′ is not contained in Pα, we may assume
that some rj , say r1, survives in D/Pα. Since Pα is prime and r1sk =
rks1 for each k, s1 ∈ Pα implies each sk ∈ Pα. Moreover, if rj ∈ Pα,
then sj ∈ Pα. Hence, we can set fei = (s1/r1)ei and then extend f
to a map on all of B. It follows that (f, b)(r, a) = (fr, fa + rb + ab) is
in R for each (r, a) in J . Thus, (f, b) is an R-module homomorphism
from J into R.
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Now let g be an R-module homomorphism from J to R. Since B ⊂ J ,
g(0, ei) = (0, ei)(g(0, ei)) for each i. It follows that gB ⊂ B. For each
j, let g(rj , 0) = (sj , cj). Then the function f defined by frj = sj is
a D-module homomorphism from J ′ to D. Hence h = g − (f, 0) is an
R-module homomorphism which maps J into B. Let (0, bj) = h(rj , 0).
Since J ′ is finitely generated, there are only finitely many i for which
(bj)i �= 0 for some j. Moreover, (bj)i �= 0 implies (rj)i �= 0. Since
rjbk = rkbj for each j and k, there is an element b ∈ B such that
(b)i = 0 whenever (bj)i = 0 for each j and (b)i = (bj/rj)i for some
nonzero (bj)i. Then h is equivalent to multiplication by (0, b) and g
can be identified with multiplication by (f, b).

The various statements about J and J ′ with regard to having non-
trivial ts, or being either Q0-invertible or t-invertible follow from having
J−1 = J ′−1 + B.

Theorem 8.4. Let D be a domain, let P = {Pα} be a nonempty
subset of SpecD, and let I = (0). Let R be the A+B ring corresponding
to D and P. Then the following hold.

(a) For each i ∈ A, the set Mi = {(r, b) ∈ R | (r)i = −(b)i} is
a principal ideal generated by the idempotent (1,−ei) and is both a
maximal and a minimal prime of R.

(b) If P ′ is a prime ideal of R, then either P = Mi for some i ∈ A
or P ′ = P + B where P is a prime ideal of D.

(c) B is a minimal prime of R and BT (R[X]) = B(X) =
∑

Ki(X)
is a minimal prime of R(X).

(d) If f(X) ∈ D[X] is such that (f(X), 0) is a regular element of
R[X] and J is an ideal of R(X) generated by (f(X), 0) and a nonzero
element (r, 0) ∈ R, then J−1 �= R(X) if and only if CD(f)−1 �= D.

(e) R(X) has no maximal t-ideals of type III. Moreover, if M is a
maximal t-ideal of type II, then M ∩ R = B.

(f) If A is a finitely generated semiregular proper ideal of R with
A−1 = R, then W(A) = B.

Proof. [Proof of (a)]. Fix i = (α, n) ∈ A. Note that the element
(1,−ei) is in Mi and (1, 0) is not, so Mi is a proper ideal that
contains (1,−ei)R. For equality note that, for (r, b) ∈ Mi, (r, b) =
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(r, 0)(1,−ei) + (0, b − bei)(1,−ei). To see that Mi is a maximal ideal
of R, let (s, a) ∈ R\Mi. Then (s)i �= −(a)i. Thus (s, a)(0, ei) =
(0, sei+aei) is not zero, but for each j �= i, (sei+aei)j = 0. Since B is a
direct sum of fields, there is an element c ∈ B such that c(sei+aei) = ei.
Hence, Mi is a maximal ideal of R. As each element of Mi is annihilated
by the element (0, ei), RMi

is isomorphic to Ki. Therefore, Mi is also
a minimal prime of R.

[Proof of (b)]. Simple calculations show that P + B is a prime ideal
of R for each prime ideal P of D. For each i ∈ A, the only prime
that contains the idempotent (1,−ei) is Mi. Hence, if Q is a prime
ideal which is not one of the Mis, it must contain each of the elements
(0, ei). Hence, Q contains B, and, therefore, is of the form P + B for
some prime ideal P of D.

[Proof of (c)]. Obviously, R/B is isomorphic to D. Thus, B is a
minimal prime of R.

Since B is the direct sum of the fields Ki, to show that BR(X) =
BT (R[X]) =

∑
Ki(X), it suffices to prove that (0, ei/fi(X)) ∈ R(X)

for each i ∈ A and each nonzero fi(X) ∈ Di[X]. Fix i = (α, n) ∈ A
and let fi(X) be a nonzero polynomial in Di[X]. Then there is a
polynomial f(X) ∈ D[X] whose image in Di[X] is fi(X). Consider the
element u(X) = (Xf(X) + 1,−ei) ∈ R[X]. The content of u(X) is the
ideal of R generated by (1,−ei) and the content of f(X) in D. Since
fi(X) is nonzero, some coefficient of f(X) is not in the prime ideal Pα.
Thus (0, ei) ∈ C(f)R. It follows that u(X) has unit content in R. As
(1,−ei)(0, ei) = (0, 0), (0, ei/fi(X)) = (0, eiX)/u(X) ∈ R(X).

