ROCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 35, Number 4, 2005

GENERALIZED CONDITIONAL YEH-WIENER INTEGRAL

JOO SUP CHANG AND JOONG HYUN AHN

ABSTRACT. In this paper, we introduce the generalized conditional Yeh-Wiener integral which includes the conditional Yeh-Wiener integral and the modified conditional Yeh-Wiener integral. We also show that some of the results in the conditional Yeh-Wiener integral and the modified conditional Yeh-Wiener integral can be obtained as corollaries of our result. We also treat the generalized conditional Yeh-Wiener integral for the functional containing a generalized quasi-polyhedric function.

1. Introduction. Kitagawa [5] introduced the Wiener space of functions of two variables which is the collection of the continuous functions x(s,t) on the unit square $[0,1] \times [0,1]$ satisfying x(s,t) = 0 for st = 0, and he treated the integration on this space. Yeh [7] treated the integration of this space for more general functions and made a firm logical foundation of this space. We call this space a Yeh-Wiener space and the integral a Yeh-Wiener integral.

In [8, 9], Yeh introduced the conditional expectation and the conditional Wiener integral. He also evaluated conditional Wiener integrals for a real-valued conditioning function using the inversion formulae. Chang and the first author [4] treated the conditional Wiener integral for vector-valued conditioning function. Park and Skoug [6] introduced a simple formula for the conditional Yeh-Wiener integral which is very useful in evaluating the conditional Yeh-Wiener integrals.

Recently the first author [1] introduced the modified conditional Yeh-Wiener integral and evaluated it for various functionals. In [6], Park and Skoug treated the conditional Yeh-Wiener integral for the functional on a set of continuous functions which are defined only on a rectangular region Ω . But in [1], the first author considered the set

AMS Mathematics Subject Classification. Primary 60J65, 28C20.

Key words and phrases. Generalized Yeh-Wiener space, generalized conditional

Yeh-Wiener integral, generalized quasi-polyhedric function. Received by the editors on February 8, 2002, and in revised form on May 15, 2003.

Copyright ©2005 Rocky Mountain Mathematics Consortium

J.S. CHANG AND J.H. AHN

of continuous functions on various regions Ω , for example, triangular, parabolic and circular regions. In this paper we consider even more general region Ω than were considered in [1].

The purpose of this paper is to introduce the generalized conditional Yeh-Wiener integral which includes the conditional Yeh-Wiener integral in [6] and the modified conditional Yeh-Wiener integral in [1]. To do so, we consider the space of continuous functions on the region $\Omega = \{(s,t) \mid a \leq s \leq b, 0 \leq t \leq g(s)\}$ where g is a monotone decreasing and continuous function which is sectionally decreasing or constant on [a, b] with $g(b) \geq 0$. To make a partition of the region Ω , we use a similar, but slightly different notation than the one used in [4] and we divide the partitions of the region Ω into the two different types depending on whether g(s) is constant immediately to the right of s = a or g(s) is strictly decreasing just to the right of s = a. We call the new resulting space and the resulting new integral the generalized Yeh-Wiener space and the generalized Yeh-Wiener integral, respectively.

We also obtain a simple formula for the generalized conditional Yeh-Wiener integral using the generalized quasi-polyhedric function. Using this formula we show that some of the results in [1, 6, 9] can be obtained as corollaries of our result. Finally we treat the generalized conditional Yeh-Wiener integral for the functional F given by $F(x) = \int_{\Omega} ([x](s,t))^k ds dt$ where k is a nonnegative integer and [x] is the generalized quasi-polyhedric function on Ω .

2. Generalized conditional Yeh-Wiener integral. Let g be a monotone decreasing and continuous function which is sectionally constant or decreasing on [a, b] with $g(b) \ge 0$. Let $a = \tau_0 < \tau_1 < \cdots <$ $\tau_k < \tau_{k+1} = b$ be chosen in such a way that on each interval $[\tau_{i-1}, \tau_i]$, g is either constant or (strictly) decreasing and g is not constant or decreasing on two consecutive intervals. Thus, if k = 0, then g is either a constant function or a decreasing continuous function on [a, b].

To make a partition $\{s_0, s_1, \ldots, s_d\}$ of [a, b], we use the notation

(2.1)
$$a = s_0 < s_1 < \dots < s_{l_1} = \tau_1 < \dots < s_{l_1+l_2} = \tau_2 < \dots < s_{l_1+\dots+l_k} = \tau_k < \dots < s_d = b$$

where $d = l_1 + \cdots + l_{k+1}$ and $l_i \ge 1$ for $i = 1, \ldots, k+1$. The notation (2.1) is similar but slightly different than the notation used in [4]. For

notational convenience, we let $l_i = 0$ for $i \leq 0$, and we let $A_i = (\tau_{i-1}, \tau_i)$ for $i = 1, \ldots, k+1$.

We first consider the case g is constant on A_1 . Let g(a) = T, and let

(2.2)
$$\hat{k} = \begin{cases} k+1 & k : \text{odd} \\ k & k : \text{even} \end{cases}$$

For $n > l_2 + l_4 + \dots + l_{\hat{k}}$ when g(b) > 0 and $n = l_2 + l_4 + \dots + l_{\hat{k}}$ when g(b) = 0, construct a partition $\{t_0, t_1, \dots, t_n\}$ of [0, T] satisfying $0 = t_0 < t_1 < \dots < t_n = T$ and the following properties: (2.3)

i.
$$g(s) = t_{n-l_2-l_4-\dots-l_{2i-2}}$$
 on A_{2i-1} , $i = 1, 2, \dots, \left\langle \frac{k+2}{2} \right\rangle$;
ii. for $0 \le p \le l_{2i}$, $g(s_{l_1+l_2+\dots+l_{2i-1}+p}) = t_{n-l_2-\dots-l_{2i-2}-p}$
on A_{2i} , $i = 1, 2, \dots, \hat{k}/2$,

where, for real number y, $\langle y \rangle$ denotes the greatest integer less than or equal to y.

