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FORMULAS FOR POWERS OF THE HYPERBOLIC
TANGENT WITH AN APPLICATION TO
HIGHER-ORDER TANGENT NUMBERS

J.S. LOMONT

ABSTRACT. It is shown that the function tanh?"*1(z)
is a linear combination of even-order derivatives of tanh(z),
while the function 1 — tanh?"*2(z) is a linear combination of
odd-order derivatives of tanh(z). These results are then used
to express higher-order tangent numbers (coefficients in the
Maclaurin series for tanh™(z)) as linear combinations of the
ordinary tangent numbers (coefficients in the Maclaurin series
for tanh(z)).

1. Introduction. In a recently published book [2], the three
sequences of polynomials {0, }5° [2, Chapter 10], {A,}5°, {Bn}5° [2,
Chapters 13, 14] were introduced and studied. These sequences are
defined by the following recurrences:

(1.1) Ont2(x) = ¢ 0py1(z) + n(n+ 1) 0,(x),

where dp(z) = 1, 61 () = z,

(1.2) Appo(z) = (2+2(2n43)%) App1 (2) —4(n+1)? (2n41) (2043) A (2),
where Ap(z) =1, A1(2) = z + 2, and

(1.3) Bpia(z) = (248(n+2)?) Bpy1(2) — 4(n+1) (n+2)(2n+3)* B, (2),

where By(z) =1, B1(z) = z+ 8. The §,,’s are related to the A,’s and
B,,’s as follows:

(1.4) Soni1(x) = xA,(2%), n=0,1,2,...,
and
(1.5) Sonio(x) = 2B, (2%, n=0,1,2,....
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The §,,’s are called Mittag-Leffler polynomials.

The nonnegative integers dg-n) [1, Chapter 11], where n = 0,1,2,...
and j = 0,1,2,...n, are the coefficients of §,(z). If n = 0,1,2,...

then
1.6 on(x) = d\™W g
(1.6) (z) = d
=0
Also,

2n+1
(1.7) ngjjl )
and

2n+2
(1.8) ngﬁg )23

3

The A,’s and B,,’s are orthogonal, on (—o0, 0], sequences of polynomi-

als. If

(1.9) wa(z) = %csch (gm» z € R,

(1.10) wp(z) = % Zlwa(z), z€R,

and
0

(1.11) (P,Q)4 = /_ P(2)Q(z)wa(z)dz,
OOO

(1.12) (P.Qy= [ PEIQE wa) =

for polynomials P and @, then for m,n=0,1,2,...,

(1.13a)
(Am, An) s =(m+n)(m+n+1)6,,
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and

(1.13b)
(Bm, Bn)g = %(m—l—n—i— DIm+n+2)0pmn.

In Section 2 of this note, the powers of tanh(x) are expressed in terms
of the derivative operators A, (D?) and DB, (D?) applied to tanh(z).

The tangent numbers {Ca,41}5° C Z [2, Chapter 9] are defined by

t2n+1

(114) tanh(t) = — Z an+1 m

n=0

Consequently, C; = —1, C3 = 2, C5 = =16, C7; = 272 and Cy =
—7936. The higher-order tangent numbers CQ(ZLL, k=0,1,2,... and
n=1,23,---, are defined by

oo t2k+n

(1.15) tanh” () = (~1)" > O

2k+n (oL L )1’
P (2k +n)!

50 02(?-1-1 = Cok+1- By [1, (9.7)],

t2k+2

h(t) = _
tanh“(t) kZZOCQkJrs k2

SO CQ(?JFQ = Cngrg.

Section 3 of this note expresses the C’Q(Zln’s as linear combinations
of the ordinary tangent numbers Cyj41, in which the coefficients are

d§")’s divided by factorials.
2. The main results. We begin by proving three lemmas.

Lemma 2.1. Letn € Ng. Then

(2.1) 3 Cojnds? = —(@2n+ 1)L
j=0
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Proof. From [1, (14.3)] and (1.11), we find that

0
(2.2) Coj+1 = —/ twy(z)dz = — (27, 1)A

— 00

Then, using (1.8) and [1, (14.23)], we have

- (2n+2) _ - (2n+2) _  (2n42)

E :02j+1d23-7|:2 E (#7,1) g doi 7 = ( dyjyy 2 2 1)

= j= =0 A
(Bn,l) —(2n+1). o

Lemma 2.2. Forn € Ny,

(2.3) DB,,(D?) tanh(z)

Proof. From (1.14),

(2.4) D! tanh(z) = —Cy41, Jj=>0.

x=0

Thus, by (1.8) and (2.1),

DB, (D?)tanh(z

(2n+2) 12j+1
Z d2]+2 D

tanh(z

= — ZCQJ+1CZ2]2:L_;F2) = ( + 1)' ]

In the next lemma we utilize the Mittag-Leffler polynomials 4§, (z)
[1, (10.2), Table 10.1].

