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TOPOLOGICAL DESCRIPTION OF A
NON-DIFFERENTIABLE BIOECONOMICS MODEL

E. GONZÁLEZ-OLIVARES, E. SÁEZ, E. STANGE, I. SZÁNTÓ

ABSTRACT. A predator-prey model with non-differentiable
functional response and with a Cobb-Douglas type production
function is considered. We show that the non-differentiability
has a strong influence on the dynamics of the model, locally
and globally. We prove that there is not a uniqueness of so-
lutions for any initial conditions on the coordinate axis. We
conclude that for any conditions of the parameters, the dy-
namics of the model does not contain a globally attracting
singularity. Finally, in the parameters space, we prove the ex-
istence of an open set such that, for all values in this set, the
model has at least two small amplitude limit cycles generated
by Hopf bifurcations.

1. Introduction. Let us consider the family of vector fields Xα,β
μ

where

(1) Xα,β
μ :

{
dx/dt = rx(1 − (x/K)) − qxαyβ

dy/dt = b(pqxαyβ − cy)

This system describes the dynamics of an open access fishery model,
where for each time t > 0, x = x(t) is the size of the fishing resource and
y = y(t) the effort realized by the predator (man, industrial fisheries,
etc.)

System (1) is defined on the region Ω̄ = {(x, y) ∈ R2 | x ≥ 0 , y ≥ 0},
where μ = (r, K, p, q, b, c) ∈ R6

+ and 0 < α, β < 1 denotes the
bioeconomics parameters which have the following meanings:
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r is the intrinsic growth rates or biotic potential of the prey.

q is the maximal harvest rate, or capture coefficient.

K is the environment carrying capacity of prey.

p is the price of landed biomass.

c is the cost of fishing effort.

b is the stiffness parameter.

In this model we assume that the natural growth of a resource is given
by a logistic equation, see [11], and the harvest rate or production
function is given by H(x, y) = qxαyβ , known in economics as a
Cobb-Douglas type function [18]. This function is more realistic than
the function H(x, y) = qxy, resulting in the capture by effort unity
hypothesis or Schaefer’s hypothesis [6, 15]. Moreover, we consider
that the fishing effort y = y(t) is proportional to the gross profit [16].

The values α and β reflect important characteristics of the fishery
[10] and represent shape parameters to account for effects of non-
random searching, competition among units of effort, saturation of the
harvesting gear, and so forth [18].

In the function H(x, y), the term ρ(x) = qxα, called concentration
profile, expresses the relationship between the exploited density ρ and
population size x and corresponds to type III described in [6], when
a fish species that tends to aggregate as its total abundance decreases
as the case of the Anchoveta (Engraulis Ringens) [6]. The parameter
α < 1 indicates the grade of aggregation of the fishing resource; this
means that each unit of effort catches a greater proportion of the stock
as the stock diminishes [10]. On the other hand, the parameter β < 1
weighs the congestion level of the ships dedicated to the fishery; this
means that each unit effort catches less and less from a given stock the
more effort is applied, which could be due to crowding effects [10]. The
Cobb-Douglas functions have been used in discrete models [1, 4, 12],
without analysis in the detail in the model. The first of these papers [1],
numerical estimates of bionomic equilibrium, shows that open access
is seen to cause stock extinction except for very high cost/price ratios,
in the case of the northeast Atlantic Minke whale. In [4], the authors
indicate that it is not possible to solve for explicit expressions for a
positive equilibrium point and they solve numerically with dates of
certain Norwegian fisheries (North Sea herring and Norwegian purse
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seine) and show by simulation that this point is local asymptotically
stable. Finally, in the last paper, for the Northern Anchovy fishery, it
is shown by simulation that the behavior of the system depends also on
the cost/price ratio c/p and of the stiffness or adjustment parameter b;
it is illustrated that the open access system will converge to a unique
equilibrium point, or the systems falls into a limit cycle around the
open access equilibrium and the bifurcation value can be approximated
with a desired level of accuracy using numerical methods.

When α = 1 and β = 1, the system is known as Smith’s model and the
unique equilibrium point in the first quadrant is globally asymptotically
stable [6]. This model is also suggested to describe the predator-prey
interaction and according to [3] it can be classified as F , that is, prey-
dependent functional response model. The case β = 1 is proposed by
Rosenzweig [13]. In [8] Freedman proposes to study the situation α = 1
to analyze the effect of group defense in the predator-prey system and
he named α the mutual interference constant.

Let Ω = Ω̄ − {(x, y) | xy = 0} be the maximal open set in Ω̄. It is
clear that Xα,β

μ is a C∞-vector field in Ω and nondifferentiable vector
field in Ω̄, that is,

Xα,β
μ ∈ X 0(Ω̄) −X 1(Ω̄) and Xα,β

μ ∈ X∞(Ω).