Let $\Omega = \{(s,t) \mid a \leq s \leq b, 0 \leq t \leq g(s)\}$, and let $C(\Omega)$ be the space of continuous functions x on Ω satisfying x(s,0) = x(a,t) = 0 for all (s,t) in Ω . In [2, 5–7], the various authors worked with the rectangle $\Omega = [a,b] \times [0,T]$, i.e., g(s) = T on $A_1 = [a,b]$, which is a special case of (2.3) for k = 0.

Let $L_p = l_1 + \cdots + l_p$, and let Λ be the partition of Ω given by

(2.4)
$$\Lambda = \{ (s_i, t_j) \mid t_1 \le t_j \le g(s_i), \ 1 \le i \le L_{k+1} \}$$

where $g(s_i)$ is given by (2.3). Let N be the number of elements in Λ . If we let $M_p = n - l_2 - \cdots - l_{2p}$, then we have

(2.5)
$$N = dr + \sum_{i=1}^{\hat{k}/2} \left[d - l_{k+1} - l_k - \dots - l_{2i} + \frac{1}{2} \left(l_{2i} - 1 \right) \right] l_{2i}$$

where $d = L_{k+1}$ and $r = M_{\hat{k}/2}$.

Let X_{Λ} be a random vector from $C(\Omega)$ to \mathbb{R}^{N} , and let $I = X_{\Lambda}^{-1}(B)$, $B \in \mathcal{B}^{N}$, the Borel σ -algebra of N-dimensional Euclidean space. Define the set function \widetilde{m} of a set I by

(2.6)
$$\widetilde{m}(I) = \int_{B} W(\Lambda, \vec{u}) d\vec{u}$$

where

$$(2.7) \quad W(\Lambda, \vec{u}) = \left\{ (2\pi)^{N} \left[\prod_{j=1}^{r} (\Delta_{j}t)^{d} \right] \left[\prod_{i=0}^{\langle k/2 \rangle} \left[(s_{L_{2i}+1} - \tau_{2i}) \cdots (\tau_{2i+1} - s_{L_{2i+1}-1}) \right]^{M_{i}} \right] \right. \\ \left. \left[\prod_{i=0}^{\hat{k}/2-1} \prod_{j=1}^{l_{2i+2}} (\Delta_{L_{2i+1}+j}s)^{M_{i}-j} (\Delta_{M_{i}-j+1}t)^{L_{2i+1}+j-1} \right] \right\}^{-1/2} \\ \cdot \exp\left\{ -\sum_{i=1}^{d} \sum_{j=1}^{r} \frac{(\Delta_{i,j}\vec{u})^{2}}{2\Delta_{i}s\Delta_{j}t} - \sum_{p=1}^{\hat{k}/2} \sum_{i=1}^{L_{2p-1}} \sum_{j=M_{p}+1}^{M_{p-1}} \frac{(\Delta_{i,j}\vec{u})^{2}}{2\Delta_{i}s\Delta_{j}t} \right. \\ \left. -\sum_{i=1}^{\hat{k}/2} \sum_{p=1}^{l_{2i}-1} \sum_{j=M_{i}+1}^{M_{i-1}-p} \frac{(\Delta_{L_{2i-1}+p,j}\vec{u})^{2}}{2\Delta_{L_{2i-1}+p}s\Delta_{j}t} \right\}$$

with $\Delta_i s = s_i - s_{i-1}$, $\Delta_j t = t_j - t_{j-1}$, $\Delta_{i,j} \vec{u} = u_{i,j} - u_{i-1,j} - u_{i,j-1} + u_{i-1,j-1}$ and $u_{0,j} = u_{i,0} = 0$ for all i and j.

Let \mathcal{I} be the collection of subsets of type *I*. Then it can be shown that \mathcal{I} is a semi-algebra of subsets of $C(\Omega)$ and the set function \tilde{m} is a measure defined on \mathcal{I} and the factor $W(\Lambda, \vec{u})$ is chosen to make $\tilde{m}(C(\Omega)) = 1$. The measure \tilde{m} can be extended to a measure on the Caratheodory extension of interval class \mathcal{I} in the usual way. With this Caratheodory extension, measurable functionals on $C(\Omega)$ may be defined and their integration on $C(\Omega)$ can be considered.

The case when g is decreasing on A_1 can be dealt with in a similar manner (with obvious adjustments in subscripts) as the case where g is constant on A_1 handled above. Thus we may conclude the following.

Let Ω be a region given by $\Omega = \{ (s,t) \mid 0 \le t \le g(s), a \le s \le b \}$ for a monotone decreasing and continuous function g which is sectionally constant or decreasing on [a, b] with $g(b) \ge 0$. Let N be the number of elements of $\Lambda = \{ (s_i, t_j) \mid 0 < t_j \le g(s_i), 0 \le i \le d \}$ and \tilde{m} the measure satisfying $\tilde{m}(C(\Omega)) = 1$. Here we call the space $C(\Omega)$ with the measure \tilde{m} a generalized Yeh-Wiener space which can be obtained by the similar method as in [5]. And we call $E(F) = \int_{C(\Omega)} F(x) d\tilde{m}(x)$ a generalized Yeh-Wiener integral of F on $C(\Omega)$ if it exists and the process $\{x(s,t), (s,t) \in \Omega\}$ a generalized Yeh-Wiener process. We can

easily obtain mean E(x(s,t)) = 0 and covariance $E(x(s,t)x(u,v)) = \min\{s,u\}\min\{t,v\}$ for x in $C(\Omega)$, and we can also state the existence of a generalized Yeh-Wiener process.