Lemma 2.3. Forn € N,

(2.5) Dtanh"(z) = ~———< 0n
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Proof (Induction on n). The result is true for n = 1,2. Assume for
some n > 3 that the equation

(m —1)! D tanh™(z) = (=1)™"16,,(D) tanh(z)
is true for m =1,2,... ,n — 1. Then, by (1.1),
(—=1)""16,(D) tanh()
- (—1)n-1{p Sn_1(D) + (n—1)(n —2) 5n,2(D)} tanh(z)
- (—1)”*1{(—1)% — 2)1 D? tanh™ ! (z)
F (=) Yn—1)D tanh"‘2(a;)}
= —(n—2)! D{D tanh™ " (z) — (n — 1) tanh”*“‘(x)}
— —(n—2) D{(n ~ 1) tanh"2(2) [1 — tanh?(z)]

—(n—-1) tanhn_Q(x)}
= (n — 1)!' D tanh"(z). o

Theorem 2.4. Forn € Ny,

(2.6) tanh®"*(z) = ﬁ A, (D?)tanh(z)
and
27)  tanh®*2(z) = 1— m DB,(D?) tanh(z).

Proof. (2.6): Replacing n by 2n+1 in (2.5), we have for n € N that
(2n)! D tanh®"*!(2) = 63,11 (D) tanh(z) = DA, (D?) tanh(z),
using (1.4). Integrating this equation, we find that

(2n)! tanh®" ! (z) = A,,(D?) tanh(z) + K.
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Setting = 0 gives K,, = 0, since D?* tanh(x) is an odd function for
k € Ny.

(2.7): Replacing n by 2n + 2 in (2.5), we find for n € N that
(2n + 1)!D tanh®"*?(z) = —d9,,42(D) tanh(z) = —D?B,,(D?) tanh(z),
using (1.5). Integrating this equation gives
(2n + 1)!tanh®*"*?(2) = —DB,,(D?) tanh(z) + L.
Setting = 0 and using (2.3), we find that L, = (2n + 1)\ o

TABLE 1. tanh"(z), 1 <n <6.

tanh" (z)
tanh(x)
1 — D tanh(z)
(1/2) (D? + 2) tanh(z)
1—(1/6) (D?+ 8 D) tanh(x)
(1/24) (D* + 20 D? + 24) tanh(z)
1 — (1/120) (D® + 40 D? + 184 D) tanh(z)

S UL W N3

3. Higher-order tangent numbers. The Maclaurin series for
tanh™ (x).

Definition 3.1. The real numbers {CéZl_n i (k,n) € Ng x N} are
defined by

o0
$2k+n

(3.1) tanh" (z) = (~1)" Y 4

Pt Zktn 2k 4+ n)!”

We next give a recursion formula for the Cz(zzrn’s and show that these
numbers are integers.
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Proposition 3.2. (1) For each (k,n) € No x N, we have

k
(n+1) 2k+n+1
(3.2) Cokynt1 = Zo ( 9 +1 02]+102(k i+
J

(2) Each CéZln is an integer.

Proof. (1) From (3.1) and (1.14), we have that

2k+n+1

n+1) . n
Dl Z ékinqu @hnt1)! = tanh" "' (2) = tanh(z) tanh™ (z)

21+1 2k+n

e BN S 2

Setting y = 22 and canceling (—1)"*12"*1 we obtain
Z C(n+1) yk
2htntl (9k +n + 1)!

(e e )

k=0
s (n)
= Z { zk: Caj+1 Colk—j)4n } ,
k=0 * j=0 (25 + D! [2(k = j) + n]!
k

<2k;+n+1 k

y
Coj1CSF S
2j +1 ) ARG J)+"}(2k+n+1)!’

> {
k=0 * j=0

which implies the result.