[Proof of (d)]. Let J = (f(X), r) be an ideal of D[X] for which r ∈ D
is nonzero and f(X) ∈ D[X] is such that (f(X), 0) is a regular element
of R[X]. Since r is not zero (and D is a domain), if J−1 �= D[X],
then CD(f)−1 �= D. It follows that C(JR(X))−1 �= R(X). Thus
(JR(X))−1 �= R(X).

Conversely, assume (JR(X))−1 �= R(X), and let t ∈ (JR(X))−1\R(X).
We may assume t has the form (a(X), 0)/(f(X), 0) where a(X) ∈ D(X)
since BT (R[X]) ⊂ R(X). As J is finitely generated, we may further
assume that a(X) is a polynomial in D[X]. Since r ∈ J is not zero,
there is a polynomial s(X) ∈ D[X] such that a(X)/f(X) = s(X)/r.
That CD(f)−1 �= D now follows from Lemma 5.2.
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[Proof of (e)]. Let M be a maximal t-ideal of R(X), and let
Q = M ∩ R. For each i ∈ A, the ideal Mi is both a maximal and
a minimal prime ideal of R. Hence MiR(X) is both a maximal and a
minimal prime ideal of R(X). Thus Q must be of the form P + B for
some prime ideal P of D. If P �= (0), then by (d) and Theorem 5.7,
we must have that Q is a maximal t-ideal of R and M = QR(X). If
P = (0), then M is of type II.

[Proof of (f)]. Let A be a finitely generated semiregular ideal of R
with A−1 = R. Then by Theorem 8.3(e), there is a finitely generated
ideal J of D that is contained in no prime of the set P for which
A = JR = J +B. By the proof of (c), each polynomial with content A
divides each element of B in R(X). Thus, A well generates each element
of B. Since I = (0), all other elements of R have annihilators contained
in B, so no other elements can be in W(A). On the other hand, each
nonzero element of B can be annihilated by a finite intersection of ideals
of the form Mi as described in (a). The only way A could contain such
an intersection is if J = D. Hence, W(A) = B.

Note that in the proof that BR(X) = BT (R[X]) =
∑

Ki(X) we did
not use the assumptions that D was an integral domain and that I was
zero. Hence we may derive the following corollary to the proof of that
part of statement (c).

Corollary 8.5. Let D be a ring, P = {Pα} a nonempty subset
of Spec D and I an ideal of D which is contained in ∩Pα. Let
R = (D/I) + B be the A + B ring corresponding to D, P and I.
Then BR(X) = BT (R[X]) =

∑
Ki(X) and fR(X) ⊃ BR(X) for each

regular element f of R(X).

An easy consequence of Theorems 8.3 and 8.4 is the following result.

Theorem 8.6. Let D be a domain, let P = {Pα} be a nonempty
subset of Spec D, and let I = (0). Let R = D + B be the A + B ring
corresponding to D and P. Then the following hold.

(a) If D is a Prüfer domain, then R is a strongly Prüfer ring.
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(b) If D is a Krull domain, then R is both a Krull ring and a Q0-Krull
ring.

(c) If D is a PvMD, then R is both a PvMR and a Q0-PvMR.

(d) R is a Q0-PvMR if and only if R(X) is a PvMR.

(e) R is a Q0-Krull ring if and only if R(X) is a Krull ring.

Proof. The first three statements follow from statements (d), (e) and
(f) of Theorem 8.3. Statement (d) follows from the fact that R(X)
has no type III maximal t-ideals (Theorem 8.4(e)), and statement (e)
follows from statements (e) and (f) of Theorem 8.4.

The converse of each of the statements (a), (b) and (c) in Theorem 8.6
is false. A trivial counterexample to all of them can be constructed by
simply starting with a domain D that is not integrally closed. Then
take P to be the set of maximal ideals of D. The A + B ring R
corresponding to D and P is a reduced total quotient ring which is also
a McCoy ring. Thus, R = Q0(R), and it is a strongly Prüfer ring, both
a Krull ring and a Q0-Krull ring and both a PvMR and a Q0-PvMR.
But D is none of these since it is not integrally closed.

Our first example of a reduced ring is both a Krull ring and a Q0-Krull
ring with infinitely minimal primes, so the corresponding polynomial
ring cannot be a Krull ring, but it is a PvMR.

Example 8.7. Let D = K[Y ], and let P = {(0)} (thus the only
choice for I is (0)). Let R = D + B be the A + B ring corresponding
to D and P. Then the following hold.

(a) R is a strongly Prüfer ring, a PvMR, a Q0-PvMR, a Krull ring
and a Q0-Krull ring.

(b) As R has infinitely many minimal primes, R[X] is not a Krull
ring.

(c) T (R) = K(Y ) + B is von Neumann regular.

(d) R[X] is a PvMR.