In order to describe the dynamics of Xα,β
μ we will consider a vector

field qualitatively equivalent by the following change of coordinates:

(2) ζ : R2 × R+
0 −→ R2 × R+

0

such that

ζ(u, v, τ ) =
(

Ku,

(
rK1−α

q

)1/β

v,
τ

r

)
= (x, y, t)

where

detDζ(u, v, τ ) =
(

K1−α+βr1−β

q

)1/β

> 0.

Let us consider B and C new parameters such that

(3) B = pb

(
q

rK1−α−β

)1/β

> 0 C =
bc

rB
> 0.
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Then in the new coordinates the vector field is given by Y α,β
η = ζ∗Xα,β

μ ,
where

(4) Y α,β
η :

{
du/dτ = u(1 − u) − uαvβ

dv/dτ = B(uαvβ − Cv),

and it is defined in the region Γ̄ = ζ−1(Ω̄×{0}) with η = (B, C) ∈ R2
+

and 0 < α, β < 1.

If Γ = ζ−1(Ω × {0}), then it is clear that

Y α,β
η ∈ X 0(Γ̄) −X 1(Γ̄) and Y α,β

η ∈ X∞(Γ).

Note that both coordinate-axes u = 0 and v = 0 are invariant sets for
(4), the equilibrium points are on the curve v = (1/C)u(1 − u) and
the only singularity in the positive semi-axis v = 0 is (1, 0). In the
parameters, in order to obtain a simpler description of the bifurcation
diagram of (4) we define the sets

Δ = {(α, β, B, C) ∈ R4
+ | α, β < 1}

Υsg(ε) = {(α, β, B, C) ∈ Δ | α + β − 1 = sg(ε)}
and

Λsg(ε) = {(α, β, B, C) ∈ Δ | (1 − β)1−β(1 − α − β)1−α−βCβ

− (2 − α − 2β)2−α−2β = sg(ε), 1 − α − β > 0}

Definition. We say that a saddle point p of Y α,β
η is non Lipschitzian

if and only if there does not exist uniqueness of solutions in at least one
point of W s(p) and/or Wu(p). Furthermore, we say that an elliptical
sector of Y α,β

η is non Lipschitzian if and only if there does not exist
uniqueness of solutions in at least one point of its separatrices.

2. Main results.

Theorem 1. For the vector field Y α,β
η we have:

i) There is not uniqueness of solutions at points in the positive u-
axis, different from the singularity (1, 0). (The vector field (4) is not
Lipschitzian.)
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ii) The singularity (1, 0) is a non Lipschitzian saddle point.

iii) There is not uniqueness of solutions at points in the positive v-
axis. (The vector field (4) is not Lipschitzian.)

Lemma 1. If ξ = (α, β, B, C) ∈ Δ, the existence of singularities of
the vector field (4) in Γ is given by:

1. Either if ξ ∈ Λ− or if ξ ∈ Λ+ ∪Λ0 ∪Υ0 with C ≤ 1, there are not
singularities.

2. If ξ ∈ Λ0 and C > 1, there exists only one singularity which is a
saddle-node point.

3. If ξ ∈ Λ+ and C > 1, only two singularities exist, a saddle point
and a hyperbolic focus or a node.

4. Either if ξ ∈ Υ0 with C > 1 or if ξ ∈ Υ+, there exists only one
singularity which is a center focus.

Lemma 2. 1. If ξ ∈ Λ+ and C > 1, in part 3 of Lemma 1,
the abscissa of the saddle point is the smallest to the abscissas of the
singularities of (4). The focus is an attracting hyperbolic singularity.

2. If ξ ∈ Υ0 with C > 1, the center focus singularity in part 4 of
Lemma 1 is an attracting hyperbolic focus.

3. If ξ ∈ Υ+, there exists 0 < C∗ < 1 such that, if C > C∗ the
center focus singularity in part 4 of Lemma 1 is a hyperbolic attracting
focus. Moreover, for each 0 < C < C∗ and for each B > 0, arbitrary
but fixed, then the following functions exist{

F : [0, 1] × [0, 1] → R and

 : [0, 1] × [0, 1] → R

such that ⎧⎨
⎩

F (α, β) = [1−α − BC(1−β)]α+β−1

−Cβ(2−α)α+2β−2[1 + BC(1−β)]1−β


(α, β) = α + 2β − 2.

In the parameter space, H = F−1(0) is a Hopf bifurcation curve.

Moreover, if F−1(0) ∩ l−1(0) = {(ᾱ, β̄)} in the parameter space
αβ, there exists a neighborhood � of (ᾱ, β̄) such that the center focus
singularity in part 4 of Lemma 1 is:
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FIGURE 1.

i) An attracting weak focus of order two if (α, β) = (ᾱ, β̄).

ii) An attracting weak focus of order one if (α, β) ∈ F−1(0) ∩

−1(0,∞) ∩ �.

iii) A repelling weak focus of order one if (α, β) ∈ F−1(0) ∩

−1(−∞, 0) ∩ �.

iv) A hyperbolic attracting focus if (α, β) ∈ F−1(−∞, 0) ∩ �.

v) A hyperbolic repelling focus if (α, β) ∈ F−1(0,∞) ∩ �.

