FORMULAS FOR POWERS OF THE HYPERBOLIC TANGENT WITH AN APPLICATION TO HIGHER-ORDER TANGENT NUMBERS

J.S. LOMONT

Abstract

It is shown that the function $\tanh ^{2 n+1}(x)$ is a linear combination of even-order derivatives of $\tanh (x)$, while the function $1-\tanh ^{2 n+2}(x)$ is a linear combination of odd-order derivatives of $\tanh (x)$. These results are then used to express higher-order tangent numbers (coefficients in the Maclaurin series for $\left.\tanh ^{n}(x)\right)$ as linear combinations of the ordinary tangent numbers (coefficients in the Maclaurin series for $\tanh (x))$.

1. Introduction. In a recently published book [2], the three sequences of polynomials $\left\{\delta_{n}\right\}_{0}^{\infty}\left[\mathbf{2}\right.$, Chapter 10], $\left\{A_{n}\right\}_{0}^{\infty},\left\{B_{n}\right\}_{0}^{\infty}[\mathbf{2}$, Chapters 13, 14] were introduced and studied. These sequences are defined by the following recurrences:

$$
\begin{equation*}
\delta_{n+2}(x)=x \delta_{n+1}(x)+n(n+1) \delta_{n}(x), \tag{1.1}
\end{equation*}
$$

where $\delta_{0}(x)=1, \delta_{1}(x)=x$,
(1.2) $A_{n+2}(z)=\left(z+2(2 n+3)^{2}\right) A_{n+1}(z)-4(n+1)^{2}(2 n+1)(2 n+3) A_{n}(z)$,
where $A_{0}(z)=1, A_{1}(z)=z+2$, and

$$
\begin{equation*}
B_{n+2}(z)=\left(z+8(n+2)^{2}\right) B_{n+1}(z)-4(n+1)(n+2)(2 n+3)^{2} B_{n}(z) \tag{1.3}
\end{equation*}
$$

where $B_{0}(z)=1, B_{1}(z)=z+8$. The δ_{n} 's are related to the A_{n} 's and B_{n} 's as follows:

$$
\begin{equation*}
\delta_{2 n+1}(x)=x A_{n}\left(x^{2}\right), \quad n=0,1,2, \ldots, \tag{1.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\delta_{2 n+2}(x)=x^{2} B_{n}\left(x^{2}\right), \quad n=0,1,2, \ldots . \tag{1.5}
\end{equation*}
$$

Received by the editors on January 22, 2002, and in revised form on August 10, 2003.

The δ_{n} 's are called Mittag-Leffler polynomials.
The nonnegative integers $d_{j}^{(n)}[\mathbf{1}$, Chapter 11], where $n=0,1,2, \ldots$ and $j=0,1,2, \ldots n$, are the coefficients of $\delta_{n}(x)$. If $n=0,1,2, \ldots$, then

$$
\begin{equation*}
\delta_{n}(x)=\sum_{j=0}^{n} d_{j}^{(n)} x^{j} \tag{1.6}
\end{equation*}
$$

Also,

$$
\begin{equation*}
A_{n}(z)=\sum_{j=0}^{n} d_{2 j+1}^{(2 n+1)} z^{j} \tag{1.7}
\end{equation*}
$$

and

$$
\begin{equation*}
B_{n}(z)=\sum_{j=0}^{n} d_{2 j+2}^{(2 n+2)} z^{j} \tag{1.8}
\end{equation*}
$$

The A_{n} 's and B_{n} 's are orthogonal, on $(-\infty, 0]$, sequences of polynomials. If

$$
\begin{align*}
& w_{A}(z)=\frac{1}{2} \operatorname{csch}\left(\frac{\pi}{2} \sqrt{|z|}\right), \quad z \in \mathbf{R} \tag{1.9}\\
& w_{B}(z)=\frac{1}{2}|z| w_{A}(z), \quad z \in \mathbf{R} \tag{1.10}
\end{align*}
$$

and

$$
\begin{align*}
& (P, Q)_{A}=\int_{-\infty}^{0} P(z) Q(z) w_{A}(z) d z \tag{1.11}\\
& (P, Q)_{B}=\int_{-\infty}^{0} P(z) Q(z) w_{B}(z) d z \tag{1.12}
\end{align*}
$$

for polynomials P and Q, then for $m, n=0,1,2, \ldots$,

$$
\begin{equation*}
\left(A_{m}, A_{n}\right)_{A}=(m+n)!(m+n+1)!\delta_{m, n} \tag{1.13a}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(B_{m}, B_{n}\right)_{B}=\frac{1}{2}(m+n+1)!(m+n+2)!\delta_{m, n} \tag{1.13b}
\end{equation*}
$$

