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GENERALIZED CONDITIONAL
YEH-WIENER INTEGRAL

JOO SUP CHANG AND JOONG HYUN AHN

ABSTRACT. In this paper, we introduce the generalized
conditional Yeh-Wiener integral which includes the condi-
tional Yeh-Wiener integral and the modified conditional Yeh-
Wiener integral. We also show that some of the results in
the conditional Yeh-Wiener integral and the modified condi-
tional Yeh-Wiener integral can be obtained as corollaries of
our result. We also treat the generalized conditional Yeh-
Wiener integral for the functional containing a generalized
quasi-polyhedric function.

1. Introduction. Kitagawa [5] introduced the Wiener space of
functions of two variables which is the collection of the continuous
functions x(s, t) on the unit square [0, 1] × [0, 1] satisfying x(s, t) = 0
for st = 0, and he treated the integration on this space. Yeh [7] treated
the integration of this space for more general functions and made a firm
logical foundation of this space. We call this space a Yeh-Wiener space
and the integral a Yeh-Wiener integral.

In [8, 9], Yeh introduced the conditional expectation and the condi-
tional Wiener integral. He also evaluated conditional Wiener integrals
for a real-valued conditioning function using the inversion formulae.
Chang and the first author [4] treated the conditional Wiener integral
for vector-valued conditioning function. Park and Skoug [6] introduced
a simple formula for the conditional Yeh-Wiener integral which is very
useful in evaluating the conditional Yeh-Wiener integrals.

Recently the first author [1] introduced the modified conditional
Yeh-Wiener integral and evaluated it for various functionals. In [6],
Park and Skoug treated the conditional Yeh-Wiener integral for the
functional on a set of continuous functions which are defined only on
a rectangular region Ω. But in [1], the first author considered the set
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of continuous functions on various regions Ω, for example, triangular,
parabolic and circular regions. In this paper we consider even more
general region Ω than were considered in [1].

The purpose of this paper is to introduce the generalized conditional
Yeh-Wiener integral which includes the conditional Yeh-Wiener integral
in [6] and the modified conditional Yeh-Wiener integral in [1]. To
do so, we consider the space of continuous functions on the region
Ω = {(s, t) | a ≤ s ≤ b, 0 ≤ t ≤ g(s)} where g is a monotone
decreasing and continuous function which is sectionally decreasing or
constant on [a, b] with g(b) ≥ 0. To make a partition of the region Ω,
we use a similar, but slightly different notation than the one used in
[4] and we divide the partitions of the region Ω into the two different
types depending on whether g(s) is constant immediately to the right of
s = a or g(s) is strictly decreasing just to the right of s = a. We call the
new resulting space and the resulting new integral the generalized Yeh-
Wiener space and the generalized Yeh-Wiener integral, respectively.

We also obtain a simple formula for the generalized conditional
Yeh-Wiener integral using the generalized quasi-polyhedric function.
Using this formula we show that some of the results in [1, 6, 9]
can be obtained as corollaries of our result. Finally we treat the
generalized conditional Yeh-Wiener integral for the functional F given
by F (x) =

∫
Ω
([x](s, t))k ds dt where k is a nonnegative integer and [x]

is the generalized quasi-polyhedric function on Ω.

2. Generalized conditional Yeh-Wiener integral. Let g be
a monotone decreasing and continuous function which is sectionally
constant or decreasing on [a, b] with g(b) ≥ 0. Let a = τ0 < τ1 < · · · <
τk < τk+1 = b be chosen in such a way that on each interval [τi−1, τi],
g is either constant or (strictly) decreasing and g is not constant or
decreasing on two consecutive intervals. Thus, if k = 0, then g is either
a constant function or a decreasing continuous function on [a, b].

To make a partition {s0, s1, . . . , sd} of [a, b], we use the notation

(2.1)
a = s0 < s1 < · · · < sl1 = τ1 < · · · < sl1+l2 = τ2

< · · · < sl1+···+lk = τk < · · · < sd = b

where d = l1 + · · · + lk+1 and li ≥ 1 for i = 1, . . . , k + 1. The notation
(2.1) is similar but slightly different than the notation used in [4]. For
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notational convenience, we let li = 0 for i ≤ 0, and we let Ai = (τi−1, τi)
for i = 1, . . . , k + 1.