Theorem 2. If ξ ∈ Υ+, there exists 0 < C∗ < 1 such that, for each
0 < C < C∗, in the parameter space αβ, there exists a neighborhood
�c of (ᾱ, β̄) such that the diagram of bifurcations at the center focus
singularity of (4) in part 4 of Lemma 1 is shown in Figure 1, where
H and Se denote the Hopf and the semi-stable limit cycles bifurcation
curve.

Theorem 3. The vector field Y α,β
η at the origin has:

i) A non Lipschitzian elliptical sector in the following cases:

∗ If ξ ∈ Λ−,

∗ If ξ ∈ Λ+ ∪ Λ0 ∪ Υ0 and C ≤ 1

∗ If ξ ∈ Λ+ ∪ Λ0 and C > 1.
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ii) An hyperbolic sector in the following cases:

∗ If ξ ∈ Υ0 and C > 1

∗ If ξ ∈ Υ+.

3. Proofs of the main results.

Proof of Theorem 1. In order to study the vector field Y α,β
η we

consider the t-scaling and the change of coordinates given by

(5) ϕ : R2
+ × R+

0 −→ Γ × R+
0

such that

ϕ(x, y, t) =
(
x + 1, y2/(1−β), ty

)
= (u, v, τ )

where
detDϕ(x, y, t) =

2
1 − β

y2/(1−β) > 0.

The obtained vector field is given by Ȳ α,β
η = ϕ∗Y α,β

η , where in the
region ϕ−1(Γ × {0}) has the following form

(6) Ȳ α,β
η :

{
dx/dt = −x(x + 1)y − (x + 1)αy(1+β)/(1−β)

dy/dt = B(1 − β/2)((x + 1)α − Cy(2/1−β)).

Proof of i). We observe that (6) can be continuously extended to the
semi-axis x ≥ −1 and Ȳ α,β

η (x, 0) = B(1 − β/2)(x + 1)α(∂/∂y). Then,
for x > −1 the vector field (6) is orthogonal to the x-axis, see Figure 2.
If −1 < x0 and γ is the orbit of vector field (6) with initial condition
in the point (x0, 0), then γ∗ = γ − {(x0, 0)} is also an orbit to the
vector field (6). As ϕ is a homeomorphism, systems (4) and (6) are
C0-equivalent in the first quadrant R+ × R+, hence ϕ(γ∗) is an orbit
of (4). By continuity ϕ(γ) is an orbit of (4) that is tangent to the vector
field Y α,β

η at the point (x0 + 1, 0). But the u-axis, v = 0, is clearly an
invariant set and Y α,β

η (x0 + 1, 0) = (x0 + 1)x0(∂/∂u). Thus, for the
point (x0 + 1, 0), at least two orbits exist. Therefore system (4) is not
Lipschitzian, since no uniqueness of solutions exists.

In order to prove ii), if x0 = 0 with the above argument, we have
γ∗ = γ−{(0, 0)} and ϕ(γ∗) is an orbit of (4) whose α-limit is (1, 0). On
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the other hand, Y α,β
η (u, 0) = u(1−u)(∂/∂u). Then, in a neighborhood

of the point (1, 0), the u-axis is contained in the stable manifold of
(1, 0) and is it formed by points that have tangent regular orbits to the
straight line v = 0 whose ω-limit is contained in Γ. Then the singularity
(1, 0) is a non Lipschitzian saddle point, see Figure 2.

To prove iii), we must consider the following change of coordinates in
(4) that includes a scaling of the u-axis and the v-axis and a scaling of
the time:

(7) ϕ : R2
+ × R+

0 −→ Γ × R+
0

such that

ϕ(x, y, t) = (x2/(1−α), y2/(1−β), xyt) = (u, v, τ )

where

det Dϕ(x, y, t) =
4

(1 − α)(1 − β)
x2/(1−α)y2/(1−β) > 0.

Then, in the new coordinates the obtained vector field defined in
ϕ−1(Γ × {0}) is Ȳ α,β

η = ϕ∗Y α,β
η , where

(8)

Ȳ α,β
η :

{
dx/dt = (1 − α/2)[(1 − x2/1−α)x2/1−αy − y(1+β)/(1−β)]
dy/dt = B(1 − β)/2[x(1+α)/(1−α) − Cxy2/(1−β)].
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Since Ȳ α,β
η (0, y) = −(1 − α/2)y(1+β)/(1−β)(∂/∂x), then for y > 0 the

vector field (8) is orthogonal to the y-axis. For y0 > 0, let (0, y0) be an
initial condition and let γ be the orbit of vector field Ȳ α,β

η through this
point. If γ∗ = γ−{(0, y0)}, then ϕ(γ∗) is an orbit of (4). By continuity,
ϕ(γ) is an orbit of (4) tangent to the vector field Y α,β

η at the point
(0, y

2/(1−β)
0 ). On the other hand, since Y α,β

η (0, v) = −BCv(∂/∂v), the
v-axis is an invariant set by the vector field (4). This proves that, for
the point (0, y2/(1−β)

0 ), at least two orbits of the vector field Y α,β
η exist

and this proves the theorem, see Figure 3.