In Section 2 of this note, the powers of $\tanh (x)$ are expressed in terms of the derivative operators $A_{n}\left(D^{2}\right)$ and $D B_{n}\left(D^{2}\right)$ applied to $\tanh (x)$. The tangent numbers $\left\{C_{2 n+1}\right\}_{0}^{\infty} \subset \mathbf{Z}[\mathbf{2}$, Chapter 9] are defined by

$$
\begin{equation*}
\tanh (t)=-\sum_{n=0}^{\infty} C_{2 n+1} \frac{t^{2 n+1}}{(2 n+1)!} \tag{1.14}
\end{equation*}
$$

Consequently, $C_{1}=-1, C_{3}=2, C_{5}=-16, C_{7}=272$ and $C_{9}=$ -7936. The higher-order tangent numbers $C_{2 k+n}^{(n)}, k=0,1,2, \ldots$ and $n=1,2,3, \cdots$, are defined by

$$
\begin{equation*}
\tanh ^{n}(t)=(-1)^{n} \sum_{k=0}^{\infty} C_{2 k+n}^{(n)} \frac{t^{2 k+n}}{(2 k+n)!} \tag{1.15}
\end{equation*}
$$

so $C_{2 k+1}^{(1)}=C_{2 k+1}$. By $[\mathbf{1},(9.7)]$,

$$
\tanh ^{2}(t)=\sum_{k=0}^{\infty} C_{2 k+3} \frac{t^{2 k+2}}{(2 k+2)!}
$$

so $C_{2 k+2}^{(2)}=C_{2 k+3}$.
Section 3 of this note expresses the $C_{2 k+n}^{(n)}$'s as linear combinations of the ordinary tangent numbers $C_{2 j+1}$, in which the coefficients are $d_{j}^{(n)}$'s divided by factorials.
2. The main results. We begin by proving three lemmas.

Lemma 2.1. Let $n \in \mathbf{N}_{0}$. Then

$$
\begin{equation*}
\sum_{j=0}^{n} C_{2 j+1} d_{2 j+2}^{(2 n+2)}=-(2 n+1)! \tag{2.1}
\end{equation*}
$$

Proof. From $[1,(14.3)]$ and (1.11), we find that

$$
\begin{equation*}
C_{2 j+1}=-\int_{-\infty}^{0} x^{j} w_{A}(z) d z=-\left(z^{j}, 1\right)_{A} \tag{2.2}
\end{equation*}
$$

Then, using (1.8) and [1, (14.23)], we have

$$
\begin{aligned}
\sum_{j=0}^{n} C_{2 j+1} d_{2 j+2}^{(2 n+2)} & =-\sum_{j=0}^{n}\left(z^{j}, 1\right)_{A} d_{2 j+2}^{(2 n+2)}=-\left(\sum_{j=0}^{n} d_{2 j+2}^{(2 n+2)} z^{j}, 1\right)_{A} \\
& =-\left(B_{n}, 1\right)_{A}=-(2 n+1)!
\end{aligned}
$$

Lemma 2.2. For $n \in \mathbf{N}_{0}$,

$$
\begin{equation*}
\left.D B_{n}\left(D^{2}\right) \tanh (x)\right|_{x=0}=(2 n+1)!. \tag{2.3}
\end{equation*}
$$

Proof. From (1.14),

$$
\begin{equation*}
\left.D^{2 j+1} \tanh (x)\right|_{x=0}=-C_{2 j+1}, \quad j \geq 0 \tag{2.4}
\end{equation*}
$$

Thus, by (1.8) and (2.1),

$$
\begin{aligned}
\left.D B_{n}\left(D^{2}\right) \tanh (x)\right|_{x=0} & =\sum_{j=0}^{n} d_{2 j+2}^{(2 n+2)} D^{2 j+1} \\
\left.\tanh (x)\right|_{x=0} & =-\sum_{j=0}^{n} C_{2 j+1} d_{2 j+2}^{(2 n+2)}=(2 n+1)!
\end{aligned}
$$

In the next lemma we utilize the Mittag-Leffler polynomials $\delta_{n}(x)$ [1, (10.2), Table 10.1].