(e) R(X) is a Prüfer ring and a Krull ring.
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Our second example of a reduced ring is of a nontrivial Krull ring for
which the associated Nagata ring is not a Krull ring even though it has
no maximal t-ideals of type III and W(A) is a finite union of minimal
prime ideals for each finitely generated semiregular ideal A. What fails
is that the ring in question is not a Q0-Krull ring since it is not even
integrally closed in its ring of finite fractions.

Example 8.8. Let D = K[U, Y, Y Z, Z2, Z3], and let P be the set of
height one primes of D except for P = UD. Let R = D + B. Then
R is a Krull ring but R(X) is not even though R(X) has no maximal
t-ideals of type III and, for each finitely generated semiregular ideal A
of R, W(A) is a finite union of minimal primes of R. Since no height
one prime of D contains both Y and Z, the ideal (Y, Y Z, Z2, Z3)R
is semiregular. Moreover, the ring of finite fractions over R can be
identified with the ring K[U, Y, Z]+B. Hence R is not integrally closed
in Q0(R), and, therefore, it is not a Q0-Krull ring.

Proof. The only elements of D which are not contained in at least
one prime from the set P are the constants and the constant multiples
of powers of U . Hence T (R) = D[1/U ] + B = R[1/U ]. For each
nonzero f ∈ D[1/U ], there is a unique integer m and element g ∈ D\P
such that f = Umg. For t = (f, b) ∈ T (R), set ν(t) = m and for
s = (0, b), set ν(s) = ∞. Straightforward calculations show that
ν : T (R) → Z ∪ {∞} is a (discrete rank one) valuation with (R, PR)
the corresponding valuation pair.

The ideal (Y, Y Z, Z2, Z3)R is semiregular. Thus, Z can be realized
as an element of Q0(R) using the finite fraction form g(X)/f(X) where
g(X) = Y ZX3 + Y Z2X2 + Z3X + Z4 and f(X) = Y X3 + Y ZX2 +
Z2X + Z3. Obviously, Z is integral over R, hence R is not integrally
closed in Q0(R) and, therefore, R(X) cannot be a Krull ring.

The next two examples are somewhat unusual in that the total
quotient rings and the rings of finite fractions coincide, yet the rings
in question are Krull rings which are not Q0-Krull rings and are
PvMRs which are not Q0-PvMRs. Thus, the associated Nagata rings
are neither Krull rings nor PvMRs. The second of these two also
satisfies a.c.c. on semiregular divisorial ideals but contains a semiregular



KRULL RINGS AND PvMRs 1313

divisorial ideal which is contained in infinitely many maximal t-ideals.
It also has the property that each regular ideal is principal, so it is a
Prüfer ring.

Example 8.9. Let D = Z + (Y, Z)Z[(1/2), Y, Z] + Y ZQ[Y, Z], and
let P be the set of primes of D which do not contain both Y and Z.
Let R = D + B be the associated ring of the form A + B associated
with D, P and (0). Then the following hold.

(a) The maximal ideal M = (2)R is the only regular prime ideal of
R and Q0(R) = T (R).

(b) R = D+B is a discrete rank one Q0-valuation ring with invertible
maximal ideal M , but the prime at infinity is semiregular. Thus R is
both a Prüfer ring and a Krull ring but it is neither a Q0-Krull ring
nor a Q0-PvMR.

(c) While there are infinitely many maximal ideals which are semi-
regular, M is the only maximal t-ideal.

Proof. No prime in P contains 2 since 2 divides both Y and Z in D.
On the other hand, all other prime numbers as well as all irreducible
polynomials are contained in at least one member of P. Thus, the only
regular elements of R are those of the form (2n, b) for some nonnegative
integer n and some element b ∈ B. Hence, T (R) can be identified with
Z[1/2] + (Y, Z)Z[(1/2), Y, Z] + Y ZQ[Y, Z] + B. Each semiregular ideal
of R must contain a power of (Y, Z)R. Each such ideal has inverse
equal to T (R) since the only rational multiples of each of Y n and Zn

which are contained in R are those whose denominators are powers
of 2. Hence T (R) = Q0(R). If (r, b) ∈ T (R)\R, then the constant
term of r is a rational number whose reduced form has a positive
power of 2 in the denominator, say 2n. Multiplying by (2n, 0) gives an
element of R which is not in MR. It follows that (R, MR) is a discrete
rank one valuation pair and discrete rank one Q0-valuation pair. The
prime at infinity is the ideal (Y, Z)Z[(1/2), Y, Z] + Y ZQ[Y, Z] which is
semiregular. The semiregular ideal (Y, Z)R is not t-invertible. Hence,
R is neither a Q0-Krull ring nor a Q0-PvMR, but it is both a Krull
ring and a PvMR even though T (R) coincides with Q0(R).



1314 T.G. LUCAS

Example 8.10. Let D = Z+(Y, Z)Q[[Y, Z]], and let P be the set of
height one primes of D. Let R = B+B be the A+B ring corresponding
to D and P. Then the following hold.

(a) T (R) = Q0(R) can be identified with Q[[Y, Z]] + B.

(b) Each regular ideal of R is principal.

(c) R is a Krull ring, a Prüfer ring and a PvMR.