Let $P_{X_{\Lambda}}$ be the probability distribution induced by the random vector X_{Λ} , that is, $P_{X_{\Lambda}}(B) = \widetilde{m}(X_{\Lambda}^{-1}(B))$ for B in \mathcal{B}^{N} . Then, by the definition of conditional expectation [8], for each function F in $L_1(C(\Omega))$,

(2.8)
$$\int_{X_{\Lambda}^{-1}(B)} F(x) \ d\tilde{m}(x) = \int_{B} E(F(x) \mid X_{\Lambda}(x) = \vec{u}) \ dP_{X_{\Lambda}}(\vec{u})$$

for B in \mathcal{B}^N and $E(F(x) | X_{\Lambda}(x) = \vec{u})$ is a Borel measurable function of \vec{u} which is unique up to Borel null sets in \mathbb{R}^N . Here we call $E(F | X_{\Lambda})(\vec{u}) \equiv E(F(x) | X_{\Lambda}(x) = \vec{u})$ a generalized conditional Yeh-Wiener integral of F given X_{Λ} .

For each partition Λ of Ω and x in $C(\Omega)$, we define the generalized quasi-polyhedric function [x] of x on Ω by

(2.9)

$$[x](s,t) = x(s_{i-1}, t_{j-1}) + \frac{s - s_{i-1}}{\Delta_i s} (x(s_i, t_{j-1}) - x(s_{i-1}, t_{j-1})) + \frac{t - t_{j-1}}{\Delta_j t} (x(s_{i-1}, t_j) - x(s_{i-1}, t_{j-1})) + \frac{(s - s_{i-1})(t - t_{j-1})}{\Delta_i s \Delta_j t} \Delta_{ij} x(s, t)$$

on each $\Omega_{ij} = (s_{i-1}, s_i] \times (t_{j-1}, t_j], t_1 \le t_j \le g(s_i), 1 \le i \le d$, and

(2.10)
$$[x](s,t) = x(s_{i-1}, g(s_i)) + \frac{s - s_{i-1}}{\Delta_i s} (x(s_i, g(s_i)) - x(s_{i-1}, g(s_i))) + \frac{t - g(s_i)}{\Delta_i g} (x(s_{i-1}, g(s_{i-1})) - x(s_{i-1}, g(s_i)))$$

on $\Omega_i = \{(s,t) \mid s_{i-1} < s \leq s_i, g(s_i) < t \leq g(s)\}$, where $\Delta_i s = s_i - s_{i-1}, \Delta_j t = t_j - t_{j-1}, \Delta_i g = g(s_{i-1}) - g(s_i)$, and $\Delta_{ij} x(s,t) = x(s_i, t_j) - x(s_{i-1}, t_j) - x(s_i, t_{j-1}) + x(s_{i-1}, t_{j-1})$, and [x](s,t) = 0 if (s-a)t = 0. Here the function [x] in (2.10) is defined on the set Ω_i

J.S. CHANG AND J.H. AHN

with $\Delta_i g \neq 0$ and the generalized quasi-polyhedric function [x] defined by the function g is different from the quasi-polyhedric function in [6] and modified quasi-polyhedric function in [1].

Similarly, for \vec{u} in \mathbb{R}^N , we define the generalized quasi-polyhedric function $[\vec{u}]$ of \vec{u} on Ω by

(2.11)
$$[\vec{u}](s,t) = u_{i-1,j-1} + \frac{s - s_{i-1}}{\Delta_i s} (u_{i,j-1} - u_{i-1,j-1}) + \frac{t - t_{j-1}}{\Delta_j t} (u_{i-1,j} - u_{i-1,j-1}) + \frac{(s - s_{i-1})(t - t_{j-1})}{\Delta_i s \Delta_j t} \Delta_{ij} \vec{u},$$

on each Ω_{ij} , and

(2.12)
$$\begin{aligned} [\vec{u}](s,t) &= u_{i-1,\bar{i}} + \frac{s - s_{i-1}}{\Delta_i s} \left(u_{i,\bar{i}} - u_{i-1,\bar{i}} \right) \\ &+ \frac{t - g(s_i)}{\Delta_i g} \left(u_{i-1,\bar{i-1}} - u_{i-1,\bar{i}} \right) \end{aligned}$$

on each Ω_i , where $t_{\overline{i}} = g(s_i)$, $u_{0,j} = u_{i,0} = 0$ for all i, j, and $[\vec{u}](s,t) = 0$ for (s-a)t = 0. Here the function $[\vec{u}]$ in (2.12) is defined on the set The following theorem plays a key role in this paper.

Theorem 2.1. If $\{x(s,t) \mid (s,t) \in \Omega\}$ is the generalized Yeh-Wiener process, then the two processes $\{x(s,t)-[x](s,t) \mid (s,t) \in \Omega\}$ and $X_{\Lambda}(x)$ are stochastically independent.