Lemma 2.3. For $n \in \mathbf{N}$,

$$
\begin{equation*}
D \tanh ^{n}(x)=\frac{(-1)^{n-1}}{(n-1)!} \delta_{n}(D) \tanh (x) \tag{2.5}
\end{equation*}
$$

Proof (Induction on n). The result is true for $n=1,2$. Assume for some $n \geq 3$ that the equation

$$
(m-1)!D \tanh ^{m}(x)=(-1)^{m-1} \delta_{m}(D) \tanh (x)
$$

is true for $m=1,2, \ldots, n-1$. Then, by (1.1),

$$
\begin{aligned}
(-1)^{n-1} & \delta_{n}(D) \tanh (x) \\
= & (-1)^{n-1}\left\{D \delta_{n-1}(D)+(n-1)(n-2) \delta_{n-2}(D)\right\} \tanh (x) \\
= & (-1)^{n-1}\left\{(-1)^{n}(n-2)!D^{2} \tanh ^{n-1}(x)\right. \\
& \left.+(-1)^{n-1}(n-1)!D \tanh ^{n-2}(x)\right\} \\
= & -(n-2)!D\left\{D \tanh ^{n-1}(x)-(n-1) \tanh ^{n-2}(x)\right\} \\
= & -(n-2)!D\left\{(n-1) \tanh ^{n-2}(x)\left[1-\tanh ^{2}(x)\right]\right. \\
& \left.-(n-1) \tanh ^{n-2}(x)\right\} \\
= & (n-1)!D \tanh ^{n}(x) .
\end{aligned}
$$

Theorem 2.4. For $n \in \mathbf{N}_{0}$,

$$
\begin{equation*}
\tanh ^{2 n+1}(x)=\frac{1}{(2 n)!} A_{n}\left(D^{2}\right) \tanh (x) \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\tanh ^{2 n+2}(x)=1-\frac{1}{(2 n+1)!} D B_{n}\left(D^{2}\right) \tanh (x) \tag{2.7}
\end{equation*}
$$

Proof. (2.6): Replacing n by $2 n+1$ in (2.5), we have for $n \in \mathbf{N}_{0}$ that

$$
(2 n)!D \tanh ^{2 n+1}(x)=\delta_{2 n+1}(D) \tanh (x)=D A_{n}\left(D^{2}\right) \tanh (x)
$$

using (1.4). Integrating this equation, we find that

$$
(2 n)!\tanh ^{2 n+1}(x)=A_{n}\left(D^{2}\right) \tanh (x)+K_{n}
$$

Setting $x=0$ gives $K_{n}=0$, since $D^{2 k} \tanh (x)$ is an odd function for $k \in \mathbf{N}_{0}$.
(2.7): Replacing n by $2 n+2$ in (2.5), we find for $n \in \mathbf{N}_{0}$ that

$$
(2 n+1)!D \tanh ^{2 n+2}(x)=-\delta_{2 n+2}(D) \tanh (x)=-D^{2} B_{n}\left(D^{2}\right) \tanh (x)
$$

using (1.5). Integrating this equation gives

$$
(2 n+1)!\tanh ^{2 n+2}(x)=-D B_{n}\left(D^{2}\right) \tanh (x)+L_{n}
$$

Setting $x=0$ and using (2.3), we find that $L_{n}=(2 n+1)!. \quad \square$

TABLE 1. $\tanh ^{n}(x), 1 \leq n \leq 6$.

n	$\tanh ^{n}(x)$
1	$\tanh (x)$
2	$1-D \tanh (x)$
3	$(1 / 2)\left(D^{2}+2\right) \tanh (x)$
4	$1-(1 / 6)\left(D^{3}+8 D\right) \tanh (x)$
5	$(1 / 24)\left(D^{4}+20 D^{2}+24\right) \tanh (x)$
6	$1-(1 / 120)\left(D^{5}+40 D^{3}+184 D\right) \tanh (x)$

3. Higher-order tangent numbers. The Maclaurin series for $\tanh ^{n}(\mathrm{x})$.

Definition 3.1. The real numbers $\left\{C_{2 k+n}^{(n)}:(k, n) \in \mathbf{N}_{0} \times \mathbf{N}\right\}$ are defined by

$$
\begin{equation*}
\tanh ^{n}(x)=(-1)^{n} \sum_{k=0}^{\infty} C_{2 k+n}^{(n)} \frac{x^{2 k+n}}{(2 k+n)!} \tag{3.1}
\end{equation*}
$$

We next give a recursion formula for the $C_{2 k+n}^{(n)}$'s and show that these numbers are integers.