(d) For P = (Y, Z)Q[[Y, Z]], P + B = PR is a semiregular divisorial
ideal with inverse T (R), and PR is the only semiregular divisorial ideal
which is not regular.

(e) R satisfies a.c.c. on semiregular divisorial ideals, but PR is
contained in infinitely many maximal t-ideals.

(f) The semiregular ideal (Y, Z)R is not t-invertible, so R is neither
a Q0-Krull ring nor a Q0-PvMR, but it is a Q0-Prüfer ring (but not a
strongly Prüfer ring).

Proof. First each power series with constant term ±1 is a unit in D
and each element of P is a zero divisor of R. So the regular nonunits
are those power series with a constant nonzero integer with at least one
prime divisor. Each such power series can be factored as its constant
term times a unit of D. The semiregular ideals of R are those of the
form I + B where I contains a power of P . As P is a common ideal of
D and Q[Y, Z]], (D : I) = Q[[Y, Z]]. Hence T (R) = Q0(R) and each
regular ideal of R is principal of the form nR where n is a positive
integer greater than 1. From this we have that R is both a Krull
ring and a Prüfer ring, and that PR is the only semiregular divisorial
ideal which is not regular and it has inverse equal to T (R). Now an
ascending chain of semiregular divisorial ideals either starts with PR
with the second member of the chain a principal regular ideal nR for
some positive integer n, or it starts with nR (for some positive integer
n). Either way the chain must terminate. Hence, R satisfies a.c.c. on
semiregular divisorial ideals. As (Y, Z)R is neither Q0-invertible nor
t-invertible, R is not a strongly Prüfer ring and is neither a Q0-Krull
ring nor a Q0-PvMR. However, it is a Q0-Prüfer ring since it is a Prüfer
ring whose total quotient ring coincides with its ring of finite fractions.
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The ring in Example 8.11 is a nontrivial reduced Q0-Krull ring which
is not a Q0-Prüfer ring. The associated Nagata ring is a nontrivial
Krull ring but is not a Prüfer ring.

Example 8.11. Let E = D[Z] where D is a Dedekind domain with
a maximal ideal N = (a, b) for which no power of N is principal. Let
P denote the set of prime ideals of E which contain neither Z nor NE.
Form the ring R = E + B. Then the following hold.

(a) T (R) = E[1/Z] + B and Q0(R) = T (N)[1/Z] + B where T (N)
(= ∪(D : Nm)) is the Nagata transform of the ideal N .

(b) R is Q0-Krull ring which is not Q0-Prüfer.

(c) R(X) is a Krull ring but not a Prüfer ring.

(d) R[X] is not a PvMR.

Proof. For each (maximal) ideal Pα ∈ P, the ideal PαR[X] + XR[X]
is a maximal t-ideal of R[X] which is not the extension of a maximal
t-ideal of R and does not contract to a minimal prime of R. Thus R[X]
is not a PvMR. Since E is a Krull domain, R is a Q0-Krull ring and
R(X) is a Krull ring by Theorem 8.6. This also makes R a Q0-PvMR
and a PvMR. The ideal of E generated by z and N is not invertible.
Thus R is neither a Prüfer ring nor a Q0-Prüfer ring.

Our next example is of a reduced ring R where R is a discrete rank one
valuation ring of T (R), yet is a rank two Q0-valuation ring. Moreover,
the prime at infinity under both valuations is semiregular.

Example 8.12. As in Example 8.11, let D be a Dedekind with a
maximal ideal N = (a, b) such that no power of N is principal. Let K
be the quotient field of D, and let Y , W and Z be indeterminates
over K. Let E = D[Y, W, Z] + N [Z, Z−1] + Y D[1/a][Y, Z, Z−1] +
WD[1/b][W, Z, Z−1]+Y WK[Z, Z−1], and let P be the set of primes of
E which do not contain both Y and W . Let R = E + B be the A + B
ring formed from E and P. Then the following hold.

(a) The total quotient ring can be identified with E[Z−1] + B and
the ring of finite fractions can be identified with T (N)[Y, W, Z, Z−1]+
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E[Z−1] + B where T (N) is the ideal transform of N in the quotient
field of D, i.e., T (N) = ∪(D : Nn).

(b) (R, ZR) is a discrete rank one valuation pair of T (R) with prime
at infinity the ideal N [Z, Z−1]R.

(c) (R, ZR) is rank two Q0-valuation pair with semiregular prime at
infinity JR + B where J = (Y, W )T (N)[Y, W, Z, Z−1].

(d) R is a Krull ring and a PvMR which is neither a Q0-Krull ring
nor a Q0-PvMR.