Proof. Let (s_p, t_q) be in Λ . By (2.10), we have

(2.13)

$$\begin{aligned} x(s,t) - [x](s,t) &= x(s,t) - x(s_{i-1},g(s_i)) \\ &- \frac{s - s_{i-1}}{\Delta_i s} \left(x(s_i,g(s_i)) - x(s_{i-1},g(s_i)) \right) \\ &- \frac{t - g(s_i)}{\Delta_i g} \left(x(s_{i-1},g(s_{i-1})) - x(s_{i-1},g(s_i)) \right) \end{aligned}$$

for (s,t) in $\Omega_i = \{(s,t) \mid s_{i-1} < s \le s_i, g(s_i) < t < g(s)\}$. For each Ω_i and (s_p, t_q) in Λ , we have three cases:

(2.14)
(i)
$$s_p \leq s_{i-1}, t_q \leq g(s_i)$$

(ii) $s_p \geq s_i, t_q \leq g(s_i)$
(iii) $s_p \leq s_{i-1}, t_q \geq g(s_{i-1}).$

For each case in (2.14), we can easily obtain $E[x(s_p, t_q)(x(s, t) - [x](s, t))] = 0$ using (2.13) and $E(x(s, t)x(u, v)) = (s \land u)(t \land v)$. For (s, t) in Ω_{ij} , we already know that $E[x(s_p, t_q)(x(s, t) - [x](s, t))] = 0$ [8]. Since both $x(s_p, t_q)$ and $\{x(s, t) - [x](s, t) \mid (s, t) \in \Omega\}$ are Gaussian and uncorrelated, we may conclude that they are stochastically independent.

Using Theorem 2.1 and the similar technique in the proof of Theorem 2 in [6], we have the following theorem.

Theorem 2.2. Let F be in $L_1(C(\Omega), \widetilde{m})$. Then we have

(2.15)
$$\int_{X_{\Lambda}^{-1}(B)} F(x) \ d\widetilde{m}(x) = \int_{B} E(F(x - [x] + [\vec{u}])) \ dP_{X_{\tau}}(\vec{u})$$

for \mathcal{B} in \mathcal{B}^N , and

(2.16)
$$E(F \mid X_{\Lambda})(\vec{u}) = \hat{E} \big[F(x - [x] + [\vec{u}]) \big],$$

where the righthand side of (2.16) is any Borel measurable function of \vec{u} which is equal to $E(F(x - [x] + [\vec{u}]))$ for almost every \vec{u} in \mathbb{R}^N . In particular, if F is Borel measurable, then

(2.17)
$$E(F \mid X_{\Lambda})(\vec{u}) = E[F(x - [x] + [\vec{u}])].$$

The equalities in (2.16) and (2.17) mean that both sides are Borel measurable functions of \vec{u} and they are equal except for Borel null sets.

Equation (2.17) in Theorem 2.2 is a simple formula for the generalized conditional Yeh-Wiener integral which is very convenient to apply in application.

3. Evaluation of the generalized conditional Yeh-Wiener integral for various regions. For c in [a, b] and $0 \le S \le T$, let t = g(s) be a function on [a, b] defined by g(s) = T on [a, c] and $g(s) = \eta s + \delta$ on [c, b] where $\eta = (S-T)/(b-c)$ and $\delta = (Tb - Sc)/(b-c)$. Let

(3.1)
$$\Omega = \{ (s,t) \mid a \le s \le b, \ 0 \le t \le g(s) \}$$

and Λ be a partition of Ω given by

(3.2)
$$\Lambda = \{(s_i, t_j) \mid t_1 \le t_j \le g(s_i), \ 1 \le i \le d\}$$

which satisfies the properties:

(3.3)
i.
$$\{s_0, s_1, \dots, s_d\}$$
 is a partition of $[a, b]$ satisfying
 $a = s_0 < s_1 < \dots < s_{l_1} = c < s_{l_1+1} < \dots < s_d = b,$
and $d = l_1 + l_2;$
ii. $\{t_0, t_1, \dots, t_n\}$ is a partition of $[0, T]$ satisfying
 $0 = t_0 < t_1 < \dots < t_n = T, a(s) = T$ on A_1 .

 $0 = t_0 < t_1 < \dots < t_n = T, \ g(s) = T \text{ on } A_1,$ and $g(s_{l_1+p}) = t_{n-p}$ for $0 \le p \le l_2.$

Let N be the number of elements of Λ . Then we have $N = dn - (l_2(l_2+1))/2$. Let X_{Λ} be a random vector on $C(\Omega)$ given by $X_{\Lambda}(x) = (x(s_1, t_1), \ldots, x(s_1, t_n), x(s_2, t_1), \ldots, x(s_d, t_l), \ldots, x(s_d, t_{n-l_2}))$ in \mathbb{R}^N .

Theorem 3.1. Let F be a functional on $C(\Omega)$ given by $F(x) = \int_{\Omega} x(s,t) \, ds \, dt$. Then the generalized conditional Yeh-Wiener integral $E(F \mid X_{\Lambda})(\vec{u})$ given conditioning function X_{Λ} at \vec{u} in \mathbb{R}^{N} is

$$(3.4) \quad E(F \mid X_{\Lambda})(\vec{u}) = \frac{1}{4} \sum_{i=1}^{d} \sum_{j=1}^{n-l_2} (u_{i-1,j-1} + u_{i-1,j} + u_{i,j-1} + u_{i,j}) \Delta_i s \Delta_j t + \frac{1}{4} \sum_{j=n-l_2+1}^{n} \sum_{i=1}^{n+l_1-j} (u_{i-1,j-1} + u_{i-1,j} + u_{i,j-1} + u_{i,j}) \Delta_i s \Delta_j t + \frac{1}{6} \sum_{i=l_1+1}^{d} (\alpha_i + \beta_i + \gamma_i) \Delta_i s \Delta_{n+l_1-i+1} t$$

at \vec{u} in \mathbb{R}^N , where $\alpha_i = u_{i-1,n+l_1-i}$, $\beta_i = u_{i,n+l_1-i}$ and $\gamma_i = u_{i-1,n+l_1-i+1}$.