Proposition 3.2. (1) For each $(k, n) \in \mathbf{N}_{0} \times \mathbf{N}$, we have

$$
\begin{equation*}
C_{2 k+n+1}^{(n+1)}=\sum_{j=0}^{k}\binom{2 k+n+1}{2 j+1} C_{2 j+1} C_{2(k-j)+n}^{(n)} \tag{3.2}
\end{equation*}
$$

(2) Each $C_{2 k+n}^{(n)}$ is an integer.

Proof. (1) From (3.1) and (1.14), we have that

$$
\begin{aligned}
& (-1)^{n+1} \sum_{k=0}^{\infty} C_{2 k+n+1}^{(n+1)} \frac{x^{2 k+n+1}}{(2 k+n+1)!}=\tanh ^{n+1}(x)=\tanh (x) \tanh ^{n}(x) \\
& \quad=(-1)^{n+1}\left\{\sum_{i=0}^{\infty} C_{2 i+1} \frac{x^{2 i+1}}{(2 i+1)!}\right\}\left\{\sum_{k=0}^{\infty} C_{2 k+n}^{(n)} \frac{x^{2 k+n}}{(2 k+n)!}\right\}
\end{aligned}
$$

Setting $y=x^{2}$ and canceling $(-1)^{n+1} x^{n+1}$, we obtain

$$
\begin{aligned}
\sum_{k=0}^{\infty} & C_{2 k+n+1}^{(n+1)} \frac{y^{k}}{(2 k+n+1)!} \\
& =\left\{\sum_{i=0}^{\infty} C_{2 i+1} \frac{y^{i}}{(2 i+1)!}\right\}\left\{\sum_{k=0}^{\infty} C_{2 k+n}^{(n)} \frac{y^{k}}{(2 k+n)!}\right\} \\
& =\sum_{k=0}^{\infty}\left\{\sum_{j=0}^{k} \frac{C_{2 j+1}}{(2 j+1)!} \frac{C_{2(k-j)+n}^{(n)}}{[2(k-j)+n]!}\right\} y^{k} \\
& =\sum_{k=0}^{\infty}\left\{\sum_{j=0}^{k}\binom{2 k+n+1}{2 j+1} C_{2 j+1} C_{2(k-j)+n}^{(n)}\right\} \frac{y^{k}}{(2 k+n+1)!}
\end{aligned}
$$

which implies the result.
(2) For $k \in \mathbf{N}_{0}$, the number $C_{2 k+1}^{(1)}$ is the integer $C_{2 k+1}$. Using induction on n, we see from (3.2) that each $C_{2 k+n}^{(n)}$ is an integer.

Our next goal is Theorem 3.7, where we give a formula for $C_{2 k+n}^{(n)}$ as a linear combination of the ordinary tangent numbers $C_{2 j+1}$. The coefficients in this linear combination are the $d_{j}^{(n)}$'s divided by factorials.

Lemma 3.3. Let $(k, n) \in \mathbf{N}_{0} \times \mathbf{N}$ be such that $k<n$. Then

$$
\begin{equation*}
\sum_{j=0}^{n} d_{2 j+1}^{(2 n+1)} C_{2(j+k)+1}=0 \tag{3.3}
\end{equation*}
$$

Proof. From (2.2), we see that $C_{2(j+k)+1}=-\left(z^{j+k}, 1\right)_{A}$. Then using (1.7) and (1.11), we obtain

$$
\begin{aligned}
\sum_{j=0}^{n} C_{2(j+k)+1} d_{2 j+1}^{(2 n+1)} & =-\sum_{j=0}^{n}\left(z^{j+k}, 1\right)_{A} d_{2 j+1}^{(2 n+1)} \\
& =-\left(z^{k} \sum_{j=0}^{n} d_{2 j+1}^{(2 n+1)} z^{j}, 1\right)_{A} \\
& =-\left(z^{k} A_{n}(z), 1\right)_{A}=-\left(z^{k}, A_{n}(z)\right)_{A}
\end{aligned}
$$

By $[\mathbf{1},(14.20)]$, it follows that $\left(z^{k}, A_{n}(z)\right)_{A}=0$.