We first consider the case g is constant on A1. Let g(a) = T , and let

(2.2) k̂ =
{

k + 1 k : odd
k k : even.

For n > l2 + l4 + · · · + lk̂ when g(b) > 0 and n = l2 + l4 + · · · + lk̂
when g(b) = 0, construct a partition {t0, t1, . . . , tn} of [0, T ] satisfying
0 = t0 < t1 < · · · < tn = T and the following properties:
(2.3)

i. g(s) = tn−l2−l4−···−l2i−2 on A2i−1, i = 1, 2, . . . ,
〈k+2

2

〉
;

ii. for 0 ≤ p ≤ l2i, g(sl1+l2+···+l2i−1+p) = tn−l2−···−l2i−2−p

on A2i, i = 1, 2, . . . , k̂/2,

where, for real number y, 〈y〉 denotes the greatest integer less than or
equal to y.

Let Ω = {(s, t) | a ≤ s ≤ b, 0 ≤ t ≤ g(s)}, and let C(Ω) be the space
of continuous functions x on Ω satisfying x(s, 0) = x(a, t) = 0 for all
(s, t) in Ω. In [2, 5 7], the various authors worked with the rectangle
Ω = [a, b] × [0, T ], i.e., g(s) = T on A1 = [a, b], which is a special case
of (2.3) for k = 0.

Let Lp = l1 + · · · + lp, and let Λ be the partition of Ω given by

(2.4) Λ = {(si, tj) | t1 ≤ tj ≤ g(si), 1 ≤ i ≤ Lk+1}
where g(si) is given by (2.3). Let N be the number of elements in Λ.
If we let Mp = n − l2 − · · · − l2p, then we have

(2.5) N = dr +
k̂/2∑
i=1

[
d − lk+1 − lk − · · · − l2i +

1
2

(l2i − 1)
]

l2i,

where d = Lk+1 and r = Mk̂/2.

Let XΛ be a random vector from C(Ω) to RN , and let I = X−1
Λ (B),

B ∈ BN , the Borel σ-algebra of N -dimensional Euclidean space. Define
the set function m̃ of a set I by

(2.6) m̃(I) =
∫

B

W (Λ, �u)d�u



1102 J.S. CHANG AND J.H. AHN

where

(2.7) W (Λ, �u)

=
{

(2π)N
[ r∏

j=1

(Δjt)d
][〈k/2〉∏

i=0

[
(sL2i+1 − τ2i) · · · (τ2i+1 − sL2i+1−1)

]Mi
]

[k̂/2−1∏
i=0

l2i+2∏
j=1

(ΔL2i+1+js)Mi−j(ΔMi−j+1t)L2i+1+j−1
]}−1/2

· exp
{
−

d∑
i=1

r∑
j=1

(Δi,j�u)2

2ΔisΔjt
−

k̂/2∑
p=1

L2p−1∑
i=1

Mp−1∑
j=Mp+1

(Δi,j�u)2

2ΔisΔjt

−
k̂/2∑
i=1

l2i−1∑
p=1

Mi−1−p∑
j=Mi+1

(ΔL2i−1+p,j�u)2

2ΔL2i−1+psΔjt

}

with Δis = si− si−1, Δjt = tj− tj−1, Δi,j�u = ui,j− ui−1,j− ui,j−1 +
ui−1,j−1 and u0,j = ui,0 = 0 for all i and j.

Let I be the collection of subsets of type I. Then it can be shown
that I is a semi-algebra of subsets of C(Ω) and the set function m̃
is a measure defined on I and the factor W (Λ, �u) is chosen to make
m̃(C(Ω)) = 1. The measure m̃ can be extended to a measure on the
Caratheodory extension of interval class I in the usual way. With
this Caratheodory extension, measurable functionals on C(Ω) may be
defined and their integration on C(Ω) can be considered.

