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FORMULAS FOR POWERS OF THE HYPERBOLIC
TANGENT WITH AN APPLICATION TO
HIGHER-ORDER TANGENT NUMBERS

J.S. LOMONT

ABSTRACT. It is shown that the function tanh2n+1(x)
is a linear combination of even-order derivatives of tanh(x),
while the function 1− tanh2n+2(x) is a linear combination of
odd-order derivatives of tanh(x). These results are then used
to express higher-order tangent numbers (coefficients in the
Maclaurin series for tanhn(x)) as linear combinations of the
ordinary tangent numbers (coefficients in the Maclaurin series
for tanh(x)).

1. Introduction. In a recently published book [2], the three
sequences of polynomials {δn}∞0 [2, Chapter 10], {An}∞0 , {Bn}∞0 [2,
Chapters 13, 14] were introduced and studied. These sequences are
defined by the following recurrences:

(1.1) δn+2(x) = x δn+1(x) + n(n + 1) δn(x),

where δ0(x) = 1, δ1(x) = x,

(1.2) An+2(z) =
(
z+2(2n+3)2

)
An+1(z)−4(n+1)2(2n+1)(2n+3)An(z),

where A0(z) = 1, A1(z) = z + 2, and

(1.3) Bn+2(z) =
(
z +8(n+2)2

)
Bn+1(z)−4(n+1)(n+2)(2n+3)2Bn(z),

where B0(z) = 1, B1(z) = z + 8. The δn’s are related to the An’s and
Bn’s as follows:

δ2n+1(x) = xAn(x2), n = 0, 1, 2, . . . ,(1.4)

and

δ2n+2(x) = x2Bn(x2), n = 0, 1, 2, . . . .(1.5)
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The δn’s are called Mittag-Leffler polynomials.

The nonnegative integers d
(n)
j [1, Chapter 11], where n = 0, 1, 2, . . .

and j = 0, 1, 2, . . . n, are the coefficients of δn(x). If n = 0, 1, 2, . . . ,
then

(1.6) δn(x) =
n∑

j=0

d
(n)
j xj .

Also,

An(z) =
n∑

j=0

d
(2n+1)
2j+1 zj(1.7)

and

Bn(z) =
n∑

j=0

d
(2n+2)
2j+2 zj .(1.8)

The An’s and Bn’s are orthogonal, on (−∞, 0], sequences of polynomi-
als. If

wA(z) =
1
2

csch
(

π

2

√
|z|

)
, z ∈ R,(1.9)

wB(z) =
1
2
|z|wA(z), z ∈ R,(1.10)

and

(P, Q)A =
∫ 0

−∞
P (z) Q(z) wA(z) dz,(1.11)

(P, Q)B =
∫ 0

−∞
P (z) Q(z) wB(z) dz,(1.12)

for polynomials P and Q, then for m, n = 0, 1, 2, . . . ,

(Am, An)A = (m + n)! (m + n + 1)! δm,n

(1.13a)
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and

(Bm, Bn)B =
1
2
(m + n + 1)! (m + n + 2)! δm,n.

(1.13b)

In Section 2 of this note, the powers of tanh(x) are expressed in terms
of the derivative operators An

(
D2

)
and DBn

(
D2

)
applied to tanh(x).

The tangent numbers {C2n+1}∞0 ⊂ Z [2, Chapter 9] are defined by

(1.14) tanh(t) = −
∞∑

n=0

C2n+1
t2n+1

(2n + 1)!
.

Consequently, C1 = −1, C3 = 2, C5 = −16, C7 = 272 and C9 =
−7936. The higher-order tangent numbers C

(n)
2k+n, k = 0, 1, 2, . . . and

n = 1, 2, 3, · · · , are defined by

(1.15) tanhn(t) = (−1)n
∞∑

k=0

C
(n)
2k+n

t2k+n

(2k + n)!
,

so C
(1)
2k+1 = C2k+1. By [1, (9.7)],

tanh2(t) =
∞∑

k=0

C2k+3
t2k+2

(2k + 2)!
,

so C
(2)
2k+2 = C2k+3.