(2) For k € Ny, the number 02,1#1 is the integer Cok+1. Using

induction on n, we see from (3.2) that each O2k+n is an integer. O

Our next goal is Theorem 3.7, where we give a formula for C’é kln

a linear combination of the ordinary tangent numbers C5;41. The co-
efficients in this linear combination are the d;n)’s divided by factorials.
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Lemma 3.3. Let (k,n) € Ng x N be such that k <n. Then

2n+1
(3.3) ZdZ(ng;r )02(j+k:)+1 =0.
=0
Proof. From (2.2), we see that Co(j5)+1 = —(297%,1) 4. Then using

(1.7) and (1.11), we obtain

n

" (2n+1 k 2n+1)
> Cagamynds i) = Z (Zj+ 1) 241
=0

 (2nt)
zd%:l 2.1)
=0 A

/\
D>
/—\
\./
\_/
b

Il

|
—
N

o
N
3
—~
I
~—
~
o

By [1, (14.20)], it follows that (2%, A,,(2))a = 0. O

Proposition 3.4. Let k,n € Ny. Then

(2n+1) . (2n+1)
(3.4) C2(k+n)+1 2n 2n)! Zd2j+1 02(j+k+n)+1-

Proof. By (3.1), (2.6), (1.7), and (2.4), we have
ZC (2n+1) 2(k+n)+1
kAL 2k + n) + 1]!

= —tanh®" ! (z) = “@n)l A, (D?) tanh(z)

1 n (2n+1) 12 2k+1
)] (;d%l b ZO?’““ (2k +1)!

22(k—g)+1

[2(k —7) +1]!

2j+1
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2k+1
d(2n+1) C
’I’L)' = 2j+1 ];) 2(+k)+1 7o 1\ (2k‘+ )

x2k+1

(2n
- ! (Zd23+1 C2(j+k)+1) 7(21@4— 1)!~

But the first n terms on the right side are zero by (3.3), which gives
the equation

C«QTlJrl) 2(k+n)+1
Z 2(k+n)+1 [2(k +n) + 1]!
2k+1

(2n+1) T
Z (Zd2j+1 02(j+k)+1> k1)

o0 L2(kn)+1
d 2n+1 C ein )
; (Z 2j+1 2(j+k+n)+ 2 (k—l—n)—i—l]
from which the result follows. O

Lemma 3.5. Let k,n € N be such that k < n. Then

(3.5) Z Cojtr)+1 dz(?:;z) =0.
7=0

Proof. By (2.2), we have that Co(j4x)41 = —(29*% 1) 4. Then, using
(1.8), we obtain

n

(2n+2) g+k q.(2n+2)
E :02 (J+k) +1d23+2 E 2g+2

ML 1)
A
= —(szn(Z), a= —(Zk7Bn(Z))A'

By [1, (14.23)], we have (2, B,,(2))a = 0. o
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Proposition 3.6. Let k,n € Ng. Then

(2n+2)
(3'6) Cz(k+n+1) 2”"’1 | Zd2]+2 CQ(]JFICJF"L)JFg'

Proof. By (3.1), (2.7), (1.8), and (1.14), we have

i (2n+2) 22(k+n+1)
k+”+1> k: +n+1))!

1
= tanh®" "% (z) =1 — @y DB, (D?) tanh(z)
n (2n42) it 22k+1
=1+ a?r ¥ p C
2n+1 (Jz_: 2j+2 )(Z 2kt (2k+1))
- LAY O
2n+1 P T 2 O R

n 2k
o (2n+2) x
- 27’l + 1 Z d2J+2 Z OQ(j-‘rk)-‘rl (2](3)'
k=0

_ (2n+2) X
— 2n—|— 1) kg <Zd23+2 C2(j+k)+1> _(2/4;)!
s 2k
= d(Qn 2 C y x Py
(2n—|— 1)! ; (j_ 2j4+2  “2(i+k)+1 —(Zk)!

where the 1 cancels with the & = 0 term in the sum using (2.1). Then
by (3.5),

2k

1 > - T
tanh?*+2(z —_— < Ao, )—
(z) = @il kzn:H 2 2ita Ca(jpk)+1 on)!

1.2(k+n+1)

1 (2n+2)
= A3 oy S
(2714—1)!1;)(]‘2—:0 2 RS ) ket )
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Theorem 3.7. Letn € N and e, = (3+ (—1)")/2. Then

( 1 [(n=1)/2]
(3'7) C2Z+n = Z d2]+8,LC2(J+k7 +n+e,—1-
Proof. This result combines Propositions 3.4 and 3.6. o
TABLE 2. C{, . 1<n<6.
n Ciply
1| Copya
2 | Cokgs
3| (2C2k43 + Copgs)/2
4| (8 Copys + Conyr)/6
5 | (24 Copys + 20 Coppr + Copyo) /24
6 | (184 Copyr + 40 Copqg + Corr11)/120

Remark 3.8. For each n € N,

(3.9) Cn+2 (=1t @a
(3.10) e, = (1" n(5n + 1970)(n+4)!'

