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THE GLOBAL STRUCTURE OF UNIFORMLY
ASYMPTOTICALLY ZHUKOVSKIJ STABLE SYSTEMS

CHANGMING DING

ABSTRACT. In this paper, we prove that the omega limit
set of a uniformly asymptotically Zhukovskij stable orbit of a
flow defined on a locally compact metric space is a closed orbit
or a fixed point, and also it is a uniform attractor. If each orbit
of the flow is uniformly asymptotically Zhukovskij stable, we
obtain the global structure of the system, and further, if the
space is compact, then the sum of fixed points and closed
orbits is finite.

1. Introduction. There are many types of stabilities in the
mathematical and physical literature, see [13]. Among the most
important ones, Lyapunov stability is rather restrictive since it is an
isochronous correspondence of orbits, for example, even an anharmonic
oscillator is unstable in this sense [6, p. 41]. In this paper we shall
consider a relaxed concept of stability, i.e., Zhukovskij stability [7]. It
implies that orbits should be close to each other in the phase space and
also repeat the ‘tracery’ of each other with a certain time lag; obviously
such a stability is a kind of phase stability. The problem of studying
periodicity for a limit orbit is old, and the literature on the subject
is enormous, see [2, 3, 8, 10-12] and references therein. In 1966,
Sell [12] proves that a bounded phase asymptotically stable solution
of an autonomous system approaches an asymptotically stable periodic
solution. In [3] Cronin gives conditions to guarantee that Lagrange
stable solutions of a differential system in R™ are phase asymptotically
stable, in the sense of [12], and therefore limit to a phase asymptotically
stable periodic solution. Later, Li and Muldowney [8] obtain further
results and simpler criteria to ensure that Lagrange stable solutions
have periodic orbits as their limit sets, especially they show in [8,
Theorem 2.1] that the omega limit set of a Lagrange stable orbit I't (z)
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is a periodic orbit that attracts its neighbors with bounded time phase if
and only if 't (z) itself attracts its neighbors with bounded time phase.
We refer to [8] for an excellent brief summary on this subject. We deal
with the problem in a locally compact metric space and generalize the
above results with unbounded time phase.

Consider a system in R? defined by differential equations in polar
coordinates:

©) =1y,

“_,
dt

Obviously the origin is a fixed point and the unit circle is an asymptot-
ically stable closed orbit. The other solutions of (2) have the relation:
20 + o = 1/(1 — )2, where a = a(rg, ) is a constant dependent on
the initial value rg = r(6y). We choose 19 = 7(0) > 1 to fix a solution
r = r(0) outside of the unit circle r = 1; by some computation it is easy

from df/r(0) = dt to obtain that T = 2kr — [ d6/\/2(0 + a) + 1

0
is the time that r = 7(f) surrounds the unit circle & times. Let
Bk) = [T d0/\/2(0 + @) + 1, so B(k) — 400 as k — +oo. Thus

r = r(#) is not asymptotically stable in the sense of Sell, see [12], since
the closed orbit r = 1 needs time 2k7 for circling itself k£ times and the
difference of time between solutions r = r(f) and r = 1 tends to infin-
ity. This example shows that a periodic orbit may attract its neighbors
with unbounded time phase. On the other hand, it is not difficult to
see that the orbit r = r(0) is uniformly asymptotically Zhukovskij sta-
ble, see the following Definition 1. This example also shows that the
conclusion of our Theorem 2.3 really generalizes the Sell theorem [12,
Theorem 1].

Let (X, d) be a locally compact metric space with metric d, on which
there is a flow f : X x R — X. Write « -t = f(z,t) and let
A-J={zx-tlr e A, t € Jffor AC X and J C R. Then z- R
and x - RT are the orbit and the positive semi-orbit, respectively, of a
point z € X. The omega limit set of  is the set w(x) = {y € X | there
is a sequence t,, € BT such that ¢, — +oco and x - t, — y}. A set Y is
invariant under f if Y is a subset in X with Y- R =Y, and an invariant
set Y is a minimal set provided (i) Y is a closed, nonempty set and
(ii) if Z is a closed, nonempty, invariant subset of Y, then Z =Y. In
addition, throughout this paper we let Bs(z) = {y € X |d(x,y) < 0}
and Ss(z) = {y € X |d(z,y) < 0} be the open ball and the closed
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ball, respectively, with center z and radius 6 > 0. For p € X
and A C X, let d(p,A) = inf{d(p,z)|z € A}, and then we define
N,.(A) = {z € X|d(z,A) < r} for r > 0; it is called the generalized
open r-ball about A of radius r.