Proof. First we show that the only elements of E which are not
contained in at least one member of P are those of the form uZn where
u is a unit of D and n is a nonnegative integer. Since Z divides both Y
and W in E, no prime in P can contain the set {uZn |n ≥ 0 and u is
a unit of D}. Suppose f ∈ E\D is not in the set above. Then there is
a minimal integer n such that fZn ∈ K[Y, W, Z]\{uZm |u ∈ K}. Pick
an irreducible factor g of fZn which is not in {uZm |u ∈ K}. Then
Pg = gK[Y, W, Z, Z−1] ∩ E is a prime ideal of E which contains f but
does not contain both Y and W . Now let c be a nonzero nonunit of D.
Then there is a maximal ideal M of D such that c ∈ M and M �= N .
Thus at least one of a and b is not in M , say a is not in M . Note
that tY W ∈ E for each nonzero t ∈ K, thus every prime ideal of E
that contains nonzero constants from D must contain either Y or W .
Since we have assumed a is not in M , we will construct a prime that
contains M and W but not Y . To do so, simply contract the maximal
ideal M + WK(Z, Y )[W ] of D + WK(Z, Y )[W ] to E. It follows that
T (R) = E[Z−1] + B by Theorem 8.3.

The characterization of Q0(R) is a bit more difficult. It is fairly easy
to see that Q0(R) should contain T (N)[Y, W, Z, Z−1] + E[Z−1] + B.
Obviously it must contain E[Z−1] + B. To verify that it also contains
T (N)[Y, W, Z, Z−1] simply consider the finitely generated semiregular
ideal (Y, W )R. Let t ∈ T and let n be an integer. Then there is
an positive integer m such that both tam and tbm are in D. Hence,
t = r/am = s/bm for some r, s ∈ D. Then tZnY = rznY/am ∈
E and tZnW = sZnW/bm ∈ E. It follows that Q0(R) contains
T (N)[Y, W, Z, Z−1] + E[Z−1] + B.

By Theorem 8.3, each finitely generated semiregular ideal of R is
of the form AR where A is a finitely generated ideal of E which
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is not contained in any of the primes of the set P. For such an
ideal AR, it must be that the minimal primes of A as an ideal of
E all contain both Y and W . Hence the radical of A as an ideal
of E must contain both Y and W , whence A contains Y k and W k

for some positive integer k. Thus by Theorem 8.3, to complete the
proof that Q0(R) = T (N)[Y, W, Z, Z−1] + E[Z−1] + B, we simply
need to show that ((Y k, W k)E)−1 = T (N)[Y, W, Z, Z−1] + E[Z−1]
for each positive integer k. Note that since E ⊂ K[Y, W, Z, Z−1]
and ((Y k, W k)K[Y, W, Z, Z−1])−1 = K[Y, W, Z, Z−1], we know that
((Y k, W k)E)−1 is contained in K[Y, W, Z, Z−1]. Let f ∈ ((Y k, W k)×
E)−1. As we may multiply fY k and fW k by any positive power of Z
and stay in E, we will assume for now that f is an element of K[Y, W, Z].
As such, the constant term must be in D[1/a] ∩ D[1/b] = T (N) as
desired. So we may assume the constant term of f is zero. As E
contains Y WK[Y, W, Z, Z−1], we may assume that none of terms of
f have positive powers of both Y and W . Thus we may write f in
the form Za(Z) + Y b(Y, Z) + Wc(W, Z) with a(Z) ∈ K[Z], b(Y, Z) ∈
K[Y, Z] and c(W, Z) ∈ K[W, Z]. Multiply this expression by Y k and
W k. Obviously, Y kWc(W, Z) and W kY b(Y, Z) are in E, no matter
what c(W, Z) and b(Y, Z) are. Where we obtain useful information
is in having the products Y kZa(Z) + Y k+1b(Y, Z) and W kZa(Z) +
W k+1c(W, Z) in E. Since the power of Y in each term of Y k+1b(Y, Z)
is at least k+1, we must have Y kZa(Z) ∈ E. Similarly, W kZa(Z) ∈ E.
It follows that the coefficients of a(Z) are in D[1/a]∩D[1/b] = T (N) as
desired. To have Y k+1b(Y, Z) in E we must have started with Y b(Y, Z)
in E. Similarly, we must have started with Wc(W, Z) in E. Hence, we
have f ∈ T (N)[Y, W, Z]+E. Note that the products fY k and fW k stay
in Y D[1/a][Y, Z, Z−1] + WD[1/b][W, Z, Z−1] + Y WK[Y, W, Z, Z−1].
Any power of Z times any element of this ideal stays in this ideal.
Thus ((Y k, W k)E)−1 = T (N)[Y, W, Z, Z−1] + E[Z−1].

That R is a discrete rank one valuation ring follows quite easily from
the fact that T (R) = E[Z−1] + B. Since each power of Z divides all
elements of N and terms containing a positive power of either Y or W ,
if f ∈ E[Z−1]\E, then f must have at least one term of the form r/Zn

where r ∈ D\N and n a positive integer. It can of course have only
finitely many such terms, we simply pick the one with the largest value
of n and multiply f by Zn to obtain an element of E which is not in
ZE. From this it follows that (R, ZR) is a discrete rank one valuation
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pair. As N [Z, Z−1]R is a maximal ideal of T (R) and is contained in
ZR, it is the prime at infinity for the valuation.

