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WARING’S PROBLEM FOR LINEAR
POLYNOMIALS AND LAURENT POLYNOMIALS

DONG-IL KIM

ABSTRACT. Waring’s problem is about representing any
function in a class of functions as a sum of kth powers of non-
constant functions in the same class. We allow complex coef-
ficients in these kind of problems. Consider

∑p1
i=1

fi(z)k = z

and
∑p2

i=1
fi(z)k = 1. Suppose that k ≥ 2. Let p1 and p2 be

the smallest numbers of functions that give the above identi-
ties. W.K. Hayman obtained lower bounds of p1 and p2 for
polynomials, entire functions, rational functions and mero-
morphic functions. First, we consider Waring’s problem for
linear polynomials and get p1 = k and p2 = k + 1. Then, we
study Waring’s problem for Laurent polynomials and obtain
lower bounds of p1 and p2.

1. Introduction.

1.1. Waring’s problem. Waring’s problem deals with representing
any function in a class of functions as a sum of kth powers of non-
constant functions in the same class. We allow complex coefficients in
these problems.

Let k and n be natural numbers. Consider the equation of the form

(1.1.1)
n∑

i=1

fi(z)k = Q(z),

where f1, f2, . . . , fn and Q are nonconstant polynomials with complex
coefficients. Suppose that

(1.1.2) f1(z)k + f2(z)k + · · · + fn(z)k = z.

Then we obtain

(1.1.3) f1(Q(z))k + f2(Q(z))k + · · · + fn(Q(z))k = Q(z)
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by the substitution of Q(z) for z. Hence any nonconstant polynomial
Q(z) can be represented by the sum of n kth powers of nonconstant
polynomials. Therefore studying the form (1.1.2) is important.

By applying finite differences, Newman and Slater [11] showed that
the identity function z can be always represented as a sum of k kth
powers of nonconstant polynomials. The following theorem about the
(k − 1)th differences of xk can be found in the book by Hardy and
Wright [6].

Theorem 1.1.1. We have

(1.1.4)
k−1∑
r=0

(−1)k−1−r

(
k − 1

r

)
(x + r)k = k! x + d,

where d is an integer independent of x. In fact d = (1/2)(k − 1)(k!).

By substituting (z − d)/k! for x in the equation (1.1.4), we can
represent z as a sum of k kth powers of nonconstant linear polynomials.
Newman and Slater credit this finite difference argument to S. Hurwitz
who has conjectured that the number k of kth powers of nonconstant
polynomials is the minimum needed for the representation of the
identity function z. Also, Heilbronn has conjectured that k is minimal
even if entire functions are allowed [8].

We can consider other classes for Waring’s problem. We denote the
sets of polynomials, entire functions, rational functions, and meromor-
phic functions by P , E, R and M respectively as in [9]. By a meromor-
phic function we mean a meromorphic function in the whole complex
plane. The finite difference argument implies that Waring’s problems
for P , E, R and M are solvable.

Theorem 1.1.2 [9]. Suppose that k ≥ 2 and that n ≥ 2. Let f1,
f2, . . . , fn be nonconstant functions in class C satisfying

(1.1.5)
n∑

i=1

fi(z)k = z,
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where C is one of the classes P , E, R and M . Suppose that pC(k) is
the smallest number n satisfying (1.1.5). Then

pP (k) >
1
2

+

√
k +

1
4
, k ≥ 3,(1.1.6)

pE(k) ≥ 1
2

+

√
k +

1
4
, k ≥ 2,(1.1.7)

pR(k) >
√

k + 1, k ≥ 2,(1.1.8)

pM (k) ≥ √
k + 1, k ≥ 2.(1.1.9)

The inequality (1.1.6) was found first by Newman and Slater [11], and
(1.1.8) was found first by Green [4]. Hayman used Cartan’s theorem
[1] to prove his theorem [9].

1.2. Fermat type of Waring’s problem. We consider the case
that Q(z) in the equation (1.1.1) is a nonzero constant. Without loss
of generality, Q ≡ 1. Then

(1.2.1) f1(z)k + f2(z)k + · · · + fn(z)k = 1.

Equations of the form (1.2.1) are called Fermat type equations.

The finite difference argument implies that any nonzero constant
can be represented by a sum of (k + 1) kth powers of nonconstant
polynomials [11].