The case when g is decreasing on A1 can be dealt with in a similar
manner (with obvious adjustments in subscripts) as the case where g
is constant on A1 handled above. Thus we may conclude the following.

Let Ω be a region given by Ω = { (s, t) | 0 ≤ t ≤ g(s), a ≤ s ≤ b} for
a monotone decreasing and continuous function g which is sectionally
constant or decreasing on [a, b] with g(b) ≥ 0. Let N be the number
of elements of Λ = {(si, tj) | 0 < tj ≤ g(si), 0 ≤ i ≤ d} and m̃ the
measure satisfying m̃(C(Ω)) = 1. Here we call the space C(Ω) with the
measure m̃ a generalized Yeh-Wiener space which can be obtained by
the similar method as in [5]. And we call E(F ) =

∫
C(Ω)

F (x) dm̃(x)
a generalized Yeh-Wiener integral of F on C(Ω) if it exists and the
process {x(s, t), (s, t) ∈ Ω} a generalized Yeh-Wiener process. We can
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easily obtain mean E(x(s, t)) = 0 and covariance E(x(s, t)x(u, v)) =
min{s, u}min{t, v} for x in C(Ω), and we can also state the existence
of a generalized Yeh-Wiener process.

Let PXΛ be the probability distribution induced by the random
vector XΛ, that is, PXΛ(B) = m̃(X−1

Λ (B)) for B in BN . Then, by
the definition of conditional expectation [8], for each function F in
L1(C(Ω)),

(2.8)
∫

X−1
Λ (B)

F (x) dm̃(x) =
∫

B

E(F (x) | XΛ(x) = �u) dPXΛ(�u)

for B in BN and E(F (x) | XΛ(x) = �u) is a Borel measurable function
of �u which is unique up to Borel null sets in RN . Here we call
E(F | XΛ)(�u) ≡ E(F (x) | XΛ(x) = �u) a generalized conditional Yeh-
Wiener integral of F given XΛ.

For each partition Λ of Ω and x in C(Ω), we define the generalized
quasi-polyhedric function [x] of x on Ω by

(2.9)

[x](s, t) = x(si−1, tj−1)

+
s − si−1

Δis
(x(si, tj−1) − x(si−1, tj−1))

+
t − tj−1

Δjt
(x(si−1, tj) − x(si−1, tj−1))

+
(s − si−1)(t − tj−1)

ΔisΔjt
Δijx(s, t)

on each Ωij = (si−1, si] × (tj−1, tj ], t1 ≤ tj ≤ g(si), 1 ≤ i ≤ d, and

(2.10)

[x](s, t) = x(si−1, g(si))

+
s − si−1

Δis

(
x(si, g(si)) − x(si−1, g(si))

)
+

t − g(si)
Δig

(
x(si−1, g(si−1)) − x(si−1, g(si))

)
on Ωi = {(s, t) | si−1 < s ≤ si, g(si) < t ≤ g(s)}, where Δis =
si − si−1, Δjt = tj − tj−1, Δig = g(si−1) − g(si), and Δijx(s, t) =
x(si, tj) − x(si−1, tj) − x(si, tj−1) + x(si−1, tj−1), and [x](s, t) = 0 if
(s − a)t = 0. Here the function [x] in (2.10) is defined on the set Ωi
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with Δig �= 0 and the generalized quasi-polyhedric function [x] defined
by the function g is different from the quasi-polyhedric function in [6]
and modified quasi-polyhedric function in [1].

Similarly, for �u in RN , we define the generalized quasi-polyhedric
function [�u] of �u on Ω by

(2.11)

[�u](s, t) = ui−1,j−1 +
s − si−1

Δis
(ui,j−1 − ui−1,j−1)

+
t − tj−1

Δjt
(ui−1,j − ui−1,j−1)

+
(s − si−1)(t − tj−1)

ΔisΔjt
Δij�u,

on each Ωij , and

(2.12)
[�u](s, t) = ui−1,̄i +

s − si−1

Δis
(ui,̄i − ui−1,̄i)

+
t − g(si)

Δig
(ui−1,i−1 − ui−1,̄i)

on each Ωi, where t̄i = g(si), u0,j = ui,0 = 0 for all i, j, and [�u](s, t) = 0
for (s − a)t = 0. Here the function [�u] in (2.12) is defined on the set
The following theorem plays a key role in this paper.