Section 3 of this note expresses the C
(n)
2k+n’s as linear combinations

of the ordinary tangent numbers C2j+1, in which the coefficients are
d
(n)
j ’s divided by factorials.

2. The main results. We begin by proving three lemmas.

Lemma 2.1. Let n ∈ N 0. Then

(2.1)
n∑

j=0

C2j+1d
(2n+2)
2j+2 = −(2n + 1)!.
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Proof. From [1, (14.3)] and (1.11), we find that

(2.2) C2j+1 = −
∫ 0

−∞
xjwA(z) dz = −(

zj , 1
)
A
.

Then, using (1.8) and [1, (14.23)], we have

n∑
j=0

C2j+1d
(2n+2)
2j+2 = −

n∑
j=0

(
zj , 1

)
A

d
(2n+2)
2j+2 = −

( n∑
j=0

d
(2n+2)
2j+2 zj , 1

)
A

= −(
Bn, 1

)
A

= −(2n + 1)!.

Lemma 2.2. For n ∈ N 0,

(2.3) DBn(D2) tanh(x)
∣∣∣
x=0

= (2n + 1)!.

Proof. From (1.14),

(2.4) D2j+1 tanh(x)
∣∣∣
x=0

= −C2j+1, j ≥ 0.

Thus, by (1.8) and (2.1),

DBn(D2) tanh(x)
∣∣∣
x=0

=
n∑

j=0

d
(2n+2)
2j+2 D2j+1

tanh(x)
∣∣∣
x=0

= −
n∑

j=0

C2j+1d
(2n+2)
2j+2 = (2n + 1)!.

In the next lemma we utilize the Mittag-Leffler polynomials δn(x)
[1, (10.2), Table 10.1].

Lemma 2.3. For n ∈ N,

(2.5) D tanhn(x) =
(−1)n−1

(n − 1)!
δn(D) tanh(x).
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Proof (Induction on n). The result is true for n = 1, 2. Assume for
some n ≥ 3 that the equation

(m − 1)! D tanhm(x) = (−1)m−1δm(D) tanh(x)

is true for m = 1, 2, . . . , n − 1. Then, by (1.1),

(−1)n−1δn(D) tanh(x)

= (−1)n−1
{

D δn−1(D) + (n − 1)(n − 2) δn−2(D)
}

tanh(x)

= (−1)n−1
{

(−1)n(n − 2)! D2 tanhn−1(x)

+ (−1)n−1(n − 1)! D tanhn−2(x)
}

= −(n − 2)! D
{
D tanhn−1(x) − (n − 1) tanhn−2(x)

}

= −(n − 2)! D
{
(n − 1) tanhn−2(x) [1 − tanh2(x)]

− (n − 1) tanhn−2(x)
}

= (n − 1)! D tanhn(x).

Theorem 2.4. For n ∈ N 0,

tanh2n+1(x) =
1

(2n)!
An(D2)tanh(x)(2.6)

and

tanh2n+2(x) = 1 − 1
(2n + 1)!

DBn(D2) tanh(x).(2.7)

Proof. (2.6): Replacing n by 2n+1 in (2.5), we have for n ∈ N 0 that

(2n)! D tanh2n+1(x) = δ2n+1(D) tanh(x) = DAn(D2) tanh(x),

using (1.4). Integrating this equation, we find that

(2n)! tanh2n+1(x) = An(D2) tanh(x) + Kn.
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Setting x = 0 gives Kn = 0, since D2k tanh(x) is an odd function for
k ∈ N 0.

(2.7): Replacing n by 2n + 2 in (2.5), we find for n ∈ N 0 that

(2n + 1)!D tanh2n+2(x) = −δ2n+2(D) tanh(x) = −D2Bn(D2) tanh(x),

using (1.5). Integrating this equation gives

(2n + 1)! tanh2n+2(x) = −DBn(D2) tanh(x) + Ln.