Theorem 1.2.1 [9]. Suppose that k ≥ 2 and that n ≥ 2. Let f1,
f2, . . . , fn be nonconstant functions in class C satisfying

(1.2.2)
n∑

i=1

fi(z)k = 1,

where C is one of the classes P , E, R and M . Suppose that PC(k) is
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the smallest number n satisfying (1.2.2). Then

PP (k) >
1
2

+

√
k +

1
4
,(1.2.3)

PE(k) ≥ 1
2

+

√
k +

1
4
,(1.2.4)

PR(k) >
√

k + 1,(1.2.5)

PM (k) ≥ √
k + 1.(1.2.6)

Newman and Slater noted that, together with the construction of
Molluzzo, the inequality (1.2.3) gives the correct order of magnitude
for PP (k) [11].

Theorem 1.2.2 [10]. We have

PP (k) ≤
[
(4k + 1)1/2

]
.

Suppose that n ≥ 2 and that k ≥ 2. For given n and a class C
of functions, consider the following question: For which integers k, do
there exist nonconstant functions f1, f2, . . . , fn in the class C satisfying
(1.2.1)? We quote what Gundersen summarized in his survey paper [5].

Consider the equation

(1.2.7) f1
k + f2

k + f3
k = 1.

The following theorem is a collection of results of Toda [12], Fujimoto
[3], Green [4], Newman and Slater [11] and Hayman [9].

Theorem 1.2.3. For the four classes P , E, R, M , we have the
following results for equation (1.2.7):

(a) If k ≥ 9, then there do not exist three nonconstant meromorphic
functions f1, f2, f3 that satisfy (1.2.7).

(b) If k ≥ 8, then there do not exist three nonconstant rational
functions f1, f2, f3 that satisfy (1.2.7).
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(c) If k ≥ 7, then there do not exist three nonconstant entire functions
f1, f2, f3 that satisfy (1.2.7).

(d) If k ≥ 6, then there do not exist three nonconstant polynomials
f1, f2, f3 that satisfy (1.2.7).

If the number n in the equation (1.2.1) increases, then the number of
open questions increases [5].

2. Waring’s problem for linear polynomials.

2.1. The representation of a function by linear polynomials.

Theorem 2.1.1 [11]. Suppose that f1
k +f2

k +· · ·+fn
k = Q where Q

is a polynomial, not identically zero, and f1, f2, . . . , fn are nonconstant
polynomials. Then we have

deg Q ≥ D(k − n2 + n) +
n(n − 1)

2
where D is the largest of the degrees of the fi’s. Further if all the fi’s
are linear we have

(2.1.1) deg Q ≥ k − n(n − 1)
2

.

If Q(z) = z and D = 1, then, from the inequalities (2.1.1) and (1.1.6),
we get

(2.1.2) n ≥ 1 +
√

8k − 7
2

>
1
2

+

√
k +

1
4
, k ≥ 3.

For example, if k = 5 then we have n ≥ 4. We improve (2.1.2) as
follows.

Theorem 2.1.2. Suppose that k ≥ 2 and that n ≥ 2. Let f1,
f2 . . . , fn be nonconstant linear polynomials satisfying

(2.1.3)
n∑

i=1

fi(z)k = z.
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Suppose that p is the smallest number n satisfying (2.1.3). Then p = k.

Proof. The finite difference argument implies that the identity func-
tion z can be always represented by a sum of k kth powers of noncon-
stant linear polynomials. Thus, p ≤ k. If k = 2 and p = 1, then we get
f1

2 = z, which is impossible. Hence p ≥ 2 and so p = 2. Consider the
case k ≥ 3. We suppose that p < k and will obtain a contradiction.
Write fi(z) = ai + biz for all i. According to the minimality of p, all
the fi

k are linearly independent. Thus we can have ai =0 for at most
one i. Then fi(z)k =(ai + biz)k =ai

k (1 + (bi/ai)z)k if ai �= 0. Suppose
that ai

k = αi and that bi/ai = βi for each i.

Suppose that ap = 0 and ai �= 0 for 1 ≤ i ≤ p − 1. Then

p∑
i=1

fi(z)k =
p∑

i=1

(ai + biz)k

= bp
kzk +

p−1∑
i=1

αi(1 + βiz)k

= bp
kzk +

p−1∑
i=1

αi

⎛
⎝ k∑

j=0

(
k

j

)
βi

jzj

⎞
⎠

= bp
kzk +

k∑
j=0

(
k

j

)
zj

(
p−1∑
i=1

αiβi
j

)
.