Theorem 2.1. If {x(s, t) | (s, t) ∈ Ω} is the generalized Yeh-Wiener
process, then the two processes {x(s, t)−[x](s, t) | (s, t) ∈ Ω} and XΛ(x)
are stochastically independent.

Proof. Let (sp, tq) be in Λ. By (2.10), we have

(2.13)

x(s, t) − [x](s, t) = x(s, t) − x(si−1, g(si))

− s − si−1

Δis

(
x(si, g(si)) − x(si−1, g(si))

)
− t − g(si)

Δig

(
x(si−1, g(si−1)) − x(si−1, g(si))

)
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for (s, t) in Ωi = {(s, t) | si−1 < s ≤ si, g(si) < t < g(s)}. For each Ωi

and (sp, tq) in Λ, we have three cases:

(2.14)
(i) sp ≤ si−1, tq ≤ g(si)
(ii) sp ≥ si, tq ≤ g(si)
(iii) sp ≤ si−1, tq ≥ g(si−1).

For each case in (2.14), we can easily obtain E[x(sp, tq)(x(s, t) −
[x](s, t))] = 0 using (2.13) and E(x(s, t)x(u, v)) = (s ∧ u)(t ∧ v). For
(s, t) in Ωij , we already know that E[x(sp, tq)(x(s, t) − [x](s, t))] = 0
[8]. Since both x(sp, tq) and {x(s, t) − [x](s, t) | (s, t) ∈ Ω} are Gaus-
sian and uncorrelated, we may conclude that they are stochastically
independent.

Using Theorem 2.1 and the similar technique in the proof of Theo-
rem 2 in [6], we have the following theorem.

Theorem 2.2. Let F be in L1(C(Ω), m̃). Then we have

(2.15)
∫

X−1
Λ (B)

F (x) dm̃(x) =
∫

B

E(F (x − [x] + [�u])) dPXτ
(�u)

for B in BN , and

(2.16) E(F | XΛ)(�u) = Ê
[
F (x − [x] + [�u])

]
,

where the righthand side of (2.16) is any Borel measurable function of
�u which is equal to E(F (x − [x] + [�u])) for almost every �u in RN . In
particular, if F is Borel measurable, then

(2.17) E(F | XΛ)(�u) = E
[
F (x − [x] + [�u])

]
.

The equalities in (2.16) and (2.17) mean that both sides are Borel
measurable functions of �u and they are equal except for Borel null sets.

Equation (2.17) in Theorem 2.2 is a simple formula for the generalized
conditional Yeh-Wiener integral which is very convenient to apply in
application.
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3. Evaluation of the generalized conditional Yeh-Wiener
integral for various regions. For c in [a, b] and 0 ≤ S ≤ T , let
t = g(s) be a function on [a, b] defined by g(s) = T on [a, c] and g(s) =
ηs+δ on [c, b] where η = (S−T )/(b−c) and δ = (Tb − Sc)/(b−c). Let

(3.1) Ω = {(s, t) | a ≤ s ≤ b, 0 ≤ t ≤ g(s)}

and Λ be a partition of Ω given by

(3.2) Λ = {(si, tj) | t1 ≤ tj ≤ g(si), 1 ≤ i ≤ d}

which satisfies the properties:

(3.3)

i. {s0, s1, . . . , sd} is a partition of [a, b] satisfying
a = s0 < s1 < · · · < sl1 = c < sl1+1 < · · · < sd = b,

and d = l1 + l2;
ii. {t0, t1, . . . , tn} is a partition of [0, T ] satisfying

0 = t0 < t1 < · · · < tn = T, g(s) = T on A1,

and g(sl1+p) = tn−p for 0 ≤ p ≤ l2.