Zhukovskij stability [7]. The orbit z- R of a point « in X is Zhukovskij
stable provided that, given any ¢ > 0, there is a § = §(g) > 0 such that,
for any y € Bs(x), one can find a time parameterization 7, such that
d(z-t,y-7,(t)) < € holds for t > 0, where 7, is a homeomorphism from
[0, 4+00) to [0,400) with 7,(0) = 0. Moreover, if d(z - t,y - 7,(¢)) — 0
as t — 400 also holds, the orbit « - R is said to be asymptotically
Zhukovskij stable.

Definition 1. The orbit z- R of a point z is uniformly asymptotically
Zhukovskij stable provided that, given any € > 0, there is a § > 0
such that for each t' > 0 and y € Bjs(z - t'), one can find a time
parameterization 7, such that d(z- (t+t),y-7,(t)) < € holds for t > 0,
and also

(1) dx-(t+t),y 7,t) =0 as t— +oo,

where 7, is a homeomorphism from [0, +00) to [0, +00) with 7,(0) = 0.

We shall prove in this paper that the omega limit set of a uniformly
asymptotically Zhukovskij stable orbit of a flow f on a locally compact
metric space is minimal; more precisely, it is a closed orbit or a
fixed point, and also it is a uniform attractor. Further, if each orbit
of the flow is uniformly asymptotically Zhukovskij stable, we show
that in every component of the space X either all the orbits have
empty omega limit sets or all the orbits are uniformly attracted to
a fixed point or a closed orbit. Also, if X is compact and each
orbit is uniformly asymptotically Zhukovskij stable, then the sum of
fixed points and closed orbits is finite. The concrete conditions for a
dynamical system to have the global Zhukovskij stability will be the
subject of a subsequent paper.

2. The omega limit set. In this section, we always consider the
case w(z) # @ for a point x € X.
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Lemma 2.1. If the orbit x-R of a point x is uniformly asymptotically
Zhukovskij stable with nonempty omega limit set, then its omega limit
set w(x) is minimal.

Proof. Otherwise, w(z) has a proper closed invariant subset A C w(x)
with A # @. Choose a point p € w(z) \ A. Then A = d(p,A) > 0.
Now, for a point ¢ € A, we can find a sufficiently large ¢’ satisfying
d(xz - t',q) < ¢ (with 6 the number defined as in Definition 1 for
e = A/2). Also there exists a sequence {t;}3°,, t; > t/, such that
t; — 400 and z - t; — p. Since A is invariant, it follows that ¢- R C A.
However, for large t;, we have d(z - t;,p) < A/2. It follows that
d(x-t;,q-R) > d(p, A)—d(z-t;,p) > \/2 for large t;. Tt is contradictory
to (1) in Definition 1, since d(z-t’,¢) < . Thus w(zx) is minimal. u]

Corollary 1. If w(z) contains at least two points, since w(x) is
minimal, there are no fized points in w(x). Further, if there is a closed
orbit v in w(x), then w(zx) = 7.

From the proof of Lemma 2.1, it is also easy to conclude:

Corollary 2. Any closed nonempty invariant set A must be §-apart
from a uniformly asymptotically Zhukovskij stable semi-orbit v - Rt if
ANw(z) =@.

Lemma 2.2 [4, p. 414]. Let X be a Hausdorff topological space and
F : X — X continuous. If for each open covering {W,} of X there is
at least one x € X such that both x and F(x) belong to a common W,
then F has a fixed point.

Theorem 2.3. If an orbit x- R is uniformly asymptotically Zhukovskij
stable with nonempty omega limit set, then its omega limit set w(x) is
a fized point or a closed orbit.