Proof. Using Theorem 2.2 and the Fubini theorem, we have

(3.5)

$$E(F \mid X_{\Lambda})(\vec{u}) = \int_{\Omega} E(x(s,t) - [x](s,t) + [\vec{u}](s,t)) \, ds \, dt$$

$$= \int_{\Omega} [\vec{u}](s,t) \, ds \, dt$$

$$= \sum_{i=1}^{d} \sum_{j=1}^{n-l_2} \int_{\Omega_{ij}} [\vec{u}](s,t) \, ds \, dt$$

$$+ \sum_{j=n-l_2+1}^{n} \sum_{i=1}^{n+l_1-j} \int_{\Omega_{ij}} [\vec{u}](s,t) \, ds \, dt$$

$$+ \sum_{i=l_1+1}^{d} \int_{\Omega_i} [\vec{u}](s,t) \, ds \, dt$$

where $\Omega_{ij} = (s_{i-1}, s_i] \times (t_{j-1}, t_j]$ and $\Omega_i = \{(s, t) \mid s_{i-1} < s \leq s_i, g(s_i) < t \leq g(s)\}$. The second equality in (3.5) follows from the fact E(x(s, t)) = E([x](s, t)) = 0 and $\widetilde{m}(C(\Omega)) = 1$.

On Ω_i , $g(s_i) = t_{n+l_1-i}$ for $i = l_1+1, \ldots, d$. If we let $\alpha_i = u_{i-1,n+l_1-i}$, $\beta_i = u_{i,n+l_1-i}$ and $\gamma_i = u_{i-1,n+l_1-i+1}$, then we have, by (2.12),

(3.6)
$$[\vec{u}](s,t) = \alpha_i + \frac{\beta_i - \alpha_i}{\Delta_i s} (s - s_{i-1}) \\ + \frac{\gamma_i - \alpha_i}{\Delta_{n+l_1 - i + 1} t} (t - t_{n+l_1 - i}).$$

In (2.12), we know that $\Delta_i g = g(s_{i-1}) - g(s_i) = \Delta_{n+l_1-i+1}t$. Thus we obtain

(3.7)
$$\int_{\Omega_i} [\vec{u}](s,t) \, ds \, dt = \alpha_i A(\Omega_i) + \frac{\beta_i - \alpha_i}{\Delta_i s} \int_{\Omega_i} (s - s_{i-1}) \, ds \, dt + \frac{\gamma_i - \alpha_i}{\Delta_{n+l_1 - i + 1} t} \int_{\Omega_i} (t - t_{n+l_1 - i}) \, ds \, dt$$

where the area of Ω_i is $A(\Omega_i) = (1/2)\Delta_i s \Delta_{n+l_1-i+1} t$. Using $g(s_i) = \eta s_i + \delta = t_{n+l_1-i}$, we have $\Delta_{n+l_1-i+1} t = -\eta \Delta_i s$ on Ω_i . Thus we obtain

(3.8)
$$\int_{\Omega_i} (s - s_{i-1}) dt ds = \int_{s_{i-1}}^{s_i} (s - s_{i-1}) \eta(s - s_i) ds = -\frac{1}{6} \eta(\Delta_i s)^3$$

and

(3.9)
$$\int_{\Omega_i} (t - t_{n+l_1 - i}) dt \, ds = \frac{1}{2} \int_{s_{i-1}}^{s_i} (\eta s + \delta - t_{n+l_1 - i})^2 \, ds = \frac{1}{6} \, \eta^2 (\Delta_i s)^3.$$

From (3.7), (3.8), (3.9) and the fact $\Delta_{n+l_1-i+1}t = -\eta \Delta_i s$, we have

(3.10)
$$\int_{\Omega_i} [\vec{u}](s,t) \, ds \, dt = \frac{1}{6} (\alpha_i + \beta_i + \gamma_i) \Delta_i s \Delta_{n+l_1-i+1} t.$$

It is a well-known fact [1] that

(3.11)
$$\int_{\Omega_{ij}} [\vec{u}](s,t) \, ds \, dt = \frac{1}{4} (u_{i-1,j-1} + u_{i-1,j} + u_{i,j-1} + u_{i,j}) \Delta_i s \Delta_j t.$$

From (3.5), (3.10), and (3.11), our theorem is proved.

Corollary 3.2. Let F be a functional on $C(\Omega)$ given by $F(x) = \int_{\Omega} x(s,t) \, ds \, dt$ where Ω is the region (3.1) with g(s) = T on [a,b]. Then the conditional Yeh-Wiener integral $E(F \mid X_{\Lambda})$ of a functional F given X_{Λ} is

(3.12)
$$E(F \mid X_{\Lambda})(\vec{u}) = \frac{1}{4} \sum_{i=1}^{d} \sum_{j=1}^{n} (u_{i-1,j-1} + u_{i-1,j} + u_{i,j-1} + u_{i,j}) \Delta_i s \Delta_j t$$

for \vec{u} in \mathbb{R}^N .