Setting x = 0 and using (2.3), we find that Ln = (2n + 1)!.

TABLE 1. tanhn(x), 1 ≤ n ≤ 6.

n tanhn(x)
1 tanh(x)
2 1 − D tanh(x)
3 (1/2) (D2 + 2) tanh(x)
4 1 − (1/6) (D3 + 8 D) tanh(x)
5 (1/24) (D4 + 20 D2 + 24) tanh(x)
6 1 − (1/120) (D5 + 40 D3 + 184 D) tanh(x)

3. Higher-order tangent numbers. The Maclaurin series for
tanhn(x).

Definition 3.1. The real numbers
{
C

(n)
2k+n : (k, n) ∈ N 0 × N

}
are

defined by

(3.1) tanhn(x) = (−1)n
∞∑

k=0

C
(n)
2k+n

x2k+n

(2k + n)!
.

We next give a recursion formula for the C
(n)
2k+n’s and show that these

numbers are integers.
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Proposition 3.2. (1) For each (k, n) ∈ N 0 × N, we have

(3.2) C
(n+1)
2k+n+1 =

k∑
j=0

(
2k + n + 1

2j + 1

)
C2j+1C

(n)
2(k−j)+n.

(2) Each C
(n)
2k+n is an integer.

Proof. (1) From (3.1) and (1.14), we have that

(−1)n+1
∞∑

k=0

C
(n+1)
2k+n+1

x2k+n+1

(2k+n+1)!
= tanhn+1(x) = tanh(x) tanhn(x)

= (−1)n+1
{ ∞∑

i=0

C2i+1
x2i+1

(2i + 1)!

}{ ∞∑
k=0

C
(n)
2k+n

x2k+n

(2k + n)!

}
.

Setting y = x2 and canceling (−1)n+1xn+1, we obtain

∞∑
k=0

C
(n+1)
2k+n+1

yk

(2k + n + 1)!

=
{ ∞∑

i=0

C2i+1
yi

(2i + 1)!

}{ ∞∑
k=0

C
(n)
2k+n

yk

(2k + n)!

}

=
∞∑

k=0

{ k∑
j=0

C2j+1

(2j + 1)!

C
(n)
2(k−j)+n

[2(k − j) + n]!

}
yk

=
∞∑

k=0

{ k∑
j=0

(
2k + n + 1

2j + 1

)
C2j+1C

(n)
2(k−j)+n

}
yk

(2k+n+1)!
,

which implies the result.

(2) For k ∈ N 0, the number C
(1)
2k+1 is the integer C2k+1. Using

induction on n, we see from (3.2) that each C
(n)
2k+n is an integer.

Our next goal is Theorem 3.7, where we give a formula for C
(n)
2k+n as

a linear combination of the ordinary tangent numbers C2j+1. The co-
efficients in this linear combination are the d

(n)
j ’s divided by factorials.
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Lemma 3.3. Let (k, n) ∈ N 0 × N be such that k < n. Then

(3.3)
n∑

j=0

d
(2n+1)
2j+1 C2(j+k)+1 = 0.

Proof. From (2.2), we see that C2(j+k)+1 = −(zj+k, 1)A. Then using
(1.7) and (1.11), we obtain

n∑
j=0

C2(j+k)+1d
(2n+1)
2j+1 = −

n∑
j=0

(
zj+k, 1

)
A

d
(2n+1)
2j+1

= −
(

zk
n∑

j=0

d
(2n+1)
2j+1 zj , 1

)
A

= −(zkAn(z), 1)A = −(zk, An(z))A.

By [1, (14.20)], it follows that (zk, An(z))A = 0.

Proposition 3.4. Let k, n ∈ N 0. Then

(3.4) C
(2n+1)
2(k+n)+1 =

1
(2n)!

n∑
j=0

d
(2n+1)
2j+1 C2(j+k+n)+1.