Proposition 3.4. Let $k, n \in \mathbf{N}_{0}$. Then

$$
\begin{equation*}
C_{2(k+n)+1}^{(2 n+1)}=\frac{1}{(2 n)!} \sum_{j=0}^{n} d_{2 j+1}^{(2 n+1)} C_{2(j+k+n)+1} \tag{3.4}
\end{equation*}
$$

Proof. By (3.1), (2.6), (1.7), and (2.4), we have

$$
\begin{aligned}
& \sum_{k=0}^{\infty} C_{2(k+n)+1}^{(2 n+1)} \frac{x^{2(k+n)+1}}{[2(k+n)+1]!} \\
&=-\tanh ^{2 n+1}(x)=-\frac{1}{(2 n)!} A_{n}\left(D^{2}\right) \tanh (x) \\
&=\frac{1}{(2 n)!}\left(\sum_{j=0}^{n} d_{2 j+1}^{(2 n+1)} D^{2 j}\right)\left(\sum_{k=0}^{\infty} C_{2 k+1} \frac{x^{2 k+1}}{(2 k+1)!}\right) \\
&=\frac{1}{(2 n)!} \sum_{j=0}^{n} d_{2 j+1}^{(2 n+1)} \sum_{k=j}^{\infty} C_{2 k+1} \frac{x^{2(k-j)+1}}{[2(k-j)+1]!}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{(2 n)!} \sum_{j=0}^{n} d_{2 j+1}^{(2 n+1)} \sum_{k=0}^{\infty} C_{2(j+k)+1} \frac{x^{2 k+1}}{(2 k+1)!} \\
& =\frac{1}{(2 n)!} \sum_{k=0}^{\infty}\left(\sum_{j=0}^{n} d_{2 j+1}^{(2 n+1)} C_{2(j+k)+1}\right) \frac{x^{2 k+1}}{(2 k+1)!}
\end{aligned}
$$

But the first n terms on the right side are zero by (3.3), which gives the equation

$$
\begin{aligned}
\sum_{k=0}^{\infty} C_{2(k+n)+1}^{2 n+1)} & \frac{x^{2(k+n)+1}}{[2(k+n)+1]!} \\
& =\frac{1}{(2 n)!} \sum_{k=n}^{\infty}\left(\sum_{j=0}^{n} d_{2 j+1}^{(2 n+1)} C_{2(j+k)+1}\right) \frac{x^{2 k+1}}{(2 k+1)!} \\
& =\frac{1}{(2 n)!} \sum_{k=0}^{\infty}\left(\sum_{j=0}^{n} d_{2 j+1}^{(2 n+1)} C_{2(j+k+n)+1}\right) \frac{x^{2(k+n)+1}}{[2(k+n)+1]!}
\end{aligned}
$$

from which the result follows.

Lemma 3.5. Let $k, n \in \mathbf{N}$ be such that $k \leq n$. Then

$$
\begin{equation*}
\sum_{j=0}^{n} C_{2(j+k)+1} d_{2 j+2}^{(2 n+2)}=0 \tag{3.5}
\end{equation*}
$$

Proof. By (2.2), we have that $C_{2(j+k)+1}=-\left(z^{j+k}, 1\right)_{A}$. Then, using (1.8), we obtain

$$
\begin{aligned}
\sum_{j=0}^{n} C_{2(j+k)+1} d_{2 j+2}^{(2 n+2)} & =-\sum_{j=0}^{n}\left(z^{j+k}, 1\right)_{A} d_{2 j+2}^{(2 n+2)} \\
& =-\left(z^{k} \sum_{j=0}^{n} d_{2 j+2}^{(2 n+2)} z^{j}, 1\right)_{A} \\
& =-\left(z^{k} B_{n}(z), 1\right)_{A}=-\left(z^{k}, B_{n}(z)\right)_{A}
\end{aligned}
$$

By $[\mathbf{1},(14.23)]$, we have $\left(z^{k}, B_{n}(z)\right)_{A}=0$.

Proposition 3.6. Let $k, n \in \mathbf{N}_{0}$. Then

$$
\begin{equation*}
C_{2(k+n+1)}^{(2 n+2)}=\frac{1}{(2 n+1)!} \sum_{j=0}^{n} d_{2 j+2}^{(2 n+2)} C_{2(j+k+n)+3} \tag{3.6}
\end{equation*}
$$