Corollary 3.3. Let F be a functional on $C(\Omega)$ given by $F(x) = \int_{\Omega} x(s,t) \, ds \, dt$ where Ω is the region (3.1) with g(s) = (S-T)/(b-a)s + C(s-T)/(b-a)s + C(s-T)/(b

(Tb - Sa)/(b - a) on [a, b] and $0 \le S < T$. Then the modified conditional Yeh-Wiener integral $E(F|X_{\Lambda})$ of a functional F given X_{Λ} is

(3.13)

$$E(F \mid X_{\Lambda})(\vec{u}) = \frac{1}{4} \sum_{i=1}^{d} \sum_{j=1}^{n-i} (u_{i-1,j-1} + u_{i-1,j} + u_{i,j-1} + u_{i,j}) \Delta_i s \Delta_j t + \frac{1}{6} \sum_{i=1}^{d} (\alpha_i + \beta_i + \gamma_i) \Delta_i s \Delta_{n-i+1} t.$$

for \vec{u} in \mathbb{R}^N , where $\alpha_i = u_{i-1,n-i}$, $\beta_i = u_{i,n-i}$ and $\gamma_i = u_{i-1,n-i+1}$.

Corollary 3.2 and Corollary 3.3 are special cases of Theorem 3.1 for $l_2 = 0$ and $l_1 = 0$, respectively. The results [6, Example 1] and [1, Example 3.1] are the same as (3.12) and (3.13) with d = m, respectively.

Let τ_1 and τ_2 be the points in [a, b] with $a \leq \tau_1 \leq \tau_2 \leq b$, and let $0 \leq Q \leq S \leq T$. Define the function g on [a, b] by $g(s) = \nu \sqrt{(\tau_1 - a)^2 - (s - a)^2} + S$ on $[a, \tau_1]$, g(s) = S on $[\tau_1, \tau_2]$, and $g(s) = \omega \sqrt{s - \tau_2} + S$ on $[\tau_2, b]$ where $\nu = (T - S)/(\tau_1 - a)$ and $\omega = (Q - S)/(\sqrt{b - \tau_2})$. Let

(3.14)
$$\Omega = \{(s,t) \mid a \le s \le b, \ 0 \le t \le g(s)\}.$$

Let Λ be a partition of Ω given by

(3.15)
$$\Lambda = \{ (s_i, t_j) \mid 1 \le i \le d, \ t_1 \le t_j \le g(s_i) \}.$$

which satisfies the properties:

$$(3.16) \quad \begin{array}{l} \text{i.} \quad \{s_0, s_1, \dots, s_d\} \text{ is a partition of } [a, b] \text{ satisfying} \\ a = s_0 < s_1 < \dots < s_{l_1} = \tau_1 < s_{l_1+1} < \dots < \\ s_{l_1+l_2} = \tau_2 < s_{l_1+l_2+1} < \dots < s_d = b \text{ and} \\ d = l_1 + l_2 + l_3; \\ \text{ii.} \quad \{t_0, t_1, \dots, t_n\} \text{ is a partition of } [0, T] \text{ satisfying} \\ 0 = t_0 < t_1 < \dots < t_n = T, \ g(s_p) = t_{n-p} \text{ on } A_1 \\ \text{for } 0 \le p \le l_1, \ g(s) = t_{n-l_1} \text{ on } A_2, \text{ and } g(s_{l_1+l_2+p}) \\ = t_{n-l_1-p} \text{ on } A_3 \text{ for } 0 \le p \le l_3. \end{array}$$

Let N be the number of elements of Λ . Then we have $N = dn - ((l_1(l_1+1) + l_3(l_3+1))/2) - l_1(l_2+l_3))$, and let X_{Λ} be a random vector on $C(\Omega)$ given by $X_{\Lambda}(x) = (x(s_1, t_1), \dots, x(s_d, t_{n-l_1-l_3}))$ in \mathbb{R}^N .

Theorem 3.4. Let F be a functional on $C(\Omega)$ given by $F(x) = \int_{\Omega} x(s,t) \, ds \, dt$ where the region Ω is given by (3.14). Then the generalized conditional Yeh-Wiener integral $E(F \mid X_{\Lambda})(\vec{u})$ given X_{Λ} at \vec{u} in \mathbb{R}^{N} is

$$E(F \mid X_{\Lambda})(\vec{u}) = \sum_{i=1}^{d} \sum_{j=1}^{n-l_1-l_3} A_{ij}(\vec{u}) + \sum_{j=n-l_1-l_3+1}^{n-l_1} \sum_{i=1}^{n+l_2-j} A_{ij}(\vec{u}) + \sum_{j=n-l_1+1}^{n-j} \sum_{i=1}^{n-j} A_{ij}(\vec{u}) + \sum_{i=1}^{l_1} B_i(\vec{u}) + \sum_{i=l_1+l_2+1}^{d} C_i(\vec{u})$$
(3.17)

where $A_{ij}(\vec{u}) = \int_{\Omega_{ij}} [\vec{u}](s,t) \, ds \, dt$ is given by (3.11), and $B_i(\vec{u})$ and $C_i(\vec{u})$ are given by (3.20) and (3.22), respectively.