Proof. By (3.1), (2.6), (1.7), and (2.4), we have

∞∑
k=0

C
(2n+1)
2(k+n)+1

x2(k+n)+1

[2(k + n) + 1]!

= − tanh2n+1(x) = − 1
(2n)!

An(D2) tanh(x)

=
1

(2n)!

( n∑
j=0

d
(2n+1)
2j+1 D2j

)( ∞∑
k=0

C2k+1
x2k+1

(2k + 1)!

)

=
1

(2n)!

n∑
j=0

d
(2n+1)
2j+1

∞∑
k=j

C2k+1
x2(k−j)+1

[2(k − j) + 1]!
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=
1

(2n)!

n∑
j=0

d
(2n+1)
2j+1

∞∑
k=0

C2(j+k)+1
x2k+1

(2k + 1)!

=
1

(2n)!

∞∑
k=0

( n∑
j=0

d
(2n+1)
2j+1 C2(j+k)+1

)
x2k+1

(2k + 1)!
.

But the first n terms on the right side are zero by (3.3), which gives
the equation

∞∑
k=0

C
2n+1)
2(k+n)+1

x2(k+n)+1

[2(k + n) + 1]!

=
1

(2n)!

∞∑
k=n

( n∑
j=0

d
(2n+1)
2j+1 C2(j+k)+1

)
x2k+1

(2k + 1)!

=
1

(2n)!

∞∑
k=0

( n∑
j=0

d
(2n+1)
2j+1 C2(j+k+n)+1

)
x2(k+n)+1

[2(k + n) + 1]!
,

from which the result follows.

Lemma 3.5. Let k, n ∈ N be such that k ≤ n. Then

(3.5)
n∑

j=0

C2(j+k)+1 d
(2n+2)
2j+2 = 0.

Proof. By (2.2), we have that C2(j+k)+1 = −(zj+k, 1)A. Then, using
(1.8), we obtain

n∑
j=0

C2(j+k)+1d
(2n+2)
2j+2 = −

n∑
j=0

(zj+k, 1)A d
(2n+2)
2j+2

= −
(

zk
n∑

j=0

d
(2n+2)
2j+2 zj , 1

)
A

= −(zkBn(z), 1)A = −(zk, Bn(z))A.

By [1, (14.23)], we have (zk, Bn(z))A = 0.
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Proposition 3.6. Let k, n ∈ N 0. Then

(3.6) C
(2n+2)
2(k+n+1) =

1
(2n + 1)!

n∑
j=0

d
(2n+2)
2j+2 C2(j+k+n)+3.

Proof. By (3.1), (2.7), (1.8), and (1.14), we have

∞∑
k=0

C
(2n+2)
2(k+n+1)

x2(k+n+1)

[2(k + n + 1)]!

= tanh2n+2(x) = 1 − 1
(2n + 1)!

DBn(D2) tanh(x)

= 1 +
1

(2n + 1)!

( n∑
j=0

d
(2n+2)
2j+2 D2j+1

)( ∞∑
k=0

C2k+1
x2k+1

(2k + 1)!

)

= 1 +
1

(2n + 1)!

n∑
j=0

d
(2n+2)
2j+2

∞∑
k=j

C2k+1
x2(k−j)

[2(k − j)]!

= 1 +
1

(2n + 1)!

n∑
j=0

d
(2n+2)
2j+2

∞∑
k=0

C2(j+k)+1
x2k

(2k)!

= 1 +
1

(2n + 1)!

∞∑
k=0

( n∑
j=0

d
(2n+2)
2j+2 C2(j+k)+1

)
x2k

(2k)!

=
1

(2n + 1)!

∞∑
k=1

( n∑
j=0

d
(2n+2)
2j+2 C2(j+k)+1

)
x2k

(2k)!
,

where the 1 cancels with the k = 0 term in the sum using (2.1). Then
by (3.5),

tanh2n+2(x) =
1

(2n+1)!