Now consider the pair (R, ZR) with regard to Q0(R). Let (t, b) ∈
Q0(R)\R. We must have t ∈ T (N)[Y, W, Z, Z−1] + E[Z−1]\E. If
t ∈ E[Z−1] we know there is an element of ZE that will multiply t
into E\ZE. So we may assume t is not in E[Z−1]. As we did above in
establishing the elements of Q0(R), we may multiply by some nonneg-
ative power of Z, say Zm, to obtain a polynomial in Y , W and Z. Call
this polynomial s. Write s in the form a(Z) + Y b(Y, Z) + Wc(W, Z) +
Y Wd(Y, W, Z). Note that Y b(Y, Z) + Wc(W, Z) + Y Wd(Y, W, Z) is
in E, so we must have a(Z) ∈ T (N)[Z]\D[Z]. Since Nk is an invert-
ible ideal of D for each positive integer k, no element of T (N)\D can
multiply all of the elements of Nk back into Nk. Let k be the small-
est positive integer such that C(a) is contained in (D : Nk). Then
C(a)Nk is contained in D but not contained in Nk. In fact, as k was
minimal, some element of C(a)Nk must be in D\N for otherwise we
could multiply by (D : N) to have C(a)Nk1 = C(a)Nk(D : N) ⊆ D.
Write a(Z) = a0 + · · · + anZn, and let ai be the first coefficient
of a(Z) for which air ∈ D\N for some r ∈ Nk. Multiply s by
rZ−i. By the construction of E, all integer powers of Z multiply
Y b(Y, Z)+Wc(W, Z)+Y Wd(Y, W, Z) into ZE. Also rZ−i(a0 +a1Z +
· · ·+ai−1Z

i−1) is in N [Z, Z−1] ⊆ ZE and rZ−i(ai+1Z
i+1+ · · ·+anZn)

is in ZE. On the other hand, rZ−iaiZ
i = rai ∈ E\ZE. It follows that

rZm−it ∈ E\ZE. Therefore (R, ZR) is the valuation pair of Q0(R).
It has rank two since there are no primes between N [Z, Z−1]E and
Y D[1/a][Y, Z, Z−1] + WD[1/b][W, Z, Z−1] + Y WK[Y, W, Z, Z−1] and
the latter generates a common prime ideal of R and Q0(R). The prime
at infinity is semiregular, so R is not a Q0-PvMR.

In Example 8.13 we construct a nontrivial reduced Q0-PvMR which
is neither a Q0-Krull ring nor a Q0-Prüfer ring. Moreover, the ring, its
total quotient ring and its ring of finite fractions are all distinct. Since
the base ring is an integral domain and the ideal I is taken to be (0), the
corresponding Nagata ring will be a PvMR by Theorem 8.6. The ring
is constructed in a similar manner to the ring built in Example 8.11.
A little background information is in order before presenting this
example. Recall that the set Int (Z) = {f ∈ Q[Y ] | f(n) ∈ Z for
each n ∈ Z} is known as the ring of integer valued polynomials on Z.
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The ring has many nice properties, including being a two-dimensional
Prüfer domain which is not Bezout [7, p. 127]. Also, the spectrum of
Int (Z) is known, [6] and [8]. There are height one primes of the form
Pf = fQ[Y ] ∩ Int (Z) where f is an irreducible polynomial. The other
primes are all maximal ideals, each is (distinctly) denoted as Mp,α

where p is a prime integer and α is an element in the ring of p-adic
integers, Ẑp. Each such ideal consists of those polynomials g ∈ Int (Z)
for which g(α) ∈ pẐp. If α is algebraic over Z, Mp,α is a height
two maximal ideal. On the other hand, if α is transcendental over Z,
then Mp,α is a height one maximal ideal, see [7, Proposition V.2.7] for
details.

Example 8.13. Let D = Int (Z)[Z], and let P be the union of the set
of height one primes {Pf [Z] | f ∈ (2, Y )Int (Z)} and the set of maximal
ideals {M2,α[Z] |α ∈ Ẑ2\2Ẑ2}. Let R = D + B be the A + B ring
corresponding to D and P. Then the following hold.

(a) R �= T (R) �= Q0(R).

(b) R is a Q0-PvMR which is neither Q0-Prüfer nor Q0-Krull.

(c) R(X) is a PvMR which is neither a Krull ring nor a Prüfer ring.

