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ON THE VANISHING OF THE ETA
INVARIANT OF DIRAC OPERATORS
ON LOCALLY SYMMETRIC MANIFOLDS

MARIA G. GARGOVA FUNG

ABSTRACT. In this note we prove a vanishing theorem
for the Eta invariant of the spin Dirac operator on a locally
symmetric space.

1. Introduction. Atiyah, Patodi and Singer [2] first defined
the n-invariant of any self-adjoint elliptic operator A on a compact
manifold as a measure of the asymmetry of Spec(A). If X is a
compact oriented odd-dimensional locally symmetric manifold, then
the generalized Dirac operator D (after choosing the essentially unique
G-invariant connection) associated to a locally homogeneous Clifford
module bundle over X is such an operator. Relying on Selberg trace
formula analysis, Moscovici and Stanton [7] prove

Theorem 1.1. Let G be a semi-simple Lie group with a mazimal
compact subgroup K, and let dim (G/K) be odd. Suppose that T is a
cocompact discrete torsion free subgroup and suppose G has no factors
locally isomorphic to SL(3,R) or SO(p,q), for p,q odd. Then for the
generalized Dirac operator D on T\G/K

(1) n(D) = 0.

In this note we present another proof of this theorem which is not
based on an evaluation of the trace of the odd heat kernel operator
De P’ by means of orbital integrals. Our proof is modeled after the
proof of the vanishing theorems of cohomology of the locally symmetric
space I'\G/K and in particular after the algebraic proof of the triviality
of the analytic torsion 7 (I'\G/K) for the trivial representation of
T in Speh [8]. In 3.1 we expand Tr(De~P") using representation-
theoretic data involving certain unitary representations of G. Then in
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4.1 we relate Tr (D) to the trace of the principal series representations
that appear in the Grothendieck group decomposition of the unitary
representation m of G. Finally, we use the fundamental result of [7]
that Tr (f)[(Q,g,u)) = 0 for the principal series representation I(Q, &, v)
if G does not have a cuspidal parabolic subgroup of split rank 1 to
complete the argument.

Remark. The vanishing of the n-invariant is equivalent to the van-
ishing of the secondary characteristic classes of the bundle over G/K
associated to the trivial representation of I'.

2. Preliminaries. In this section we first recall the definition of
the n-invariant and then discuss the generalized Dirac operator on the
C*°-sections of a homogeneous Clifford bundle over a locally symmetric
space.

Let A be a self-adjoint elliptic operator on a compact manifold X.
We define for Re (s) > 0

sgnA

‘)\g| Tr (A(A2)7(s+1)/2).

@  asA= 3

A€Spec (A)—{0}

It turns out that this is a holomorphic function which can be analyt-
ically continued to a meromorphic function of C. Moreover, we have
the identity

1

(3) n(s, A) = (s +1)/2)

/ ts=D/2 (Ae_tA2) dt
0

which allows us to work with the Mellin transform integrand Tr (Ae~t4%).

It can be shown that s = 0 is not a pole, so one can define
(4) n(4) = n(0, A).

Thus we can associate the n-invariant to any Dirac-type operator
on a compact Riemannian manifold of odd dimension (on the even-
dimensional ones, Dirac operators have symmetric spectra).

Let G be a semi-simple connected Lie group with maximal compact
subgroup K such that dim(G/K) = dim X = 2n + 1. We may assume
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that G is simple because X , being simply connected, is a product of
symmetric spaces which are quotients of simple Lie groups. The Lie
algebra g of G has Cartan decomposition g = k & p where k is the
Lie algebra of K. Thus we can identify p with the tangent space to
X at eK. We denote by Spin (p) the Zs-covering group of SO(p).
Since dimp = 2n + 1, the Clifford algebra Cl(p) possesses exactly
two distinct simple modules which collapse into one when restricted to
Spin (p). We may assume that K maps into Spin (p), by passing to a
covering group if necessary, and we refer to this homomorphism as the
spin representation (o, s) of K.

Moscovici and Stanton [7] show that if E is a G-homogenous Clif-
ford module bundle over X , it is associated to a finite-dimensional
representation of K of the form (o0 ® 7, S ® V). Hence we can char-
acterize the space T'(E) of smooth sections of E as the K-invariants
[C>(G) ® S ® V]E where K acts on C*°(G) via the right regular rep-
resentation R(G).