∞∑
k=n+1

( n∑
j=0

d
(2n+2)
2j+2 C2(j+k)+1

)
x2k

(2k)!

=
1

(2n+1)!

∞∑
k=0

( n∑
j=0

d
(2n+2)
2j+2 C2(j+k+n)+3

)
x2(k+n+1)

[2(k+n+1)]!
.
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Theorem 3.7. Let n ∈ N and εn =
(
3 + (−1)n

)
/2. Then

(3.7) C
(n)
2k+n =

1
(n − 1)!

[(n−1)/2]∑
j=0

d
(n)
2j+εn

C2(j+k)+n+εn−1.

Proof. This result combines Propositions 3.4 and 3.6.

TABLE 2. C
(n)
2k+n

, 1 ≤ n ≤ 6.

n C
(n)
2k+n

1 C2k+1

2 C2k+3

3 (2 C2k+3 + C2k+5)/2
4 (8 C2k+5 + C2k+7)/6
5 (24 C2k+5 + 20 C2k+7 + C2k+9)/24
6 (184 C2k+7 + 40 C2k+9 + C2k+11)/120

Remark 3.8. For each n ∈ N,

C(n)
n = (−1)n n!,(3.8)

C
(n)
n+2 = (−1)n+1 n(n + 2)!

3
,(3.9)

C
(n)
n+4 = (−1)n n(5n + 17)(n + 4)!

90
.(3.10)

Proof. From (1.14) and (3.1), we have(
x − 1

3
x3 +

2
15

x5 − · · ·
)n

= tanhn(x)

= (−1)n

(
C(n)

n

xn

n!
+ C

(n)
n+2

xn+2

(n + 2)!
+ C

(n)
n+4

xn+4

(n + 4)!
+ · · ·

)
.

The next, and last, objective is to show that n! divides the integer
C

(n)
2k+n for k, n ∈ N 0.
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Definition 3.9. C
(0)
2k = δk,0, for k ∈ N 0.

Lemma 3.10. Let (k, n) ∈ N 0 × N. Then

(3.11) C
(n)
2(k+1)+n = n

(
C

(n+1)
2k+n+1 − C

(n−1)
2(k+1)+n−1

)
.

Proof. For n = 1, the equation is true, since from Table 2 the equation
C

(1)
2k+3 = C

(2)
2k+2 is C2k+3 = C2k+3. For n ≥ 2, differentiating each side

of (3.1) yields

(−1)n
∞∑

k=0

C
(n)
2k+n

x2k+n−1

(2k + n − 1)!

= n tanhn−1(x)
(
1 − tanh2(x)

)

= n
(

tanhn−1(x) − tanhn+1(x)
)

= (−1)nn

{
−

∞∑
k=0

C
(n−1)
2k+n−1

x2k+n−1

(2k+n−1)!
+

∞∑
k=0

C
(n+1)
2k+n+1

x2k+n+1

(2k+n+1)!

}
.

Canceling (−1)nxn−1, we obtain

∞∑
k=0

C
(n)
2k+n

x2k

(2k+n−1)!
= −n

∞∑
k=0

C
(n−1)
2k+n−1

x2k

(2k+n−1)!

+ n

∞∑
k=0

C
(n+1)
2k+n+1

x2k+2

(2k+n+1)!
.

By (3.8), C
(n)
n = −nC

(n−1)
n−1 , n ∈ N \ {1}, so canceling two of the k = 0

terms yields

∞∑
k=1

C
(n)
2k+n

x2k

(2k+n−1)!
= −n

∞∑
k=1

C
(n−1)
2k+n−1

x2k

(2k+n−1)!