Proof of Lemma 1. Let P (u, v) = u(1 − u) − uαvβ and Q(u, v) =
B(uαvβ − Cv) be the component of (4), and let

{
P1(u, v) = u(1 − u) − Cv

Q1(u, v) = uαvβ − Cv
where Q = BQ1, P1 = Q1 + P.

The set of the singularities of (4) in Γ̄ is

(9) Sing (Y α,β
η ) = P−1(0) ∩ Q−1(0) = P−1

1 (0) ∩ Q−1
1 (0).

In Γ the zeros of Q1 define the implicit function

v = f(u) =
1

C1/(1−β)
uα/(1−β).
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FIGURE 4. (C < 1).

In order to simplify the study of (9), we consider the horizontal blowing-
up

(10) Ψ : R2 −→ R2 such that Ψ(x, y) = (x, xy) = (u, v).

Then
{

(P1 ◦ Ψ)(x, y) = −Cx[y − (1/C)1/(1−β)x(α+β−1)/(1−β)]
(Q1 ◦ Ψ)(x, y) = −Cx[y + (1/C)x − (1/C)].

Now, if we consider the functions

(11)
{

P̄1(x, y) = y − (1/C)1/(1−β)x(α+β−1)/(1−β)

Q̄1(x, y) = y + (1/C)x − (1/C).

In Ψ−1(Γ), (9) is reduced to the set

Ψ−1(Sing (Y α,β
η )) = (P̄1)−1(0) ∩ (Q1)−1(0)

So, if ξ ∈ Υ− and C ≤ 1, from the graphics of (11) is it easy to see that
Ψ−1(Sing (Y α,β

η )) = φ, see Figure 4 on the existence of singularities.
This partially proves the first part of Lemma 1.
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If (x0, y0) ∈ Ψ−1(Sing (Y α,β
η )) is a tangent point of (P̄1)−1(0) and

(Q̄1)−1(0), the coordinates of this point satisfy the system

(12)

{
�∇P̄1(x, y) = λ �∇Q̄1(x, y)

P̄1(x, y) = Q̄1(x, y) = 0

By the former equation we have

−
(

1
C

)1/(1−β)
α+β−1
1 − β

x
(α+2β−2)/(1−β)
0

∂

∂x
+

∂

∂y
= λ

[
1
C

∂

∂x
+

∂

∂y

]
,

and from the latter component of this equality it follows that λ = 1.
Furthermore, from (12) we obtain

(13)
(

1
C

)β/(1−β)

x(α+β−1)/(1−β) =
1 − β

2 − α − 2β
.

Then

α + β < 1 =⇒ 1 − α

2 − α − 2β
< 1 =⇒ Cβ/(1−β)x(1−α−β)/(1−β)

> 1 =⇒ x >
1

Cβ/(1−α−β)
.

Now, since x < 1 we have C > 1. Therefore, the system (12) has
a solution if ξ ∈ Υ− and C > 1. Moreover, using the equality (13)
we have that (12) has a unique solution, see Figure 5 on existence of
singularities.

Now, due to (x0, y0) ∈ Q1
−1

(0), by directed calculus we have that
the coordinates of this point are

(x0(ξ), y0(ξ)) =
(

α + β − 1
α + 2β − 2

,
1 − β

C(2 − α − 2β)

)

where in Δ the parameters satisfy the condition of tangency

(14) (1 − β)1−β(1 − α − β)1−α−βCβ = (2 − α − 2β)2−α−2β

obtained from (12). But (14) implies that ξ ∈ Λ0 and C > 1.
This proves the existence and uniqueness of the singularity of part 2
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FIGURE 5. (C > 1).

to Lemma 1. This singularity is a saddle-node, in fact, by the
blowing-up (10) and the condition of the above tangency, the image
Ψ(x0(ξ), y0(ξ)) = pξ is a singularity with index zero of (4). To fin-
ish part 1 of Lemma 1, we consider ξ− = (α, β−, C, B) ∈ Λ− and
ξ = (α, β, C, B) ∈ Λ0. Then

β− < β ⇐⇒ (1 − β−)1−β−
(1 − α − β−)1−α−β−

Cβ−

− (2 − α − 2β−)2−α−2β−
< 0

⇐⇒ 1− α− β

2− α− 2β
<

1− α− β−

2− α− 2β− ∧ 1− β

2− α− 2β
<

1− β−

2− α− 2β−

⇐⇒ x0(ξ) < x0(ξ−) ∧ y0(ξ) < y0(ξ−).