Proof. By Theorem 2.2, the Fubini theorem, E(x) = E([x]) = 0, and $\widetilde{m}(C(\Omega)) = 1$, we have

where $A_{ij}(\vec{u}) = \int_{\Omega_{ij}} [\vec{u}](s,t) \, ds \, dt$. For $i = 1, \ldots, l_1, g(s_i) = t_{n-i}$ on Ω_i and so, by (2.12), the generalized quasi-polyhedric function $[\vec{u}](s,t)$ is

obtained by

(3.19)
$$[\vec{u}](s,t) = u_{i-1,n-i} + \frac{s - s_{i-1}}{\Delta_i s} (u_{i,n-i} - u_{i-1,n-i}) \\ + \frac{t - t_{n-i}}{\Delta_{n-i+1} t} (u_{i-1,n-i+1} - u_{i-1,n-i})$$

on $\Omega_i = \{(s,t) \mid s_{i-1} < s \leq s_i, g(s_i) < t < g(s)\}$ with $g(s) = \nu \sqrt{(\tau_1 - a)^2 - (s - a)^2} + S$. Then, using (3.19), we can evaluate

(3.20)
$$B_i(\vec{u}) = \int_{\Omega_i} [\vec{u}](s,t) \, ds \, dt$$

for $i = 1, 2, ..., l_1$. For $l_1 + l_2 + 1 \le i \le d$, $g(s_i) = t_{n+l_2-i}$ on Ω_i and so, by (2.12), the generalized quasi-polyhedric function $[\vec{u}](s, t)$ is obtained by

(3.21)
$$[\vec{u}](s,t) = u_{i-1,n+l_2-i} + \frac{s - s_{i-1}}{\Delta_i s} (u_{i,n+l_2-i} - u_{i-1,n+l_2-i}) \\ + \frac{t - t_{n+l_2-i}}{\Delta_{n+l_2-i+1}t} (u_{i-1,n+l_2-i+1} - u_{i-1,n+l_2-i})$$

on $\Omega_i = \{(s,t) \mid s_{i-1} < s \leq s_i, g(s_i) < t < g(s)\}$ with $g(s) = \omega\sqrt{s-\tau_2} + S$. Hence, using (3.21), we can evaluate

(3.22)
$$C_i(\vec{u}) = \int_{\Omega_i} [\vec{u}](s,t) \, ds \, dt$$

for $i = l_1 + l_2 + 1$, $l_1 + l_2 + 2, \dots, d$. From (3.11), (3.18), (3.20), and (3.22), we can obtain the result (3.17).

4. Evaluation of the generalized conditional Yeh-Wiener integral for $F(x) = \int_{\Omega} ([x](s,t))^k ds dt$. In this section we will consider the generalized conditional Yeh-Wiener integral for the functional containing a generalized quasi-polyhedric function. Let g(s) be a strictly decreasing and continuous function on [0, S] such that g(S) = 0 and let $\Omega = \{(s,t) \mid 0 \le s \le S, 0 \le t \le g(s)\}$. And let $C(\Omega)$ denote the space of all real-valued continuous functions x(s,t) on Ω such that x(s,0) = x(0,t) = 0 for every (s,t) in Ω , and let g(0) = T.

J.S. CHANG AND J.H. AHN

For each partition $\tau = \{(s_i, t_j) \mid 1 \le j \le n-i \text{ for } 1 \le i \le n-1\}$ of Ω with $0 = s_0 < s_1 < \dots < s_n = S$ and $t_{n-i} = g(s_i), i = 0, 1, 2, \dots, n$, define $X_{\tau} : C(\Omega) \to R^N$ by $X_{\tau}(x) = (x(s_1, t_1), \dots, x(s_1, t_{n-1}), x(s_2, t_1), \dots, x(s_2, t_{n-2}), x(s_3, t_1), \dots, x(s_{n-1}, t_1))$ for N = (n(n-1))/2.

For a nonnegative integer k, let F be a functional on Ω given by

(4.1)
$$F(x) = \int_{\Omega} ([x](s,t))^k \, ds \, dt$$

where [x] is the generalized quasi-polyhedric function on Ω given by (2.9) and (2.10). We note that $g(s_i) = t_{n-i}$ and $\Delta_i g = g(s_{i-1}) - g(s_i) = \Delta_{n-i+1}t$ since g is strictly decreasing and continuous on [0, S].

By (2.17) in Theorem 2.2 and the Fubini theorem, we have

(4.2)

$$E(F \mid X_{\tau})(\vec{u}) = \int_{\Omega} E([x - [x] + [\vec{u}]]^{k}(s, t)) \, ds \, dt$$

$$= \int_{\Omega} ([\vec{u}](s, t))^{k} \, ds \, dt$$

$$= \sum_{i=1}^{n-1} \sum_{j=1}^{n-i} \int_{\Omega_{ij}} ([\vec{u}](s, t))^{k} \, ds \, dt$$

$$+ \sum_{i=1}^{n} \int_{\Omega_{i}} ([\vec{u}](s, t))^{k} \, ds \, dt$$

where the second equality in (4.2) comes from the fact that the quasipolyhedric function satisfies the linearity, [[x]](s,t) = [x](s,t) for (s,t)in Ω and $\widetilde{m}(C(\Omega)) = 1$.