Since the righthand side is equal to z, we get, in particular, the system
of equations

(2.1.4)
p−1∑
i=1

βi
jαi = 0 for 2 ≤ j ≤ k − 1.

Since p < k, we use p− 1 equations. Now consider αi for 1 ≤ i ≤ p− 1
as unknowns. Then the coefficients form a square matrix M1 whose
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determinant is given by

|M1| =

∣∣∣∣∣∣∣∣
β1

2 β2
2 · · · βp−1

2

β1
3 β2

3 · · · βp−1
3

...
...

. . .
...

β1
p β2

p · · · βp−1
p

∣∣∣∣∣∣∣∣

= β1
2β2

2 · · ·βp−1
2

∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1
β1 β2 · · · βp−1

β1
2 β2

2 · · · βp−1
2

...
...

. . .
...

β1
p−2 β2

p−2 · · · βp−1
p−2

∣∣∣∣∣∣∣∣∣∣
.

Since the last determinant for M1 is the van der Monde determinant
[2], we get

|M1| = β1
2β2

2 · · ·βp−1
2
∏
i<j

(βj − βi).

Since all the fi
k are linearly independent, we have βi �= βj for i �= j

and we get |M1| �= 0. Hence the system (2.1.4) of homogeneous linear
equations has only the trivial solution and so αi = 0 for all i with
1 ≤ i ≤ p − 1. This is a contradiction.

Suppose that ai �= 0 for all i. Then

p∑
i=1

fi(z)k =
k∑

j=0

(
k

j

)
zj

(
p∑

i=1

αiβi
j

)
.

Since the righthand side is equal to z, we get

(2.1.5)
p∑

i=1

βi
jαi = 0 for 2 ≤ j ≤ k.

By using p equations, we have a coefficient matrix M2 whose determi-
nant is given by

|M2| =

∣∣∣∣∣∣∣∣
β1

2 β2
2 · · · βp

2

β1
3 β2

3 · · · βp
3

...
...

. . .
...

β1
p+1 β2

p+1 · · · βp
p+1

∣∣∣∣∣∣∣∣
.
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Since |M2| �= 0, the system (2.1.5) has only the trivial solution and so
αi = 0 for all i. This is a contradiction.

2.2. The representation of a constant by linear polynomials.
If Q(z) = 1 and D = 1 in Theorem 2.1.1, then from the inequalities
(2.1.1) and (1.2.3) we get

(2.2.1) n ≥ 1 +
√

8k + 1
2

>
1
2

+

√
k +

1
4
, k ≥ 2.

For example, if k = 3, then we have n ≥ 3. We improve (2.2.1) as
follows.

Theorem 2.2.1. Suppose that k ≥ 2 and that n ≥ 2. Let
f1, f2, . . . , fn be nonconstant linear polynomials satisfying

(2.2.2)
n∑

i=1

fi(z)k = 1.

Suppose that p is the smallest number n satisfying (2.2.2). Then
p = k + 1.

Example. We define ω = e2πi/(k+1). Then

k+1∑
ν=1

(
1 + ωνz

(k + 1)1/k

)k

= 1.

Thus p ≤ k + 1.

The proof of Theorem 2.2.1 is similar to that of Theorem 2.1.2, and
we omit it.
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3. Waring’s problem for Laurent polynomials.

3.1. Definitions and Cartan’s theory.

Definition 3.1.1. A Laurent polynomial is a function of the form

(3.1.1) f(z) =
t∑

n=s

an zn,

where s and t are integers with s ≤ t and an ∈ C with as �= 0 �= at.

Hence a Laurent polynomial need not be a polynomial, in spite of the
name. There is some interest in the representation. For example, if

(3.1.2) f1
k + f2

k + · · · + fn
k = 1

holds for nonconstant Laurent polynomials f1, f2, . . . , fn, we can
replace z by ez to get (3.1.2) in terms of transcendental entire functions.

We use notations from the Nevanlinna theory that can be found in
Hayman’s book [7]. We define log+ x = max{0, log x} for x ≥ 0.
We write n(t, f) for the number of poles of f(z) in |z| ≤ t counting
multiplicities, and

m(r, f) =
1
2π

∫ 2π

0

log+ |f(reiθ)| dθ,

N(r, f) =
∫ r

0

n(t, f) − n(0, f)
t

dt + n(0, f) log r,

T (r, f) = m(r, f) + N(r, f).