+ n

∞∑
k=0

C
(n+1)
2k+n+1

x2k+2

(2k+n+1)!
,



POWERS OF THE HYPERBOLIC TANGENT 1229

or
∞∑

k=0

C
(n)
2(k+1)+n

x2k

(2k+n+1)!
= −n

∞∑
k=0

C
(n−1)
2(k+1)+n−1

x2k

(2k+n+1)!

+ n

∞∑
k=0

C
(n+1)
2k+n+1

x2k

(2k+n+1)!
.

Equating the coefficients of x2k/(2k + n + 1)! yields (3.11).

Definition 3.11. For k, n ∈ N 0

(3.12) γ
(n)
2k+n =

1
n!

C
(n)
2k+n.

We now must show that γ
(n)
2k+n is an integer for k, n ∈ N 0.

Remark 3.12. (1) γ
(0)
2k = δk,0, k ∈ N 0,

(2) γ
(n)
n = (−1)n, n ∈ N,

(3) γ
(n)
2+n = (−1)n+1n(n + 1)(n + 2)/3, n ∈ N,

(4) {γ(0)
2k : k ∈ N 0} ∪ {γ(n)

n : n ∈ N} ∪ {γ(n)
2+n : n ∈ N} ⊂ Z.

Proof. By Definition 3.9, (3.8), and (3.9).

Lemma 3.13. For each (k, n) ∈ N 0 × N,

(3.13) γ
(n)
2(k+1)+n = n(n + 1) γ

(n+1)
2k+n+1 − γ

(n−1)
2(k+1)+n−1.

Proof. Use Definition 3.11 and (3.11).

Proposition 3.14. For k, n ∈ N 0,

(3.14) γ
(n)
2k+n ∈ Z.
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Proof (Double induction on k then n). We begin with induction on
k ∈ N 0. For k = 0 and n ∈ N 0, the result is true, since γ

(n)
n = (−1)n by

Remark 3.12 (1) and (2). Assume now for some k ≥ 0 that γ
(n)
2k+n ∈ Z

for each n ∈ N 0. We then show that γ
(n)
2(k+1)+n ∈ Z for n ∈ N 0.

For n = 0, γ
(0)
2(k+1) = 0 by Remark 3.12 (1). Also, for n = 1 by (3.13),

we find that
γ

(1)
2(k+1)+1 = 2 γ

(2)
2k+2 − γ

(0)
2(k+1) ∈ Z,

since the first term on the right is an integer by the induction assump-
tion on k and the second term is zero by Remark 3.12 (1).

Now assume for the given k that γ
(n−1)
2(k+1)+n−1 ∈ Z for some n ≥ 2.

Then it follows that γ
(n)
2(k+1)+n ∈ Z, since on the right side of (3.13), the

first term is an integer by the induction assumption on k (γ(n)
2k+n ∈ Z)

and the second term is an integer by the induction assumption on n

(γ(n−1)
2(k+1)+n−1 ∈ Z).

Remark 3.15. For (k, n) ∈ N 0 × N,

(3.15) sgn (γ(n)
2k+n) = (−1)k+n.

Proof. From the familiar expansion

tan(x) =
∞∑

k=0

|C2k+1| x2k+1

(2k + 1)!
,

where C2k+1 �= 0, it follows that

1
n!

tann(x) =
∞∑

k=0

T (2k + n, n)
x2k+n

(2k + n)!
.

The coefficient T (2k + n, n) is clearly positive for (k, n) ∈ N 0 × N.
Also, the equation tan(x) = −i tanh(ix) implies that

1
n!

tanhn(x) =
∞∑

k=0

(−1)kT (2k + n, n)
x2k+n

(2k + n)!
.
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By (3.1) and (3.12), we have the equation

1
n!

tanhn(x) = (−1)n
∞∑

k=0

γ
(n)
2k+n

x2k+n

(2k + n)!
,

so γ
(n)
2k+n = (−1)k+nT (2k + n, n).

Numerical values of |γ(n)
2k+n| (= T (2k + n, n)) are tabulated in

[1, p. 259].
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