Let N be the number of elements of Λ. Then we have N = dn −
(l2(l2 + 1))/2. Let XΛ be a random vector on C(Ω) given by XΛ(x) =
(x(s1, t1), . . . , x(s1, tn), x(s2, t1), . . . , x(sd, tl), . . . , x(sd, tn−l2)) in RN .

Theorem 3.1. Let F be a functional on C(Ω) given by F (x) =∫
Ω

x(s, t) ds dt. Then the generalized conditional Yeh-Wiener integral
E(F | XΛ)(�u) given conditioning function XΛ at �u in RN is

(3.4) E(F |XΛ)(�u)

=
1
4

d∑
i=1

n−l2∑
j=1

(ui−1,j−1 + ui−1,j + ui,j−1 + ui,j)ΔisΔjt

+
1
4

n∑
j=n−l2+1

n+l1−j∑
i=1

(ui−1,j−1 + ui−1,j + ui,j−1 + ui,j)ΔisΔjt

+
1
6

d∑
i=l1+1

(αi + βi + γi)ΔisΔn+l1−i+1t
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at �u in RN , where αi = ui−1,n+l1−i, βi = ui,n+l1−i and γi =
ui−1,n+l1−i+1.

Proof. Using Theorem 2.2 and the Fubini theorem, we have

(3.5)

E(F |XΛ)(�u) =
∫

Ω

E(x(s, t)− [x](s, t) + [�u](s, t)) ds dt

=
∫

Ω

[�u](s, t) ds dt

=
d∑

i=1

n−l2∑
j=1

∫
Ωij

[�u](s, t) ds dt

+
n∑

j=n−l2+1

n+l1−j∑
i=1

∫
Ωij

[�u](s, t) ds dt

+
d∑

i=l1+1

∫
Ωi

[�u](s, t) ds dt

where Ωij = (si−1, si] × (tj−1, tj ] and Ωi = {(s, t) | si−1 < s ≤ si,
g(si) < t ≤ g(s)}. The second equality in (3.5) follows from the fact
E(x(s, t)) = E([x](s, t)) = 0 and m̃(C(Ω)) = 1.

On Ωi, g(si) = tn+l1−i for i = l1+1, . . . , d. If we let αi = ui−1,n+l1−i,
βi = ui,n+l1−i and γi = ui−1,n+l1−i+1, then we have, by (2.12),

(3.6)
[�u](s, t) = αi +

βi − αi

Δis
(s − si−1)

+
γi − αi

Δn+l1−i+1t
(t − tn+l1−i).

In (2.12), we know that Δig = g(si−1) − g(si) = Δn+l1−i+1t. Thus we
obtain

(3.7)

∫
Ωi

[�u](s, t) ds dt = αiA(Ωi) +
βi − αi

Δis

∫
Ωi

(s − si−1) ds dt

+
γi − αi

Δn+l1−i+1t

∫
Ωi

(t − tn+l1−i) ds dt



1108 J.S. CHANG AND J.H. AHN

where the area of Ωi is A(Ωi) = (1/2)Δis Δn+l1−i+1t. Using g(si) =
ηsi +δ = tn+l1−i, we have Δn+l1−i+1t = −ηΔis on Ωi. Thus we obtain

(3.8)
∫

Ωi

(s− si−1) dt ds =
∫ si

si−1

(s− si−1)η(s − si) ds = −1
6

η(Δis)3

and

(3.9)
∫

Ωi

(t−tn+l1−i) dt ds =
1
2

∫ si

si−1

(ηs+δ− tn+l1−i)2 ds =
1
6

η2(Δis)3.

From (3.7), (3.8), (3.9) and the fact Δn+l1−i+1t = −ηΔis, we have

(3.10)
∫

Ωi

[�u](s, t) ds dt =
1
6
(αi + βi + γi)ΔisΔn+l1−i+1t.