Proof. By (3.1), (2.7), (1.8), and (1.14), we have

$$
\begin{aligned}
\sum_{k=0}^{\infty} & C_{2(k+n+1)}^{(2 n+2)} \frac{x^{2(k+n+1)}}{[2(k+n+1)]!} \\
& =\tanh ^{2 n+2}(x)=1-\frac{1}{(2 n+1)!} D B_{n}\left(D^{2}\right) \tanh (x) \\
& =1+\frac{1}{(2 n+1)!}\left(\sum_{j=0}^{n} d_{2 j+2}^{(2 n+2)} D^{2 j+1}\right)\left(\sum_{k=0}^{\infty} C_{2 k+1} \frac{x^{2 k+1}}{(2 k+1)!}\right) \\
& =1+\frac{1}{(2 n+1)!} \sum_{j=0}^{n} d_{2 j+2}^{(2 n+2)} \sum_{k=j}^{\infty} C_{2 k+1} \frac{x^{2(k-j)}}{[2(k-j)]!} \\
& =1+\frac{1}{(2 n+1)!} \sum_{j=0}^{n} d_{2 j+2}^{(2 n+2)} \sum_{k=0}^{\infty} C_{2(j+k)+1} \frac{x^{2 k}}{(2 k)!} \\
& =1+\frac{1}{(2 n+1)!} \sum_{k=0}^{\infty}\left(\sum_{j=0}^{n} d_{2 j+2}^{(2 n+2)} C_{2(j+k)+1}\right) \frac{x^{2 k}}{(2 k)!} \\
& =\frac{1}{(2 n+1)!} \sum_{k=1}^{\infty}\left(\sum_{j=0}^{n} d_{2 j+2}^{(2 n+2)} C_{2(j+k)+1}\right) \frac{x^{2 k}}{(2 k)!}
\end{aligned}
$$

where the 1 cancels with the $k=0$ term in the sum using (2.1). Then by (3.5),

$$
\begin{aligned}
\tanh ^{2 n+2}(x) & =\frac{1}{(2 n+1)!} \sum_{k=n+1}^{\infty}\left(\sum_{j=0}^{n} d_{2 j+2}^{(2 n+2)} C_{2(j+k)+1}\right) \frac{x^{2 k}}{(2 k)!} \\
& =\frac{1}{(2 n+1)!} \sum_{k=0}^{\infty}\left(\sum_{j=0}^{n} d_{2 j+2}^{(2 n+2)} C_{2(j+k+n)+3}\right) \frac{x^{2(k+n+1)}}{[2(k+n+1)]!} .
\end{aligned}
$$

Theorem 3.7. Let $n \in \mathbf{N}$ and $\varepsilon_{n}=\left(3+(-1)^{n}\right) / 2$. Then

$$
\begin{equation*}
C_{2 k+n}^{(n)}=\frac{1}{(n-1)!} \sum_{j=0}^{[(n-1) / 2]} d_{2 j+\varepsilon_{n}}^{(n)} C_{2(j+k)+n+\varepsilon_{n}-1} \tag{3.7}
\end{equation*}
$$

Proof. This result combines Propositions 3.4 and 3.6.

$$
\text { TABLE } 2 . \quad C_{2 k+n}^{(n)}, 1 \leq n \leq 6
$$

n	$C_{2 k+n}^{(n)}$
1	$C_{2 k+1}$
2	$C_{2 k+3}$
3	$\left(2 C_{2 k+3}+C_{2 k+5}\right) / 2$
4	$\left(8 C_{2 k+5}+C_{2 k+7}\right) / 6$
5	$\left(24 C_{2 k+5}+20 C_{2 k+7}+C_{2 k+9}\right) / 24$
6	$\left(184 C_{2 k+7}+40 C_{2 k+9}+C_{2 k+11}\right) / 120$

Remark 3.8. For each $n \in \mathbf{N}$,

$$
\begin{align*}
C_{n}^{(n)} & =(-1)^{n} n! \tag{3.8}\\
C_{n+2}^{(n)} & =(-1)^{n+1} \frac{n(n+2)!}{3} \tag{3.9}\\
C_{n+4}^{(n)} & =(-1)^{n} \frac{n(5 n+17)(n+4)!}{90} \tag{3.10}
\end{align*}
$$

Proof. From (1.14) and (3.1), we have
$\left(x-\frac{1}{3} x^{3}+\frac{2}{15} x^{5}-\cdots\right)^{n}=\tanh ^{n}(x)$

$$
=(-1)^{n}\left(C_{n}^{(n)} \frac{x^{n}}{n!}+C_{n+2}^{(n)} \frac{x^{n+2}}{(n+2)!}+C_{n+4}^{(n)} \frac{x^{n+4}}{(n+4)!}+\cdots\right)
$$

The next, and last, objective is to show that n ! divides the integer $C_{2 k+n}^{(n)}$ for $k, n \in \mathbf{N}_{0}$.

Definition 3.9. $C_{2 k}^{(0)}=\delta_{k, 0}$, for $k \in \mathbf{N}_{0}$.