Hence, since the graphics of Q1(x, y) = 0 is independent of the
parameter β it remains fixed whereas the graphics of P1(x, y) =
0 itself moves in the direction of the gradient. This proves that
Sing (Y α,β

η ) = Φ. Now, if ξ ∈ Υ0 and C ≤ 1, from (11) we have
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P1(x, y) = y − (1/C)1/(1−β), therefore

P1
−1

(0) ∩ Q1
−1

(0) =
{

Φ if C < 1
(0, 1) if C = 1

because this corresponds to the intersection of two straight lines.
Moreover, when C = 1, by a blowing-down (10), we have Ψ(0, 1) =
(0, 0). This concludes the proof of part 1 of this lemma.

In order to prove part 3 of Lemma 1, we consider ξ+ = (α, β+, C, B) ∈
Λ+ and ξ = (α, β, C, B) ∈ Λ0. As before, it is easy to see that

β+ > β ⇐⇒ x0(ξ+) > x0(ξ) ∧ y0(ξ+) > y0(ξ).

Then the graphics of P1(x, y) = 0 itself moves in the opposite
sense to the direction of gradient. So, this proves that the point
of tangency (x0(ξ), y0(ξ)) unfolds in two points and Sing (Y α,β

η ) =
{(x1, y1), (x2, y2)}. By blowing-down (10), we have that Ψ(x1, y1) = p1,
Ψ(x2, y2) = p2 are two different singularities of (4). Now, it is well
known from bifurcation theory that one of these singularities is a hy-
perbolic saddle and the other point is a hyperbolic node. This concludes
the proof of part 3 of Lemma 1.

In order to prove part 4 of this lemma, from (4) we have

(15) DY α,β
η (u, v) =

(
1 − 2u − αuα−1vβ −βuαvβ−1

Bαuα−1vβ B(βuαvβ−1 − C)

)
.

If ξ ∈ Υ0 and C > 1, according to (11) it follows that (P̄1)−1(0)
and (Q̄1)−1(0) are two straight lines whose intersection is the point
p(C) = (1 − (1/C)(1−α)/α, (1/C)1/α) and then Ψ(p(C)) is the only
singularity of (4) in Γ. Now, using (15) we have that

detDY α,1−α
η (Ψ(p(C))) = αBC

(
1 −

(
1
C

)(1−α)/α)
> 0.

This proves that the singularity Ψ(p(C)) is a center-focus.

If ξ ∈ Υ+ from (11) it is clear that (P̄1)−1(0) in the quadrant Ψ−1(Γ)
is a strictly increasing curve, that it is extended continuously at the
origin. Therefore, the intersection of this curve with the straight line
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(Q̄1)−1(0) is the only point p∗. Then Ψ(p∗) = (u∗, v∗) in Γ is the
only singularity of the vector field (4). Now, by the definition of the
functions P1 and Q1, we have that u∗ satisfies the condition

(16) uα+β−1(1 − u)β−1 = Cβ.

Replacing this condition in the determinant of (15) and using that
0 < u∗ < 1, we obtain

det DY α,β
η (u∗, v∗) = BC[(1 − β)u∗ + (1 − u∗)(α + β − 1)] > 0.

Then, Ψ(p∗) is a center-focus of (4). This concludes the proof of
Lemma 1.

Proof of Lemma 2. 1) In order to study the relative position of the
saddle point and the focus point of (4) given by part 3 of Lemma 1,
we consider ξ ∈ Λ+ and C > 1. Let p1 = (u1, v1) and p2 = (u2, v2)
be the respective singularities of the vector field, and let p0 = (u0, v0)
be the saddle-node of (4) of part 2 of Lemma 1. Since p1, p2 ∈ P−1

1 (0)
are singularities of (4), they satisfy the condition (16). Replacing this
condition in (15), we obtain

DY α,β
η

∣∣∣
P−1

1 (0)
(u) =

(
1 − 2u − α(1 − u) −βC

Bα(1 − u) −BC(1 − β)

)
.

This follows that

(17)

⎧⎪⎨
⎪⎩

detDY α,β
η

∣∣∣
P−1

1 (0)
(u) = BC[(2u − 1)(1 − β) + α(1 − u)]

tr DY α,β
η

∣∣∣
P−1

1 (0)
(u) = 1 − α − BC(1 − β) − (2 − α)u.

Since p0 is a saddle-node of (4), it is clear that det DY α,β
η

∣∣
P−1

1 (0)
(u0) =

0. Then, if u1 < u0, respectively u2 > u0, we have that

detDY α,β
η

∣∣
P−1

1 (0)
(u1) < 0,

respectively det DY α,β
η

∣∣
P−1

1 (0)
(u2) > 0. Therefore, when u1 < u2, the

singularities p1 and p2 are respectively saddle and focus of (4).
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Evaluating the abscissa of the focus p2 in (17) we have⎧⎪⎨
⎪⎩

detDY α,β
η

∣∣∣
P−1

1 (0)
(u2) = BC[(2u2 − 1)(1 − β) + α(1 − u2)] > 0

trDY α,β
η

∣∣∣
P−1

1 (0)
(u2) = 1 − α − BC(1 − β) − (2 − α)u2.