Theorem 3.1.2 [1]. Suppose that p ≥ 2. Let F1, F2, . . . , Fp be p
linearly independent entire functions. Suppose that there is no point z
such that Fi(z) = 0 for all i, where 1 ≤ i ≤ p. Set

(3.1.3) Fp+1 =
p∑

i=1

Fi(z),
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(3.1.4) T (r) =
1
2π

∫ 2π

0

sup
1≤i≤p

log |Fi(reiθ)| dθ − sup
1≤i≤p

log |Fi(0)|.

Let ni(r) be the number of zeros of Fi(z) in |z| ≤ r, where a zero of
order d is counted exactly min{d, p − 1} times. For 1 ≤ i ≤ p + 1, set

(3.1.5) Ni(r) =
∫ r

0

ni(t) − ni(0)
t

dt + ni(0) log r.

Then

(3.1.6) T (r) ≤
p+1∑
i=1

Ni(r) + S(r)

holds with

(3.1.7) S(r) =
1
2π

∫ 2π

0

max log |Δ(α1,α2,... ,αp)(reiθ)| dθ + O(1),

where the maximum is taken for all choices of {α1, α2, . . . , αp} of
distinct numbers α1, α2, . . . , αp from {1, 2, . . . , p + 1}, and where the
Wronskian

W (Fα1 , Fα2 , . . . , Fαp
) = Fα1Fα2 · · ·Fαp

Δ(α1,α2,... ,αp)

with

(3.1.8) Δ(α1,α2,... ,αp)(z)

=

∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1
(F ′

α1
)/(Fα1) (F ′

α2
)/(Fα2) · · · (F ′

αp
)/(Fαp

)
(F ′′

α1
)/(Fα1) (F ′′

α2
)/(Fα2) · · · (F ′′

αp
)/(Fαp

)
...

...
. . .

...
(F (p−1)

α1 )/(Fα1) (F (p−1)
α2 )/(Fα2) · · · (F (p−1)

αp )/(Fαp
)

∣∣∣∣∣∣∣∣∣∣∣
.
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3.2. The representation of a function by Laurent polynomi-
als.

Theorem 3.2.1. Suppose that k ≥ 3 and that n ≥ 2. Let
f1,f2, . . . , fn be nonconstant Laurent polynomials satisfying

(3.2.1)
n∑

i=1

fi(z)k = z.

Suppose that at least one of the fi is not a polynomial and that p is the
smallest number n satisfying (3.2.1). Then p2 − p > k for k ≥ 3, i.e.,
p > 1/2 +

√
k + 1/4 for k ≥ 3.

Proof. We proceed with the proof similarly as in the proof of
Theorem 1.1.2. Let p be the smallest number n satisfying (3.2.1).
Consider

(3.2.2) f1
k + f2

k + · · · + fp
k = z.

For each i with 1 ≤ i ≤ p, we can rewrite

fi(z) =
ti∑

n=si

an zn = gi(z) zsi ,

where gi(z) is a polynomial. We can suppose that there exists an
i such that si ≤ −1. Otherwise, all fi(z) are polynomials. Let
m = min1≤i≤p si. Then m ≤ −1. From (3.2.2), we get

(3.2.3) h1
k + h2

k + · · · + hp
k = z1−mk,

where hi(z) = fi(z) z−m. Note that each hi(z) is a polynomial. We
write hi

k = Fi, where 1 ≤ i ≤ p, and Fp+1 = z1−mk. Then (3.2.3)
becomes

(3.2.4) F1 + F2 + · · · + Fp = Fp+1.

The functions F1, F2, . . . , Fp have no common zero. Otherwise, there
exists z0 ∈ C such that 0 = F1(z0) = F2(z0) = · · · = Fp(z0). If z0 �= 0,
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then (3.2.4) does not hold. This is a contradiction. Assume that z0 = 0.
There exists i such that si = m. Now, by choosing i so that si = m,
we get

hi(z) = fi(z)z−si =
(
ati

zti + ati−1z
ti−1 + · · · + asi

zsi
)

z−si

= ati
zti−si + ati−1z

ti−si−1 + · · · + asi
.

Since asi
�= 0, we have Fi(z0) = hi(z0)k = hi(0)k = asi

k �= 0, which is
a contradiction.

The functions F1, F2, . . . , Fp form a linearly independent set. Other-
wise, one of the functions is a linear combination of the others. Then z
can be represented as a sum of p − 1 kth powers. This contradicts the
minimality of p.