Now, using (2.11) and the simple change of variable, we have

(4.3)

$$\int_{\Omega_{ij}} ([\vec{u}](s,t))^k \, ds \, dt = \int_{t_{j-1}}^{t_j} \left\{ \int_{s_{i-1}}^{s_i} \left[a(t) + \frac{s - s_{i-1}}{\Delta_i s} \left(b(t) - a(t) \right) \right]^k \, ds \right\} dt = \int_{t_{j-1}}^{t_j} \left\{ \frac{\Delta_i s}{b(t) - a(t)} \int_{a(t)}^{b(t)} u^k \, du \right\} dt = \frac{\Delta_i s}{k+1} \int_{t_{j-1}}^{t_j} \sum_{p=0}^k a(t)^p b(t)^{k-p} \, dt$$

where

(4.4)
$$a(t) = u_{i-1,j-1} + \frac{t - t_{j-1}}{\Delta_j t} (u_{i-1,j} - u_{i-1,j-1})$$
$$b(t) = u_{i,j-1} + \frac{t - t_{j-1}}{\Delta_j t} (u_{i,j} - u_{i,j-1}).$$

Doing the change of variable one more time, that is y = b(t), the righthand side of the last equality in (4.3) becomes

$$(4.5) \ \frac{\Delta_{i}s}{k+1} \frac{\Delta_{j}t}{u_{i,j}-u_{i,j-1}} \\ \left\{ \sum_{p=0}^{k} \left[\int_{u_{i,j-1}}^{u_{i,j}} \left(u_{i-1,j-1} + \frac{(y-u_{i,j-1})(u_{i-1,j}-u_{i-1,j-1})}{u_{i,j}-u_{i,j-1}} \right)^{p} y^{k-p} \, dy \right] \right\} \\ = \frac{\Delta_{i}s\Delta_{j}t}{(k+1)(u_{i,j}-u_{i,j-1})} \left\{ \sum_{p=0}^{k} \left[\sum_{q=0}^{p} \binom{p}{q} \left(\frac{u_{i-1,j}-u_{i-1,j-1}}{u_{i,j}-u_{i,j-1}} \right)^{p-q} \right. \\ \left. \left(u_{i-1,j-1} - \frac{u_{i,j-1}(u_{i-1,j}-u_{i-1,j-1})}{u_{i,j}-u_{i,j-1}} \right)^{q} \int_{u_{i,j-1}}^{u_{i,j}} y^{k-q} \, dy \right] \right\}.$$

Combining (4.2), (4.3) and (4.5), we have the following theorem.

Theorem 4.1. Let F be a functional on $C(\Omega)$ given by (4.1). Then the generalized conditional Yeh-Wiener integral $E(F \mid X_{\tau})$ of F given X_{τ} is

$$(4.6) \quad E(F \mid X_{\tau})(\vec{u}) = \sum_{i=1}^{n-1} \sum_{j=1}^{n-i} \frac{1}{k+1} \left\{ \sum_{p=0}^{k} \left[\sum_{q=0}^{p} \frac{\binom{p}{q}}{k-p+1} \left(\sum_{r=0}^{k-q} u_{i,j}^{r} u_{i,j-1}^{k-q-r} \right) \right. \\ \left. \frac{(u_{i-1,j} - u_{i-1,j-1})^{p-q} (u_{i,j} u_{i-1,j-1} - u_{i-1,j} u_{i,j-1})^{q}}{(u_{i,j} - u_{i,j-1})^{p}} \right] \right\} \Delta_{i} s \Delta_{j} t \\ \left. + \sum_{i=1}^{n} \int_{\Omega_{i}} ([\vec{u}](s,t))^{k} \, ds \, dt, \right\}$$

for \vec{u} in \mathbb{R}^N and $\binom{p}{q} = (p(p-1)\cdots(p-q+1))/q!$.

The result of Theorem 4.1 can be used to evaluate the generalized conditional Yeh-Wiener integral for the functional F on $C(\Omega)$ given by $F(x) = \int_{\Omega} (x(s,t))^k ds dt$ where k is a nonnegative integer.

Acknowledgments. The authors wish to express their gratitude to Professor C. Park and the referee for valuable comments in the writing of this paper.

REFERENCES

1. J.S. Chang, Modified conditional Yeh-Wiener integral with vector-valued conditioning function, J. Korean Math. Soc. 38 (2001), 49–59.

2. K.S. Chang, J.H. Ahn and J.S. Chang, An evaluation of the conditional Yeh-Wiener integral, Pacific J. Math. 124 (1986), 107–117.

3. K.S. Chang and J.S. Chang, Evaluation of some conditional Wiener integrals, Bull. Korean Math. Soc. **21** (1984), 99–106.

4. J.S. Chang and G.W. Johnson, The Feynman integral and Feynman's operational calculus: The $\mathcal{L}(L_1(R), C_0(R))$ theory, J. Korean Math. Soc. **28** (1991), 99–125.

5. T. Kitagawa, Analysis of variance applied to function space, Mem. Fac. Sci. Kyusyu Univ. Ser. **6** (1951), 41–53.

6. C. Park and D.L. Skoug, Conditional Yeh-Wiener integrals with vector-valued conditioning functions, Proc. Amer. Math. Soc. 105 (1989), 450–461.

7. J. Yeh, Wiener measure in a space of functions of two variables, Trans. Amer. Math. Soc. **95** (1960), 433–450.

8. ——, Inversion of conditional expectations, Pacific J. Math. 52 (1974), 631–640.

9.——, Inversion of conditional Wiener integrals, Pacific J. Math. **59** (1975), 623–638.

DEPARTMENT OF MATHEMATICS, HANYANG UNIVERSITY, SEOUL, 133-791, KOREA E-mail address: jschang@hanyang.ac.kr Current e-mail address: jschang@math.ucr.edu

DEPARTMENT OF APPLIED MATHEMATICS AND STATISTICS, STATE UNIVERSITY OF NEW YORK, STONY BROOK, NY, 11794-3600, USA *E-mail address:* aaajh@ams.sunysb.edu