It is a well-known fact [1] that

(3.11)
∫

Ωij

[�u](s, t) ds dt =
1
4
(ui−1,j−1 + ui−1,j + ui,j−1 + ui,j)ΔisΔjt.

From (3.5), (3.10), and (3.11), our theorem is proved.

Corollary 3.2. Let F be a functional on C(Ω) given by F (x) =∫
Ω

x(s, t) ds dt where Ω is the region (3.1) with g(s) = T on [a, b]. Then
the conditional Yeh-Wiener integral E(F | XΛ) of a functional F given
XΛ is

(3.12)

E(F | XΛ)(�u)

=
1
4

d∑
i=1

n∑
j=1

(ui−1,j−1 + ui−1,j + ui,j−1 + ui,j)ΔisΔjt

for �u in RN .

Corollary 3.3. Let F be a functional on C(Ω) given by F (x) =∫
Ω

x(s, t) ds dt where Ω is the region (3.1) with g(s) = (S − T )/(b − a)s+
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(Tb − Sa)/(b − a) on [a, b] and 0 ≤ S < T . Then the modified condi-
tional Yeh-Wiener integral E(F |XΛ) of a functional F given XΛ is

(3.13)

E(F | XΛ)(�u)

=
1
4

d∑
i=1

n−i∑
j=1

(ui−1,j−1 + ui−1,j + ui,j−1 + ui,j)ΔisΔjt

+
1
6

d∑
i=1

(αi + βi + γi)ΔisΔn−i+1t.

for �u in RN , where αi = ui−1,n−i, βi = ui,n−i and γi = ui−1,n−i+1.

Corollary 3.2 and Corollary 3.3 are special cases of Theorem 3.1 for
l2 = 0 and l1 = 0, respectively. The results [6, Example 1] and [1,
Example 3.1] are the same as (3.12) and (3.13) with d = m, respectively.

Let τ1 and τ2 be the points in [a, b] with a ≤ τ1 ≤ τ2 ≤ b,
and let 0 ≤ Q ≤ S ≤ T . Define the function g on [a, b] by
g(s) = ν

√
(τ1 − a)2 − (s − a)2 + S on [a, τ1], g(s) = S on [τ1, τ2],

and g(s) = ω
√

s − τ2 + S on [τ2, b] where ν = (T − S)/(τ1 − a) and
ω = (Q − S)/(

√
b − τ2). Let

(3.14) Ω = {(s, t) | a ≤ s ≤ b, 0 ≤ t ≤ g(s)}.

Let Λ be a partition of Ω given by

(3.15) Λ = {(si, tj) | 1 ≤ i ≤ d, t1 ≤ tj ≤ g(si)}.

which satisfies the properties:

(3.16)

i. {s0, s1, . . . , sd} is a partition of [a, b] satisfying
a = s0 < s1 < · · · < sl1 = τ1 < sl1+1 < · · · <

sl1+l2 = τ2 < sl1+l2+1 < · · · < sd = b and
d = l1 + l2 + l3;

ii. {t0, t1, . . . , tn} is a partition of [0, T ] satisfying
0 = t0 < t1 < · · · < tn = T, g(sp) = tn−p on A1

for 0 ≤ p ≤ l1, g(s) = tn−l1 on A2, and g(sl1+l2+p)
= tn−l1−p on A3 for 0 ≤ p ≤ l3.
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Let N be the number of elements of Λ. Then we have N =
dn− ((l1(l1 + 1) + l3(l3 + 1))/2)− l1(l2 + l3), and let XΛ be a random
vector on C(Ω) given by XΛ(x) = (x(s1, t1), . . . , x(sd, tn−l1−l3)) in RN .

Theorem 3.4. Let F be a functional on C(Ω) given by F (x) =∫
Ω

x(s, t) ds dt where the region Ω is given by (3.14). Then the gener-
alized conditional Yeh-Wiener integral E(F | XΛ)(�u) given XΛ at �u in
RN is

(3.17)

E(F | XΛ)(�u)

=
d∑

i=1

n−l1−l3∑
j=1

Aij(�u) +
n−l1∑

j=n−l1−l3+1

n+l2−j∑
i=1

Aij(�u)

+
n−1∑

j=n−l1+1

n−j∑
i=1

Aij(�u) +
l1∑

i=1

Bi(�u) +
d∑

i=l1+l2+1

Ci(�u)

where Aij(�u) =
∫
Ωij

[�u](s, t) ds dt is given by (3.11), and Bi(�u) and
Ci(�u) are given by (3.20) and (3.22), respectively.