Proof. Assume that w(x) is not a singleton; we shall show that w(x)
is a closed orbit. Choose a point p € w(x), which is not a fixed point
from Corollary 1. Now let a sequence {t;}°;, C RT be such that
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t; — 400 and x - t; — p. Thus there is a positive and small o (0 < §
and ¢ defined as in Definition 1) such that the closed ball S,(p) lies
in the open ball Bs(x - tg) for some t;, € {¢;}32, and so does the set
S (p)-[—0, 0] for a sufficiently small # > 0. From the local compactness
of X, we may also suppose that S, (p) is compact. Since p is a regular
point, by the tubular flow theorem [9, Chapter 5, Section 2], for a
sufficiently small fixed o there is a transversal ¥ C S, (p) - [—6, ] such
that for each y € S,(p) - [—6,0], the arc of y - R in S,(p) - [0, 6]
crosses Y at a unique time ¢ = ¢(y), where ¢(y) is continuous on
y € Sy(p)-[—0,0]. Because of S,(p)-[—0,0] C Bs(z-tr), it follows from
(1) in Definition 1 that for each y € S,(p) - [0, 0] there is a T'(y) > 0
such that d(z - (t +tx), y - 7y (t)) < o/2 for t > T(y). Thus, from the
compactness of S, (p) - [—6, 0] and the continuity of the flow f, one can
find a positive M = sup{T'(y) |y € Ss(p) - [0, 0]} < +oo such that, for
each y € Sy(p) - [-0,0], d(z - (t + tx), y - 7,(t)) < 0/2 holds for ¢t > M.
Fix a t; > tj such that t; —ty > M and d(x-t;,p) < 0/2. Now we define
a Poincaré map F' : ¥ — ¥ as follows. If y € ¥ (C S,(p) - [-0,6]),
then we have d(z - (t + tx), y - 7y(t)) < o/2 for t > M. This implies
d(p,y-my(ti—ti) < d(p,z-t;)+d(z-t;,y-17,(ti—tx)) < 0/24+0/2 = 0. So
it follows ¥/ = y-7,(t; —tx) € Sy(p) and then y- (1,(t; —tx) +0(y')) € &
for a ¢(y') € [—6,60]. Thus we define F(y) = y - (1,(t; — tx) + &(v')).
The continuity of F' comes from the continuities of the flow f, 7,
and ¢(y). Note that F' may not be the first return map. Next, if
{W,} is an open covering of ¥ for its subspace topology from X, let
p € W, =XNU, where U is an open set in X. Choose an r > 0 with
B.(p) C UN(Sy(p)-[-0,0]), and let = - t; € B, o(p) for t; > T > t;.
Thus, from (1) in Definition 1, we assert d(F"(p),z - t;) < r/2 for
n > N and some t; > T' > T, where F"(p) is the nth iterate of p.
Hence, d(FN(p),p) < d(FN(p), z - ty) + d(x - tm,p) <7/2+71/2 =71
holds for some t,, > T’ and similarly d(FN*1(p),p) < d(FN*1(p), = -
tn) +d(x-tn,p) <r/2+r/2=r for some t, > T'. It follows that both
FN+1(p) and F¥(p) lie in B,.(p). So we obtain that both F(F¥(p))
and F™(p) belong to W,. By Lemma 2.2 we conclude that F': ¥ — %
has a fixed point g. Obviously, ¢- R is a closed orbit; from Corollaries 1
and 2, we immediately obtain w(z) = ¢ - R. This completes the proof.
O

Remark. Obviously, similar results about alpha limit sets also hold.



1120 C. DING

For the next result, we recall the definition of a uniform attractor.
The first positive prolongational limit set of x is the set J*(z) =
{y € X| there are a sequence x,, € X and a sequence t, € R*
such that z, — z, t, — +oo and z,, - t, — y}. If K is a nonempty
compact subset of X, the region of uniform attraction of K is the set
Ay K)={z € X|J"(z) # @ and J*(z) C K}. K is said to be a
uniform attractor if A, (K) is a neighborhood of K.

Lemma 2.4 [1, Chapter 5, Proposition 1.2]. For each neighborhood
V' of K, if there exists a neighborhood U of x and a T > 0 such that
U-tCV holds fort > T, then © € A,(K).

Theorem 2.5. If the orbit x- R of v € X is uniformly asymptotically
Zhukouvskij stable with nonempty omega limit set, then w(x) is a uniform
attractor.

Proof. With a number ¢ defined in Definition 1, we only need to
prove Ns/o(w(z)) C Ay(w(z)), ie., for any y € Ns/o(w(z)) we shall
show y € Ay,(w(x)). Choose o > 0 such that S,(y) C Ns/o(w(z))
and S,(y) is compact from the local compactness of X. Given any
A>0,A<d/4,let -t € Ny(w(x)) for t > T > 0. Then it follows
that, for every z € So(y) C Nsj2(w(x)), there exists a p € w(x) such
that d(z,p) < 6/2 and d(z - to,p) < &/2 for some tg > T. Thus,
d(z,z - to) < d(z,p) + d(p,z - to) < d holds. By Definition 1 it follows
that, for any ¢t > T, > T, d(z - 7,(t), x - (to +t)) < A. Now it is easy to
see that z-7,(t) € Noy(w(x)) fort > T, since z-t € Ny(w(zx)) fort > T.
By the compactness of S, (y), we take T" = sup{7,(T3) |z € S,(y)}.
Then for all z € S,(y), z -t € Naox(w(z)) for t > T’, it implies
Bs(y) -t C Noa(w(x)) C Nsjo(w(x)) for t > T'. So by Lemma 2.3
we have y € A, (w(x)). The proof is complete. O