Lemma 3.10. Let $(k, n) \in \mathbf{N}_{0} \times \mathbf{N}$. Then

$$
\begin{equation*}
C_{2(k+1)+n}^{(n)}=n\left(C_{2 k+n+1}^{(n+1)}-C_{2(k+1)+n-1}^{(n-1)}\right) \tag{3.11}
\end{equation*}
$$

Proof. For $n=1$, the equation is true, since from Table 2 the equation $C_{2 k+3}^{(1)}=C_{2 k+2}^{(2)}$ is $C_{2 k+3}=C_{2 k+3}$. For $n \geq 2$, differentiating each side of (3.1) yields

$$
\begin{aligned}
& (-1)^{n} \sum_{k=0}^{\infty} C_{2 k+n}^{(n)} \frac{x^{2 k+n-1}}{(2 k+n-1)!} \\
& =n \tanh ^{n-1}(x)\left(1-\tanh ^{2}(x)\right) \\
& =n\left(\tanh ^{n-1}(x)-\tanh ^{n+1}(x)\right) \\
& =(-1)^{n} n\left\{-\sum_{k=0}^{\infty} C_{2 k+n-1}^{(n-1)} \frac{x^{2 k+n-1}}{(2 k+n-1)!}+\sum_{k=0}^{\infty} C_{2 k+n+1}^{(n+1)} \frac{x^{2 k+n+1}}{(2 k+n+1)!}\right\}
\end{aligned}
$$

Canceling $(-1)^{n} x^{n-1}$, we obtain

$$
\begin{aligned}
\sum_{k=0}^{\infty} C_{2 k+n}^{(n)} \frac{x^{2 k}}{(2 k+n-1)!}= & -n \sum_{k=0}^{\infty} C_{2 k+n-1}^{(n-1)} \frac{x^{2 k}}{(2 k+n-1)!} \\
& +n \sum_{k=0}^{\infty} C_{2 k+n+1}^{(n+1)} \frac{x^{2 k+2}}{(2 k+n+1)!}
\end{aligned}
$$

By (3.8), $C_{n}^{(n)}=-n C_{n-1}^{(n-1)}, n \in \mathbf{N} \backslash\{1\}$, so canceling two of the $k=0$ terms yields

$$
\begin{aligned}
\sum_{k=1}^{\infty} C_{2 k+n}^{(n)} \frac{x^{2 k}}{(2 k+n-1)!}= & -n \sum_{k=1}^{\infty} C_{2 k+n-1}^{(n-1)} \frac{x^{2 k}}{(2 k+n-1)!} \\
& +n \sum_{k=0}^{\infty} C_{2 k+n+1}^{(n+1)} \frac{x^{2 k+2}}{(2 k+n+1)!}
\end{aligned}
$$

or

$$
\begin{aligned}
\sum_{k=0}^{\infty} C_{2(k+1)+n}^{(n)} \frac{x^{2 k}}{(2 k+n+1)!}= & -n \sum_{k=0}^{\infty} C_{2(k+1)+n-1}^{(n-1)} \frac{x^{2 k}}{(2 k+n+1)!} \\
& +n \sum_{k=0}^{\infty} C_{2 k+n+1}^{(n+1)} \frac{x^{2 k}}{(2 k+n+1)!}
\end{aligned}
$$

Equating the coefficients of $x^{2 k} /(2 k+n+1)$! yields (3.11). \quad.

Definition 3.11. For $k, n \in \mathbf{N}_{0}$

$$
\begin{equation*}
\gamma_{2 k+n}^{(n)}=\frac{1}{n!} C_{2 k+n}^{(n)} \tag{3.12}
\end{equation*}
$$

We now must show that $\gamma_{2 k+n}^{(n)}$ is an integer for $k, n \in \mathbf{N}_{0}$.

Remark 3.12. (1) $\gamma_{2 k}^{(0)}=\delta_{k, 0}, k \in \mathbf{N}_{0}$,
(2) $\gamma_{n}^{(n)}=(-1)^{n}, \quad n \in \mathbf{N}$,
(3) $\gamma_{2+n}^{(n)}=(-1)^{n+1} n(n+1)(n+2) / 3, n \in \mathbf{N}$,
(4) $\left\{\gamma_{2 k}^{(0)}: k \in \mathbf{N}_{0}\right\} \cup\left\{\gamma_{n}^{(n)}: n \in \mathbf{N}\right\} \cup\left\{\gamma_{2+n}^{(n)}: n \in \mathbf{N}\right\} \subset \mathbf{Z}$.

Proof. By Definition 3.9, (3.8), and (3.9).