Proof. By Theorem 2.2, the Fubini theorem, E(x) = E([x]) = 0, and
m̃(C(Ω)) = 1, we have

(3.18)

E(F |XΛ)(�u) =
∫

Ω

E(x(s, t)− [x](s, t) + [�u](s, t)) ds dt

=
∫

Ω

[�u](s, t) ds dt

=
d∑

i=1

n−l1−l3∑
j=1

Aij(�u) +
n−l1∑

j=n−l1−l3+1

n+l2−j∑
i=1

Aij(�u)

+
n−1∑

j=n−l1+1

n−j∑
i=1

Aij(�u) +
l1∑

i=1

∫
Ωi

[u](s, t) ds dt

+
d∑

i=l1+l2+1

∫
Ωi

[�u](s, t) ds dt

where Aij(�u) =
∫
Ωij

[�u](s, t) ds dt. For i = 1, . . . , l1, g(si) = tn−i on Ωi

and so, by (2.12), the generalized quasi-polyhedric function [�u](s, t) is



YEH-WIENER INTEGRAL 1111

obtained by

(3.19)
[�u](s, t) = ui−1,n−i +

s − si−1

Δis
(ui,n−i − ui−1,n−i)

+
t − tn−i

Δn−i+1t
(ui−1,n−i+1 − ui−1,n−i)

on Ωi = {(s, t) | si−1 < s ≤ si, g(si) < t < g(s)} with g(s) =
ν
√

(τ1 − a)2 − (s − a)2 + S. Then, using (3.19), we can evaluate

(3.20) Bi(�u) =
∫

Ωi

[�u](s, t) ds dt

for i = 1, 2, . . . , l1. For l1 + l2+1 ≤ i ≤ d, g(si) = tn+l2−i on Ωi and so,
by (2.12), the generalized quasi-polyhedric function [�u](s, t) is obtained
by

(3.21)
[�u](s, t) = ui−1,n+l2−i +

s − si−1

Δis
(ui,n+l2−i − ui−1,n+l2−i)

+
t − tn+l2−i

Δn+l2−i+1t
(ui−1,n+l2−i+1 − ui−1,n+l2−i)

on Ωi = {(s, t) | si−1 < s ≤ si, g(si) < t < g(s)} with g(s) =
ω
√

s − τ2 + S. Hence, using (3.21), we can evaluate

(3.22) Ci(�u) =
∫

Ωi

[�u](s, t) ds dt

for i = l1 + l2 + 1, l1 + l2 + 2, . . . , d. From (3.11), (3.18), (3.20), and
(3.22), we can obtain the result (3.17).

4. Evaluation of the generalized conditional Yeh-Wiener in-
tegral for F (x) =

∫
Ω
([x](s, t))k ds dt. In this section we will consider

the generalized conditional Yeh-Wiener integral for the functional con-
taining a generalized quasi-polyhedric function. Let g(s) be a strictly
decreasing and continuous function on [0, S] such that g(S) = 0 and
let Ω = {(s, t) | 0 ≤ s ≤ S, 0 ≤ t ≤ g(s)}. And let C(Ω) denote
the space of all real-valued continuous functions x(s, t) on Ω such that
x(s, 0) = x(0, t) = 0 for every (s, t) in Ω, and let g(0) = T .
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For each partition τ = {(si, tj) | 1 ≤ j ≤ n− i for 1 ≤ i ≤ n−1} of Ω
with 0 = s0 < s1 < · · · < sn = S and tn−i = g(si), i = 0, 1, 2, . . . , n,
define Xτ : C(Ω) → RN by Xτ (x) = (x(s1, t1), . . . , x(s1, tn−1),
x(s2, t1), . . . , x(s2, tn−2), x(s3, t1), . . . , x(sn−1, t1)) for N =(n(n−1))/2.