Proof. None of the primes in P contain Z, so Z is a regular element
of R which is not a unit. The same can be said for each odd prime.
Hence, R �= T (R). The ideal (2, Y )R is semiregular but not regular.
As (2, Y )D is invertible, (2, Y )R is Q0-invertible. As it is not regular,
its inverse is not contained in T (R) and therefore T (R) �= Q0(R). Since
Int (Z) is a Prüfer domain, D is a PvMD. Thus R is a Q0-PvMR. The
maximal ideal M3,1/2 has height 2 and contains the prime ideal P2Y −1,
[7, Proposition V.2.7], which is obviously comaximal with each prime
that contains 2. Hence both M3,1/2 and P2Y −1 generate regular prime
ideals of R. As Int (Z)M3,1/2 is a two-dimensional valuation domain,
(R(M3,1/2R), (M3,1/2)R(M3,1/2R)) is a valuation pair of T (R) which is
not rank one and (R{M3,1/2R}, {M3,1/2}R{M3,1/2R}) is a valuation pair
of Q0(R) which is not rank one. Thus, R is neither a Krull ring nor a
Q0-Krull ring. As (2, Y, Z)D has inverse equal to D, the regular ideal
(2, Y, Z)R has inverse equal to R. Thus R is neither a Prüfer ring nor
a Q0-Prüfer ring. That R(X) is a PvMR follows from Theorem 8.6.
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We need a more complicated example to show that a reduced Q0-
PvMR need not be such that the associated Nagata ring is a PvMR.
Since we are again going to employ the A + B construction to build
such a ring, we are finally at a point where we need to either start
with a ring which is not an integral domain or take the ideal I to be
nonzero. In our next example, we will start with a domain D and an
ideal I �= (0) which is a radical ideal that is not prime. The resulting
ring R will be a Q0-PvMR for which the associated Nagata ring is not
a PvMR.

Example 8.14. Let D1 = K0[U, V, W, Y ]/(UV − Y W ), and let K1

be the quotient field of D1. Let I = {fα} be the set of monic irreducible
polynomials in K1[T ]. For each fα ∈ I and each positive integer n, let
j = (α, n), and then let Z = {Zj} be a set of indeterminates. Let
D = D1 + (T,Z)K1[T,Z]. Let I be the ideal generated by the set
{ZiZj | i �= j} ∪ {fαZj | j = (α, n) for some n ≥ 1}, and let S = D/I.
Let P be the set of prime ideals of D that contain I but do not contain
both U and W . Finally, let R = S+B be the A+B ring corresponding
to D, P and I. Then R is a Q0-PvMR and a Q0-Krull ring, but R(X)
is neither a PvMR nor a Krull ring.

Proof. By Theorem 8.3, each semiregular ideal of R is of the form
J ′R where J ′ = J/I is a semiregular ideal of S which is contained in no
prime of the set P. Thus J must be an ideal of D that contains I with
both U and W in

√
J . Hence, J ′ is a regular ideal of S. Since each

nonzero ideal A of D1 is such that A(T,Z)K1[T,Z] = (T,Z)K1[T,Z],
J = AD for some ideal A of D1 whose radical in D1 contains both U
and W . As D1 is Noetherian, A is finitely generated. Moreover, each
nonzero element of A divides each element of (T,Z)K1[T,Z]. Thus, if
(S : J ′) �= S, then we must also have (D1 :K1 A) �= D1. Since D1 is
a Krull domain and

√
A contains both U and W , (D1 :K1 A) �= D1

implies
√

A is the (height one) prime ideal N = (U, W )D1. It follows
that Q0(R) = F/I + B where F = T (N) + (T,Z)K1[TZ] and T (N) =
∪(D1 : Nn) is the ideal transform of N in K1.

Since D1 is a Noetherian Krull domain, each nonzero ideal of D1

is t-invertible and finitely generated (as an ideal of D1). Thus in R,
each semiregular ideal is of the form (AD/I) + B where A is a finitely
generated ideal of D1 whose radical contains U and W . For each such
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ideal A, (A(D1 : A))t = D1. It follows that if C is a semiregular ideal
of R, then (CC−1)t = R. Hence R is both a Q0-PvMR and a Q0-Krull
ring.

By Theorem 7.9, to show that R(X) is not a PvMR, it suffices to show
that it contains at least one maximal t-ideal of type III. Let g(X) =
UX + W and let Qg denote the upper to zero g(X)K1[X] ∩ D1[X].
Note that this ideal also contains the polynomial Y X + V since in K1,
Y/U = V/W ∈ (D1 : (U, W )). But, since (U, W )D1 is not an invertible
ideal of D1, Qg does not contain a polynomial with unit content in
D1. It follows that C(Qg) = (U, V, W, Y )D1 so (D1 : C(Qg)) = D1

and QgD(X) �= D(X). Thus no maximal t-ideal of type I contains
Qg. Let M be the ideal of R(X) generated by (the images of) Qg and
P = (T,Z)K1[T,Z]. We will show that Mt is a proper t-ideal of R(X).
It is in fact a maximal t-ideal and equal to M , but all we need is that
each maximal t-ideal that contains M is of type III. To this end, first
note that since (UX + W, 0) is a regular element of R(X), BR(X) is
contained in M by Corollary 8.5. As Qg is an upper to zero of D1[X],
M ∩ R = P/I + B. That P/I + B is not semiregular follows from the
fact that P contains neither U nor W . Also, it is not a minimal prime
of R since, for example, P properly contains the prime ideal of K1[T,Z]
generated by Z.