In order to prove the hyperbolicity of p2, we analyze the condition of
loss hyperbolicity (trDY α,β

η (p2) = 0) in terms of the parameters of the
system (4). Let us consider the blowing-up (10) and we assume that
the coordinates of some singularity cancel the expression of the trace
in this singularity. Then, from (17) and using Ψ−1((trDY α,β

η )−1(0))
and (11) we obtain the following consistent system

(18)

Cy1−β − xα+β−1 = 0

y +
1
C

x − 1
C

= 0

1 − α − BC(1 − β) − (2 − α)x = 0.

By (18) we have, in terms of variable x, the only value

x =
1 − α − BC(1 − β)

2 − α
.

Hence, x = 0 if and only if 1 − α − BC(1 − β) = 0. As the abscissa
of the focus is greater than the abscissa of the saddle, this implies
that the singularity canceling the trace is the saddle of vector field.
Therefore, the coordinates of Ψ−1(p2) do not cancel the expression of
the trace, and this proves that p2 is a hyperbolic focus. Now, in order
to know the kind of stability of this focus, it is enough to determine the
sign of the trace in this singularity for any condition of the parameters
ξ ∈ Λ+ with C > 1, because this focus is hyperbolic. For example, if
1 − α − BC(1 − β) = 0, we have

trDY α,β
∣∣∣
P−1

1 (0)
(u2) = −(2 − α)u2 < 0.

This finishes the proof of part 1 of Lemma 2.

2) If ξ ∈ Υ0 and C > 1, (18) is reduced to

Cyα − 1 = 0

y +
1
C

x − 1
C

= 0

1 − α − BCα − (2 − α)x = 0
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and the (only) singularity Ψ−1(p2), is

Ψ−1(p2) =
(
1 − C(α−1)/α,

1
C1/α

)
.

Since 0 < α < 1, it follows that trDY α,β
∣∣
P−1

1 (0)
(u2) = −1 − BCα +

(2 − α)C1−(1/α) < 0. This proves part 2 of Lemma 2.

3) If ξ ∈ Υ+, we first analyze the condition of loss hyperbolicity
(trDY α,β

η (p2) = 0), in terms of the parameters of vector field (4), that
is,

1 − u − uα−1vβ = 0
uαvβ−1 − C = 0

1 − 2u − αuα−1vβ + Bβuαvβ−1 − BC = 0.

This system defines implicitly the condition of nonhyperbolicity

(19) [1−α−BC(1−β)]α+β−1−Cβ(2−α)α+2β−2[1+BC(1−β)]1−β = 0.

To study (19) in the αβ-plane, let C > 0 and B > 0 be arbitrary but
fixed values, and we consider the functions

F (α, β)= [1−α−BC(1−β)]α+β−1− Cβ(2−α)α+2β−2[1+BC(1−β)]1−β

l(α, β)= 1 − α − BC(1 − β).

Then

(20) F (α, β)|l−1(0) = −Cβ(2 − α)α+2β−2[1 + BC(1 − β)]1−β < 0.

Moreover, ⎧⎨
⎩

F (α, 1) < 0 if C > ((1 − α)/(2 − α))α

F (α, 1) = 0 if C = ((1 − α)/(2 − α))α

F (α, 1) > 0 if C < ((1 − α)/(2 − α))α.

Therefore, given C < 1, there exists 0 < α∗ < 1 such that

α < α∗ =⇒ F (α, 1) > 0
α > α∗ =⇒ F (α, 1) < 0.
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l
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α

β

H

FIGURE 6.

This change of signs proves that (α∗, 1) ∈ F−1(0) and now, from (20),
the surface of the zeros of F and l−1(0) does not have intersections,
and this proves that the graphics F−1(0) in l−1(0,∞) intersects to the
straight line α + β = 1, see Figure 6.

Then the arc of F−1(0) given by

H = F−1(0) ∩ l−1(0,∞) ∩ {(α, β) | α + β > 1, 0 < α, β < 1}
is a curve of Hopf bifurcation and (4) has, at least, a weak focus of
order one at the singularity p2 = (u2, v2).

In order to determine the topological type of the singularity p2, we
consider the translation of p2 to the origin and the respective Jordan
canonical form of the system (4). For that, first we use the following
C∞-conjugation
(21)

ϕ : R2 −→ R2 such that ϕ(x, y) = (a11x−γy+u2, a21x+v2) = (u, v)

where

γ =
√

detDY α,β
η (ū2, v̄2) y detDϕ(x, y) = γa21 > 0.

The qualitatively equivalent vector field in the new coordinates is
Zα,β

η = ϕ∗Y α,β
η . As the vector field Zα,β

η is analytic in a neighborhood
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of the origin, we have that

1
γ

Zα
η (x, y) =

(
− y +

5∑
i,j=2

Ai,jx
iyj + H.O.T.

) ∂

∂x

+
(
x +

5∑
i,j=2

Bi,jx
iyj + H.O.T.

) ∂

∂y
,

where H.O.T. denotes the higher order term and Ai,j = Ai,j(α, η),
Bi,j = Bi,j(α, η).