An essentially unique Dirac operator exists which is G-homogeneous
and anti-commutes with the Cartan involution

(5) D= ZR(Xi) ®@ ¢(X;)e(wC)

where {X;} is an oriented orthonormal basis of p, ¢(-) denotes Clifford
multiplication on the fiber E over eK, and w® is the complex volume
element in Cl(p) [7]. This invariant operator is elliptic and formally
self-adjoint.

We define

(6) Dr =Y 7(X3) ®c(Xi)e(wC) : [HX @ Sa VK = [HX @ Sa VX
associated to a unitary representation 7 of G with smooth vectors HZ°.
Then

(7)) D2=—-a(Q)@Il-I®cQg)@1+I1®1®7(Qk)
where 2 is the Casimir operator of G and Q is the Casimir operator

of K with respect to the Killing form on g. See Borel-Wallach [3] and
Atiyah-Schmid [1].
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Let X = I‘\X’ for a discrete co-compact torsion-free subgroup I' of
G. By homogeneity of E we can form the bundle E = F\E Then
smooth sections on E can be identified with [C°(I\G ® S ® V)]X. D
induces the generalized Dirac operator D : [C*®(T\G ® S ® V)]¥ —
[C>(T\G ® S ® V)]¥ which is also elliptic and self-adjoint.

3. The trace of the odd heat kernel. In this section we give a
representation-theoretic interpretation of Tr (De*tDz). Let dx denote
both the Haar measure on G and the associated measure on I'\G. The
Hilbert space L?(I'\G) of square-integrable functions with respect to dx
is the completion of C°°(T'\G). By a theorem of Gel’fand and Piateskii-
Shapiro [4] we can write

(8) L*("\G) = @ m(n,T)H,

where we sum over all irreducible representations 7 : G — U(H,) in
the unitary dual G,, and m(nw,T') = dim Homg (7, L*(T\G)). Hence

(9) L2M\G) @ S VK =@ m(T)H, ® S V]~

Lemma 3.1. Suppose T\G is compact, and let Q be the Casimir
operator of G. For A € R,

(10)

dimker(D?— \) = > m(r,T)dim[H® @ S @ VX,

—

TEGy,
T(Q)=—A—0(Qk)+7(QK)

Proof. Since the operator D? is elliptic we can write [C®(T'\G) ®
S @ V]¥ in a unique way as a sum of its eigenspaces. By (7), the
action of D? corresponds to the action of the Casimir element on
C>=(T'\G), so the decomposition claimed in the lemma is the eigenspace
decomposition.
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Proposition 3.1. Suppose T\G/K is a compact locally symmetric
space. Then, for the generalized Dirac operator D, we have

(11)  Tr(De %) =" 3 Tr (D, )e ™.

A 77661
T(Q)=—A—0(QK)+7(K)

Proof. By (9) and the lemma we have

(12) Tr(De D%
_ 3 m(m, \)Tr (De~ P ([H>® @ S @ V]X))

o~

TEG,
T(Q)=—A—0(QK)+7(QK)

> > m(m, \)Tr (D([HE @ S @ V]¥))e™*.

A —

TEG,
T(Q)=—A—0(Qk)+7(QK)

4. Conclusion. In this section we finish the proof of the main
theorem. Let Q = MAN be a cuspidal parabolic subgroup of G,
¢ an irreducible unitary representation of M and v a character of
A. Let I(Q,&,v) = indg £ ® v ® 1 be the induced principal series
representation. By an explicit calculation, Moscovici and Stanton [7]
prove the following

Proposition 4.1. TY(]SI(Q{_,V)) = 0 if G does not have a cuspidal
parabolic subgroup of split rank 1 and dim(G/K) is odd.

The simple Lie groups that have cuspidal parabolic subgroups of real
rank 1 and for which dim G/K is odd are locally isomorphic to SL(3,R)
or SO(p, q) with p, ¢ both odd. Hence to complete the proof of the main
theorem we only need the following
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Lemma 4.1. If Tr (]NDI(Q&,,)) = 0 for all principal series represen-

tations of G, then Tr (D,) = 0 for any unitary representation U(H,)
of G.

Proof. In the Grothendieck group, every unitary representation 7w of G
can be represented uniquely as a sum of principal series representations
with coefficients m(U(H,),& @ v).

Since

(14)  [HreSeV]" =Y mHF ¢an)*Q& v sV "

> mHZE)I®Q.Ev)® S V)N
and both D and the trace are linear,

(16) Tr (D) = Y m(HX,£@v)Tr(Drgen). O

In conclusion we would like to note that the same proof extends
without any difficulty to the case of the twisted n-invariants.
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