3. The global structure. The goal of this section is to describe
the global structure of the system if all the orbits are uniformly
asymptotically Zhukovskij stable.
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Lemma 3.1. If the orbit x- R is uniformly asymptotically Zhukovskij
stable and w(x) # @, let y € Bs(x - t') for t' > 0 with § the number
defined as in Definition 1, then w(y) = w(x).

Proof. At first, we show w(x) C w(y). For any p € w(x), there exists
a sequence t; € RT such that ¢; — +oco0 and z-t; — p. Hence, given any
6 >0, z-t; € Bsa(p) for i > N. Now by (1) in Definition 1, we obtain
d(z-(t+t"), y-7y(t)) < /2 fort > T > t'. Since 7, is a homeomorphism
from [0, 4+00) to [0, 4+00), T, (t; —t') — 400, i — 400, holds. Thus it
follows d(p,y - 7y (t; —t')) < d(p,z-t;) +d(z-t;, y-1y(t; —t')) < ¢ for
large ¢;. So y - 7,(t; —t') — p, it implies p € w(y), i.e., w(z) C w(y)
since p is arbitrary. Now from Lemma 2.1 it follows that w(z) = w(y).

For brevity, we shall call a flow on the locally compact metric space
a UAZS flow if all the orbits are uniformly asymptotically Zhukovskij
stable.

Lemma 3.2. If f is a UAZS flow on the locally compact metric space
X, then for each component C' of X, one and only one of the following
cases holds:

(i) w(z) =@ for all x € C;
(i) w(z) # @ for all x € C.

Further, if the second case happens, for x € C all the w(x) are the same
invariant subset in C.

Proof. Otherwise, there exist two points x; and x5 in C such that
w(r1) = @ and w(zs) # &. Let C = {zr € C'|w(x) # @}; then Cy # &
and C'\ C1 # @. From Lemma 3.1 it is easy to see that C; is open
in C. On the other hand, let x € C'\ C; and, for any y € Bs(x), by
Definition 1 we have d(x - t, y - 7,(t)) — 0 as t — 400, which implies
w(y) = @. In fact, if y-7,(¢;) tends to a point p for a sequence t; € RT,
then x - ¢; also tends to p. It is contradictory to € C'\ Cy. Thus we
conclude Bs(z) C C'\ C1, i.e., C; is closed in C. It is impossible, since
C' is connected. By using Lemma 3.1, we obtain the second part of this
lemma similarly as the argument above. o
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We conclude the global behavior of orbits for a UAZS flow on a locally
compact metric space as follows:

Theorem 3.3. If f is a UAZS flow on the locally compact metric
space X, then either all the orbits in each component of X are uniformly
attracted to a fixed point or a closed orbit, or all the orbits have empty
omega limit set.

Proof. It follows immediately from Lemma 3.2, Theorem 2.3 and
Theorem 2.5. O

Corollary 3.4. If f is a UAZS flow on R™, then either all the orbits
go to infinity, or all the orbits are uniformly attracted to a fixed point
or a closed orbit. In particular, if n = 2, all the orbits tend to a fized
point.

At last, we consider the case that (X,d) is a compact metric space.
Let 2% be the hyperspace consisting of all closed nonempty subsets of
X; it is also a compact metric space under the Hausdorff metric Hy,
see [5]. If f is a UAZS flow, by the compactness of X, one can take a
commom § > 0 that is suitable for every orbit x - R as in Definition 1.
Denote by C(X) the set of all minimal sets of the flow f. Thus, for A
and B in C(X), if A # B, from Corollary 2 we have AN B = & and
also d(A4, B) = inf{d(a,b)|a € A and b € B} > §. So Hy(A, B) > ¢;
it follows that C(X) is a discrete subset of 2% and each pair of its
members is d-apart. By the compactness of 2%, we get that C(X) is
finite and also conclude:

Theorem 3.5. If (X,d) is a compact metric space and f is a UAZS
flow on X, then the sum of fized points and closed orbits is finite.
Further, each component of X contains a unique fized point or closed
orbit.
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