For k = 0, 1, let Lk be the first two Liapunov quantities at the origin
[5, 14] of the vector field (1/γ)Zα

η . Since the trace of linear part of
the vector field at the origin is zero, we have that L0 = 0. Now, as L1

depends on the 3-jet of (1/γ)Zα
η , see [7], then

(22)

L1 = (A02A11 + A12 + A11A20 + 3A30 + 2A02B02 + 3B03 − B02B11

− 2A20B20 − B11B20 + B21)/8.

Using the Mathematica software [19], we have

L1 =
αβ(−2 + α + 2β)B2C2(−1 − BC+ βBC)(1 − α− BC+ βBC)2

16(−1 + α + BC − βBC)2γ3
.

As u2 > 0, then 1 − α − BC(1 − β) �= 0, and consequently

L1 =
αβ(−2 + α + 2β)B2C2(−1 − BC + βBC)

16γ3
.

Therefore, if we define 
(α, β) = α + 2β − 2, then p2 is:⎧⎨
⎩

an attracting weak focus of order one if (α, β) ∈ H ∩ 
−1(0,∞)
a repelling weak focus of order one if (α, β) ∈ H ∩ 
−1(−∞, 0)
a weak focus, at least, of order two if (α, β) ∈ H ∩ 
−1(0)

Now, if α + 2β − 2 = 0, the weakness of p2 depends only of L2. On
the other hand, it is known that L2 depends on the 5-jet of (1/γ)Zα

η .
Then, again using the Mathematica software, we have

L2 = L2(β, B) =
N2(β, B)
D2(β, B)

,
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where

N2 = −(−1 + β)5β4B5C5(1 − 5β + 8β2 − 4β3 + 5BC − 27βBC

+ 52β2BC − 42β3BC + 12β4BC − 8B2C2 + 113βB2C2

− 431β2B2C2 + 703β3B2C2 − 553β4B2C2 + 204β5B2C2

− 28β6B2C2 − 62B3C3 + 646βB3C3 − 2392β2B3C3

+ 4388β3B3C3 − 4422β4B3C3 + 2470β5B3C3 − 708β6B3C3

+ 80β7B3C3 + 258β4C4 − 731β5C4 + 713β6C4 − 286β7C4

+ 40β8C4 − 103B4C4 + 993βB4C4 − 3830β2B4C4

+ 7914β3B4C4 − 9687β4B4C4 + 7221β5B4C4 − 3200β6B4C4

+ 768β7B4C4 − 76β8B4C4 − 144β5C5 + 300β6C5 − 210β7C5

+ 60β8C5 − 6β9C5 + 228β4BC5 − 790β5BC5 + 1090β6BC5

− 740β7BC5 + 242β8BC5 − 30β9BC5 − 71B5C5 + 605βB5C5

− 2276β2B5C5 + 4942β3B5C5 − 6799β4B5C5 + 6121β5B5C5

− 3590β6B5C5 + 1316β7B5C5 − 272β8B5C5 + 24β9B5C5

+ 18β4B2C6 − 51β5B2C6 + 51β6B2C6 − 21β7B2C6 + 3β8B2C6

− 18B6C6 + 123βB6C6 − 363β2B6C6 + 603β3B6C6

− 615β4B6C6 + 393β5B6C6 − 153β6B6C6 + 33β7B6C6

− 3β8B6C6).

and D2 = 9(−1 − BC + βBC)2(−1 + 2β − BC + βBC)4γ7.

As F (α, ((2 − α)/2)) = 0, we obtain that B = (2(1 − α − C(2−α)/α))/
(αC(C(2−α)/α + 1)). Consequently,

N2 = −(−1 + β)5β4B5C5N21(α, C).

In order to determine the sign of N21(α, C), once more we use the
Mathematica software. Then if 0 < α < 1 and 0 < C < 1, it follows
that N21(α, C) < 0. Therefore, L2 < 0 and the singularity p2 is an
attracting weak focus of order two. The proof of statements iv) and
v) of Lemma 2 are immediate, because trDY α,β

η (p2) < 0, respectively
> 0. This concludes the proof of Lemma 2.

Proof of Theorem 2. By Lemma 2 statement 3i, in the parameter
space αβ there is a neighborhood �c of the point (ᾱ, β̄) such that the
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only singularity p2 = (ᾱ, β̄) ∈ Γ of the vector field (4) is an attracting
weak focus of order two. By the proof of Lemma 2 statement 3i we
have that L0 = L1 = 0 and L2 < 0. By the normal forms theory
and by the versal unfolding of the weak focus [7, 9], the codimension
of the singularity p2 is two. Under the same hypothesis, Takens [17]
(Case k=2, Figure 1.2, pp. 487, 488) and also Arrowsmith and Place
[2] (Type(2,-) with reversal time, Figure 4.11, pp. 211 213) describe in
detail the bifurcation diagram for the type of singularity of codimension
two and has a diagram as in Figure 1, where Se is a bifurcation curve
in which the unstable and stable limit cycles collapse (semi-stable limit
cycles) and H is a Hopf bifurcation curve.