There exists i with ti ≥ 1. Otherwise, we get ti ≤ 0 for all i. Then
we obtain f1

k + f2
k + · · · + fp

k = O(1) as z → ∞. But the righthand
side is z, which tends to ∞ by (3.2.2). This is a contradiction.

We write α = deg h1 = max1≤i≤p deg hi without loss of generality.
There exists hj with j �= 1 such that deg hj = α. Otherwise, deg h1 >
max1<j≤p deg hj . We write h1(z) = aαzα + · · · . Then h1(z)k =
aα

k zαk + · · · . Then aα
k zαk cannot be canceled by h2

k +h3
k + · · ·+hp

k

and z1−mk since 1 − mk �= αk.

If Fi(z0) = 0 with the order of zero d, then we count this zero
min{d, p − 1} times instead of the order of z0 for ni(r). Each zero
of Fi(z) = (fi(z) z−m)k has order k at least. Thus d is a multiple of k.

If k ≤ p− 1, then we do not need to check this case because z always
can be represented by k polynomials.

Suppose that k > p−1. Since p−1 < k ≤ d, we have min {d, p−1} =
p − 1 and the point z0 is counted p − 1 times for Ni(r). Then we get

Ni(r)
p − 1

=
1

p − 1

(∫ r

0

ni(t) − ni(0)
t

dt + ni(0) log r

)

≤ 1
k

(∫ r

0

n (t, (1/Fi)) − n (0, (1/Fi))
t

dt + n

(
0,

1
Fi

)
log r

)

=
1
k

N

(
r,

1
Fi

)
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since z0 is counted once for (Ni(r))/(p − 1) and d/k times for
(1/k)N (r, (1/Fi)). So we have

Ni(r) ≤ p − 1
k

N

(
r,

1
Fi

)
.

By Jensen’s formula, we have

N

(
r,

1
Fi

)
= T

(
r,

1
Fi

)
− m

(
r,

1
Fi

)
= T (r, Fi) + O(1) − m

(
r,

1
Fi

)
.

Since Fi is entire, we get

T (r, Fi) = N(r, Fi) + m(r, Fi) =
1
2π

∫ 2π

0

log+ |Fi(reiθ)| dθ.

Hence

N

(
r,

1
Fi

)
=

1
2π

∫ 2π

0

(
log+ |Fi(reiθ)| − log+ 1

|Fi(reiθ)|
)

dθ + O(1)

=
1
2π

∫ 2π

0

log |Fi(reiθ)| dθ + O(1)

≤ 1
2π

∫ 2π

0

sup
1≤i≤p

log |Fi(reiθ)| dθ − sup
1≤i≤p

log |Fi(0)| + O(1)

= T (r) + O(1).

Therefore, for each i with 1 ≤ i ≤ p, we have

(3.2.5) Ni(r) ≤ p − 1
k

T (r) + O(1).

Consider

Np+1(r) =
∫ r

0

np+1(t) − np+1(0)
t

dt + np+1(0) log r.

Since Fp+1(z) = z1−mk and 1−mk ≥ 1+k > p, we get np+1(0) = p−1
and

(3.2.6) Np+1(r) = (p − 1) log r.
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Now, recall

S(r) =
1
2π

∫ 2π

0

max log |Δ(α1,α2,... ,αp)(reiθ)| dθ + O(1),

where the maximum is taken for all choices of {α1, α2, . . . , αp} of
distinct numbers α1, α2, . . . , αp from {1, 2, . . . , p + 1}. Consider

Δ(α1,α2,...,αp)(z)

=

∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1
(F ′

α1
)/(Fα1) (F ′

α2
)/(Fα2) · · · (F ′

αp
)/(Fαp

)
(F ′′

α1
)/(Fα1) (F ′′

α2
)/(Fα2) · · · (F ′′

αp
)/(Fαp

)
...

...
. . .

...
(F (p−1)

α1 )/(Fα1) (F (p−1)
α2 )/(Fα2) · · · (F (p−1)

αp )/(Fαp
)

∣∣∣∣∣∣∣∣∣∣∣
.

First, consider the case {α1, α2, . . . , αp} = {1, 2, . . . , p}. We write di =
deg Fi, where 1 ≤ i ≤ p. Then we can rewrite Fi = Ai

∏di

j=1 (z − zj),
where Ai is a constant. Then F ′

i/Fi =
∑di

j=1 (z − zj)−1 = O(z−1). For
1 ≤ l ≤ p − 1,

F
(l)
i

Fi
=

F
(l)
i

F
(l−1)
i

F
(l−1)
i

F
(l−2)
i

· · · F ′
i

Fi
= O(z−l).