To show that Mt is a proper t-ideal, we must show that, for each
finitely generated regular ideal J contained in M , J−1 �= R(X). Since
the v-operation preserves order, it does no harm to assume J contains
the regular element (UX + W, 0). We start by considering an ideal J
generated by (UX +W, 0) and elements (p1, b1), (p2, b2), . . . , (pn, bn) ∈
P/I + B. Since (UX + W, 0) is a regular element of R(X), each of
the elements (0, bk)/(UX + W, 0) is in R(X). Thus, we may assume
each bk equals zero. As there are only finitely many pks and each
is a polynomial in (T,Z)K1[T,Z], there is an element Zj ∈ Z such
that Zjpk ∈ I for each k. It follows that (Zj , 0)/(UX + W, 0) is
in (R(X) : J)\R(X). Now note that if p(X) is a polynomial in
Qg, then p(X) = (UX + W )h(X) for some polynomial in K1[X].
Thus p(X)[Zj/(UX + W )] = Zjh(X) ∈ ZjK1[T,Z][X] ⊂ D[X]. It
follows that each finitely generated regular ideal contained in M has a
nontrivial inverse, i.e., Mt �= R(X). Since P is not a minimal prime of
R, no maximal t-ideal of type II contains M . Hence R(X) has maximal
t-ideals of type III and R(X) is not a PvMR.
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In all of our previous examples of reduced Q0-PvMRs where the
associated Nagata ring is a PvMR, the set W(A) turned out to be a
single minimal prime ideal of R, namely the ideal B. Our last example
shows that, unlike what occurs when R(X) is a Krull ring, W(A) can
be an infinite union of minimal primes and still have R(X) a PvMR.
The ring in this example is a reduced PvMR with total quotient ring
von Neumann regular, but it is not a Krull ring.

Example 8.15. Let D = K[Y, Z], and let P = {(0)}. Let R = D+B
be the A+B ring corresponding to D and P, and let S = D+C where
C =

∑
Di is the sum of infinitely many copies of D. Then the following

hold.

(a) As in Example 8.7, T (S) = K(Y, Z)+B is von Neumann regular.

(b) S is a PvMR and a Q0-PvMR, but not a Krull ring.

(c) S(X) is a PvMR.

(d) For A = (Y, Z)S, W(A) is an infinite union of minimal primes.

Proof. Let F = K(Y, Z), and let Fd and Dd denote the image of F
and D, respectively, using the canonical embedding of each along the
diagonal of

∏
Fi. For this example it is convenient to consider S as the

sum of C and Dd and T (S) as the sum of B and Fd. In this view each
element of T (S) can be written uniquely as a sum r + b where r ∈ Fd

and b ∈ B. Let A be a finitely generated semiregular (hence regular)
ideal of S and write A = (a1+b1, a2+b2, · · · , an+bn) with each aj ∈ Dd

and bj ∈ C. Since T (S) is von Neumann regular, S is a Marot ring so
we may assume that, for each i and j, the ith component of aj + bj is
not zero. By the construction, there are at most finitely many i where
(bj)i is not zero. Since D is a Noetherian Krull domain, each (finitely
generated) nonzero ideal of D is t-invertible. Let i1, i2, . . . , im be the
is for which some (bj)i is not zero, and let t = s + c ∈ (S : A). Then
s ∈ (D : (a1, a2, . . . , an)) and c is such that ci = 0 for those i not in the
set {i1, i2, . . . , im} and (s+c)ij

(ak +bk)ij
∈ Dij

otherwise. As Di = D
for each i and the image of A in Di is a nonzero ideal, A is t-invertible.
Thus S is both a PvMR and a Q0-PvMR. We also have that S(X) is
a PvMR by Corollary 7.10.
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S is not Krull ring since there are infinite ascending chains of regular
principal ideals. To build such a chain, start with r, a nonzero nonunit
of D. Then, let rn = rd + fn where rd is the image of r in Dd and fn

is the element of C for which (fn)i = 0 for i > n and (fn)i = 1 − r for
i ≤ n. Fix n, and, for m < n, let sm = 1d + gm where (gm)i = r − 1
for m < i ≤ n and (gm)i = 0 otherwise. Clearly, rm = rnsm. Thus,
rm ∈ rnS. On the other hand, rn is not in rmS. Thus, {rmS} is an
infinite ascending chain of regular principal ideals.

It remains to show that for A = (Y, Z)S, W(A) is an infinite union
of minimal prime ideals. Since each ideal Mi = {r ∈ S | (r)i = 0} is
a minimal prime of S, it suffices to show that there are no (nonzero)
elements of S that are well generated by A. Let r = a + b be a zero
divisor of S. If a = 0, then Ann (r) is the finite intersection ∩Mij

where
ij is such that (b)ij

�= 0. We have S/Ann (r) naturally isomorphic to
the finite direct sum

∑
Dij

, a finite sum of Krull domains where the
image of (Y, Z) is not invertible. Thus r is not well generated by A.
If a �= 0, then there are only finitely many i for which (r)i = 0. The
annihilator of r will simply be generated by the idempotent e where
(e)i = 0 when (r)i �= 0 and (e)i = 1 when (r)i = 0. Moding out by
Ann (r) will simply give us a ring isomorphic to S with the image of r
a regular element and the image of A still not invertible, so again r is
not well generated by A. It follows that W(A) is the infinite union of
the ideals Mi.
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