Proof of Theorem 3. i) Let us assume that either ξ ∈ Λ− or
ξ ∈ Λ+ ∪ Λ0 ∪ Υ0 and C ≤ 1. In order to study the singularity of
the vector field (4) at the origin , we consider the vector field (8) and
the change of coordinates (7). Then (8) is a differentiable extension of
(4) in ϕ−1(Γ̄) and

DȲ α,β
η (0, 0) =

(
0 0
0 0

)
.

Moreover, is it easy to see that

Ȳ α,β
η (0, y) = −1 − α

2
y(1+β)/(1−β) ∂

∂x
(23)

and

Ȳ α,β
η (x, 0) = B

1 − β

2
x(1+α)/(1−α) ∂

∂y
.

By Lemma 1 part 1, (4) has no singularities in Γ; then the vector
field (8) neither has singularities in ϕ−1(Γ). For 0 < x < 1, let
(x, 0) ∈ ϕ−1(Γ̄) be an initial condition and let γx be the orbit of
vector field (8) through this point. Then γx is orthogonal to the
coordinates axis and ϕ(γx) is as we show in Figure 3, an orbit of (4) is
tangent to both coordinate axes. Consequently, the families of orbits
{ϕ(γx) | 0 < x < 1} form an elliptical non Lipschitzian sector.

Now suppose that either ξ ∈ Λ0 ∪ Λ+ or C > 1. By Lemma 1 part 2
and part 3 in Γ, there is a saddle-node or there are a hyperbolic saddle
and a hyperbolic node point, respectively. In this last case, by Lemma 2
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part 1 the abscissa of the node is greater than abscissa of the saddle.
Let W ss and W s be the strong stable manifold of the saddle-node and
the stable manifold of the hyperbolic saddle, respectively. Analogously
to the above case i), and by (23), ϕ−1(W ss) and ϕ−1(W s) are orbits
perpendicular to the x-axis. So, W ss and W s are tangent curves to the
u-axis and consequently the α-limit of both orbits is the origin of the
coordinates system.

Similarly, let W cu and Wu, whose ω-limit is not the node, be the
unstable center manifold of the saddle-node and the unstable manifold
of the hyperbolic saddle, respectively. These separatrices are tangent to
the v-axis and their respective ω-limits are the origin of the coordinate
systems. Let U be the open set enclosed by the closure of W ss ∪W cu,
respectively, by the closure of W s ∪ Wu. Then, in U there are no
singularities, therefore using the same above argument, in U there exists
an elliptical sector.

ii) Let us suppose that either ξ ∈ Υ0 and C > 1 or ξ ∈ Υ+. We note
that (23) does not depend on the conditions of case i). Then at the
points of both coordinate axes, no uniqueness of solutions exists. So,
we obtain the situation given in Figure 3. Now, from Lemma 1 part 4,
there exists in Γ only one singularity of (4) that is a center-focus. It
is easy to see that this center-focus is extended to the origin. Indeed,
if there exist separatrices limiting such extension, they should have an
opposite orientation to the direction of flow, and this is a contradiction.
Then there exists a hyperbolic sector of (4) at the origin. The proof of
Theorem 3 is now complete.

4. Discussion. In this work we have studied a bioeconomics model
of fishery at an open access that incorporated aspects of interference
or congestion between units that carry out the effort of fishery and
that consider the phenomenon of aggregation (or accumulation) of
the fishing resource. We have obtained conditions to the existence
of the equilibria points in the first quadrant and its stability has been
analyzed.

We have proved the existence of one separatrix in the phase space
that divides the behavior of the trajectories of the system where the
solutions above the separatrix in finite time reach to the y−axis for any
value of the parameters. This situation implies that the point (0, 0) is
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an attractor for all trajectories above the separatrix (threshold curve),
this meaning that the fishery collapses.

For certain values of the parameters we have verified that there are
not equilibrium points in the first quadrant, Lemma 1.1. In this case,
for any initial condition, the origin (0, 0) again is an attractor of the
system, and this implies that the fishing resource goes to extinction and
the fishery will be finished. Moreover, we have proved that (Theorem 2)
there exists an open set in the parameter space in which the bistability
phenomenon is possible, namely, the coexistence of two limit cycles
around the unique locally asymptotically stable equilibrium point, one
of them (outer) is stable and another one (inner) is unstable. This
implies that for certain initial conditions the fishery will be able to
self-regulate and for other initial conditions will tend to fixed values.

The dynamics of the system shows that every time that there exists
congestion of ships, β < 1, dedicated to the capture of the resource and
every time that there exists aggregation of the resource, α < 1, it is
highly probable that the fishery collapses. This supports the advice
to carry out a permanent control on several fisheries commercially
exploited. In short, our analyzed model approximately reflects what
happens in several fisheries, although we have implicitly assumed some
simplifications with respect to the population of species and the effort
of the fishery.
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Instituto de Matemáticas, Pontificia Universidad Católica de Val-
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