Lemma 3.13. For each $(k, n) \in \mathbf{N}_{0} \times \mathbf{N}$,

$$
\begin{equation*}
\gamma_{2(k+1)+n}^{(n)}=n(n+1) \gamma_{2 k+n+1}^{(n+1)}-\gamma_{2(k+1)+n-1}^{(n-1)} \tag{3.13}
\end{equation*}
$$

Proof. Use Definition 3.11 and (3.11).

Proposition 3.14. For $k, n \in \mathbf{N}_{0}$,

$$
\begin{equation*}
\gamma_{2 k+n}^{(n)} \in \mathbf{Z} \tag{3.14}
\end{equation*}
$$

Proof (Double induction on k then n). We begin with induction on $k \in \mathbf{N}_{0}$. For $k=0$ and $n \in \mathbf{N}_{0}$, the result is true, since $\gamma_{n}^{(n)}=(-1)^{n}$ by Remark 3.12 (1) and (2). Assume now for some $k \geq 0$ that $\gamma_{2 k+n}^{(n)} \in \mathbf{Z}$ for each $n \in \mathbf{N}_{0}$. We then show that $\gamma_{2(k+1)+n}^{(n)} \in \mathbf{Z}$ for $n \in \mathbf{N}_{0}$.

For $n=0, \gamma_{2(k+1)}^{(0)}=0$ by Remark 3.12 (1). Also, for $n=1$ by (3.13), we find that

$$
\gamma_{2(k+1)+1}^{(1)}=2 \gamma_{2 k+2}^{(2)}-\gamma_{2(k+1)}^{(0)} \in \mathbf{Z}
$$

since the first term on the right is an integer by the induction assumption on k and the second term is zero by Remark 3.12 (1).
Now assume for the given k that $\gamma_{2(k+1)+n-1}^{(n-1)} \in \mathbf{Z}$ for some $n \geq 2$. Then it follows that $\gamma_{2(k+1)+n}^{(n)} \in \mathbf{Z}$, since on the right side of (3.13), the first term is an integer by the induction assumption on $k\left(\gamma_{2 k+n}^{(n)} \in \mathbf{Z}\right)$ and the second term is an integer by the induction assumption on n $\left(\gamma_{2(k+1)+n-1}^{(n-1)} \in \mathbf{Z}\right)$.

Remark 3.15. For $(k, n) \in \mathbf{N}_{0} \times \mathbf{N}$,

$$
\begin{equation*}
\operatorname{sgn}\left(\gamma_{2 k+n}^{(n)}\right)=(-1)^{k+n} \tag{3.15}
\end{equation*}
$$

Proof. From the familiar expansion

$$
\tan (x)=\sum_{k=0}^{\infty}\left|C_{2 k+1}\right| \frac{x^{2 k+1}}{(2 k+1)!}
$$

where $C_{2 k+1} \neq 0$, it follows that

$$
\frac{1}{n!} \tan ^{n}(x)=\sum_{k=0}^{\infty} T(2 k+n, n) \frac{x^{2 k+n}}{(2 k+n)!}
$$

The coefficient $T(2 k+n, n)$ is clearly positive for $(k, n) \in \mathbf{N}_{0} \times \mathbf{N}$. Also, the equation $\tan (x)=-i \tanh (i x)$ implies that

$$
\frac{1}{n!} \tanh ^{n}(x)=\sum_{k=0}^{\infty}(-1)^{k} T(2 k+n, n) \frac{x^{2 k+n}}{(2 k+n)!}
$$

By (3.1) and (3.12), we have the equation

$$
\frac{1}{n!} \tanh ^{n}(x)=(-1)^{n} \sum_{k=0}^{\infty} \gamma_{2 k+n}^{(n)} \frac{x^{2 k+n}}{(2 k+n)!}
$$

so $\gamma_{2 k+n}^{(n)}=(-1)^{k+n} T(2 k+n, n)$.

Numerical values of $\left|\gamma_{2 k+n}^{(n)}\right|(=T(2 k+n, n))$ are tabulated in [1, p. 259].

REFERENCES

1. Louis Comtet, Advanced combinatorics, D. Reidel Publ. Co., Boston, 1974.
2. J.S. Lomont and John Brillhart, Elliptic polynomials, Chapman \& Hall/CRC, Boca Raton, 2001.

Department of Mathematics, University of Arizona, 617 N. Santa Rita Ave., P.O. Box 210089, Tucson, AZ 85721-0089
E-mail address: lomont@math.arizona.edu