For a nonnegative integer k, let F be a functional on Ω given by

(4.1) F (x) =
∫

Ω

([x](s, t))k ds dt

where [x] is the generalized quasi-polyhedric function on Ω given by
(2.9) and (2.10). We note that g(si) = tn−i and Δig = g(si−1)−g(si) =
Δn−i+1t since g is strictly decreasing and continuous on [0, S].

By (2.17) in Theorem 2.2 and the Fubini theorem, we have

(4.2)

E(F | Xτ )(�u) =
∫

Ω

E
(
[x − [x] + [�u]]k(s, t)

)
ds dt

=
∫

Ω

([�u](s, t))k ds dt

=
n−1∑
i=1

n−i∑
j=1

∫
Ωij

([�u](s, t))k ds dt

+
n∑

i=1

∫
Ωi

([�u](s, t))k ds dt

where the second equality in (4.2) comes from the fact that the quasi-
polyhedric function satisfies the linearity, [[x]](s, t) = [x](s, t) for (s, t)
in Ω and m̃(C(Ω)) = 1.

Now, using (2.11) and the simple change of variable, we have

(4.3)

∫
Ωij

([�u](s, t))k ds dt

=
∫ tj

tj−1

{ ∫ si

si−1

[
a(t) +

s − si−1

Δis
(b(t) − a(t))

]k

ds

}
dt

=
∫ tj

tj−1

{
Δis

b(t) − a(t)

∫ b(t)

a(t)

uk du

}
dt

=
Δis

k + 1

∫ tj

tj−1

k∑
p=0

a(t)pb(t)k−p dt
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where

(4.4)
a(t) = ui−1,j−1 +

t − tj−1

Δjt
(ui−1,j − ui−1,j−1)

b(t) = ui,j−1 +
t − tj−1

Δjt
(ui,j − ui,j−1).

Doing the change of variable one more time, that is y = b(t), the
righthand side of the last equality in (4.3) becomes

(4.5)
Δis

k+1
Δjt

ui,j−ui,j−1{ k∑
p=0

[∫ ui,j

ui,j−1

(
ui−1,j−1+

(y−ui,j−1)(ui−1,j−ui−1,j−1)
ui,j − ui,j−1

)p

yk−p dy
]}

=
ΔisΔjt

(k+1)(ui,j−ui,j−1)

{ k∑
p=0

[ p∑
q=0

(
p

q

)(ui−1,j−ui−1,j−1

ui,j − ui,j−1

)p−q

(
ui−1,j−1 − ui,j−1(ui−1,j−ui−1,j−1)

ui,j − ui,j−1

)q
∫ ui,j

ui,j−1

yk−q dy
]}

.

Combining (4.2), (4.3) and (4.5), we have the following theorem.

Theorem 4.1. Let F be a functional on C(Ω) given by (4.1). Then
the generalized conditional Yeh-Wiener integral E(F | Xτ ) of F given
Xτ is

(4.6) E(F | Xτ )(�u)

=
n−1∑
i=1

n−i∑
j=1

1
k+1

{ k∑
p=0

[ p∑
q=0

(
p
q

)
k−p+1

( k−q∑
r=0

ur
i,j uk−q−r

i,j−1

)

(ui−1,j−ui−1,j−1)
p−q(ui,jui−1,j−1−ui−1,jui,j−1)

q

(ui,j − ui,j−1)p

]}
ΔisΔjt

+
n∑

i=1

∫
Ωi

([�u](s, t))k ds dt,

for �u in RN and
(
p
q

)
= (p(p − 1) · · · (p − q + 1))/q!.
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The result of Theorem 4.1 can be used to evaluate the generalized
conditional Yeh-Wiener integral for the functional F on C(Ω) given by
F (x) =

∫
Ω
(x(s, t))k ds dt where k is a nonnegative integer.
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