Proof. From (1.14) and (3.1), we have

n n+2 n+4
(e et e

1227

The next, and last, objective is to show that n! divides the integer

CQ(ZZFTL for k,n € Ny.
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Definition 3.9. Cég) = 01,0, for K € Ny.
Lemma 3.10. Let (k,n) € Ng x N. Then

(n) o (n+1) (n—1)
(3.11) Colht1)y4n = n(02k+n+1 - C2(k+1)+n—l)‘

Proof. For n = 1, the equation is true, since from Table 2 the equation
Cz(i)+3 = 02(k+2 is Cogy3 = Coys. For n > 2, differentiating each side
of (3.1) yields

oo _
x2k+n 1

C0"2 Coken =)t

k=0
= ntanh™ ! (z) (1 - tanhz(:zr))

= n(tanh"il(:v) - tanh"“(x))

oo (n—1) 2k+n 1 (n+1) 2k+n+1
=(-1) n{_I;]CQkJrn 1(2k+ Zc2k+n+1 m}
Canceling (—1)"2" "1, we obtain
s 22k 22k
C(n) C(" 1)
kzzo 2k (2k+n—1)! ”Z htn=l (2k4+n—1)!
p2k+2

n+1
+n202k+n+1 k+nt 1)l

By (3.8), i = —anz":ll), n € N\ {1}, so canceling two of the k =0
terms yields

- (n) Zc(n 1) z?F
o Zktn (2k+n 1)! Zhtn=1 (2k+n—1)!
p2k+2

n+1
+n Z Ot et G 11
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or
12k > 2k
ZC B~ "2 Chieh ot i)
kD4 (2k+n+1)! 2kt D4n—1 (2k+n+1)!
1 2k:
+”ZO("+ )

2k+n+1 2]€+TL+1)
Equating the coefficients of 2% /(2k 4+ n + 1)! yields (3.11). o
Definition 3.11. For k,n € N

n 1 n
(3.12) ’yékzrn - Cék:)m-

We now must show that 7§Z)+n is an integer for k,n € Ny.

Remark 3.12. (1) ’yé(,)c) = 0,0, k € No,
@) %" = (-1, neN,

3) 750, = (=)™ n(n+1)(n+2)/3, n € N,
@) (1 keNgyu{ :neNYU{S), :neN} C Z.

Proof. By Definition 3.9, (3.8), and (3.9). O

Lemma 3.13. For each (k,n) € Ny x N,

n +1 1
(3.13) 'Yé(L]sz) n(n"‘l)'VéZ-q-n)-;-l 'Vg(lk+1))+n 1

Proof. Use Definition 3.11 and (3.11). O

Proposition 3.14. For k,n € Ny,

(3.14) W, € Z.
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Proof (Double induction on k then n). We begin with induction on
k € Ny. For k = 0and n € N, the result is true, since vy(ln) = (=1)" by

Remark 3.12 (1) and (2). Assume now for some k > 0 that ’yéz)ﬂt €z

for each n € Ng. We then show that 7§?ﬁ+1>+n € Z for n € Ny,.

For n =0, 'yé(()l)ﬁl) = 0 by Remark 3.12 (1). Also, for n =1 by (3.13),

we find that W @ 0

Votkt1)11 = 2 Voktz = Vaks1) € B
since the first term on the right is an integer by the induction assump-
tion on k and the second term is zero by Remark 3.12 (1).

(n—1)
2(k+1)+n—1

Then it follows that fyé?,iHHn € Z, since on the right side of (3.13), the

Now assume for the given k that ~. € Z for some n > 2.

first term is an integer by the induction assumption on k (”yéZl_n eZ)
and the second term is an integer by the induction assumption on n

(n—1)
(Yokri)ytn1 €Z). O

Remark 3.15. For (k,n) € Ny x N,

(3.15) sgn (v ,) = (~1)F

Proof. From the familiar expansion

& $2k+1
tan(z) = Z [eXysy [T
k=0

where Cory1 # 0, it follows that

2k+n

1, —
] tan™(x) = ZT(Qk—i—n,n) 2

k=0

The coefficient T'(2k + n,n) is clearly positive for (k,n) € Ny x N.
Also, the equation tan(z) = —itanh(iz) implies that

& 2k+n

1 Ny <
] tanh" (z) = I;)(—l)kT@k +n,n) @2k +n)’
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By (3.1) and (3.12), we have the equation

1 " s 2k+n
atanh (z) = Z 2k+n 2k;—|—n)

50 Yk = (~DFT(2k +n,n). O

Numerical values of |7§Zln| (= T(2k + n,n)) are tabulated in
1, p. 259].
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