The function Δ(α1,α2,··· ,αp) is a sum of products of the form ±F
(j)
i /Fi,

where 1 ≤ i ≤ p and 1 ≤ j ≤ p − 1. Therefore we get

Δ(α1,α2,...,αp)(z) =
∑

O(z−1)O(z−2) · · ·O(z−(p−1)) = O(z−(p(p−1)/2)).

Now consider the other cases. Choose p different numbers {α1, α2, . . . ,
αp} from {1, 2, . . . , p + 1} such that αp = p + 1. Then, since
Fp+1 = z1−mk, we get

Δ(α1,α2,...,αp)(z)

=

∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1 1

(F ′
α1

)/(Fα1 ) (F ′
α2

)/(Fα2 ) · · · (F ′
αp−1

)/(Fαp−1 ) O(z−1)

(F ′′
α1

)/(Fα1 ) (F ′′
α2

)/(Fα2 ) · · · (F ′′
αp−1

)/(Fαp−1 ) O(z−2)

...
...

. . .
...

...

(F
(p−1)
α1 )/(Fα1 ) (F

(p−1)
α2 )/(Fα2 ) · · · (F

(p−1)
αp−1 )/(Fαp−1 ) O(z−(p−1))

∣∣∣∣∣∣∣∣∣∣
=
∑

O(z−1)O(z−2) · · ·O(z−(p−1)) = O
(
z−(p(p−1)/2)

)
.
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Thus, considering all choices of {α1, α2, . . . , αp}, we obtain

(3.2.7) max
∣∣Δ(α1,α2,··· ,αp)

∣∣ = O
(
z−p(p−1)/2

)
.

The equation (3.1.7) together with (3.2.7) gives

(3.2.8) S(r) ≤ −p(p − 1)
2

log r + O(1).

From Cartan’s theorem, (3.2.5), (3.2.6), and (3.2.8), we get

(3.2.9) T (r) ≤ p(p − 1)
k

T (r) + (p − 1) log r − p(p − 1)
2

log r + O(1).

Thus

(3.2.10)
(

1 − p(p − 1)
k

)
T (r) ≤ (p − 1)

(
1 − p

2

)
log r + O(1).

We define dj = deg hj , where 1 ≤ j ≤ p. Since there exists j with tj ≥ 1
and m ≤ −1, we have α = max1≤j≤p deg hj = max1≤j≤p (tj − m) ≥ 2.
Then we have

|hj(reiθ)| ≥ cjr
deg hj = cjr

dj

as r → ∞, where cj is a positive constant. Hence

log |Fj | = k log |hj | ≥ k log cjr
dj ≥ k dj log r + O(1)

as r → ∞. Thus

sup
1≤j≤p

log |Fj | = sup
1≤j≤p

k log |hj | ≥ k

(
max

1≤j≤p
dj

)
log r + O(1)

= k α log r + O(1)

as r → ∞. Hence we get

(3.2.11) T (r) ≥ k α log r + O(1)

as r → ∞. Now, the inequality (3.2.10) together with (3.2.11) gives

(k − p(p − 1)) α log r ≤ (p − 1)
(
1 − p

2

)
log r + O(1)
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as r → ∞. If p = 2, we obtain k ≤ p(p−1) = 2. If p > 2, the righthand
side is negative for large r, so that k < p(p − 1). This completes the
proof of Theorem 3.2.1.

Since the class L of Laurent polynomials is not closed under compo-
sition, we cannot deduce the representability of all functions in L from
that of z. On the other hand if WC(k) denotes the minimum number
n, such that any element of the class C can be represented as the sum
of n kth powers of functions in C, then

WL(k) ≤ WP (k) ≤ k.

In fact if f(z) = P (z)/znk is a Laurent polynomial, where P (z) is an
ordinary polynomial, then we have

P (z) =
p∑

ν=1

(Pν(z))k

where p = WP (k) and the Pν are polynomials, Then

f(z) =
p∑

ν=1

(
Pν(z)

zn

)k

is the required representation of f(z) in terms of Laurent polynomials.
Thus WL(k) ≤ p = WP (k).

3.3. The representation of a constant by Laurent polynomi-
als.

Theorem 3.3.1. Suppose that k ≥ 3 and that n ≥ 2. Let
f1, f2, . . . , fn be nonconstant Laurent polynomials satisfying

(3.3.1)
n∑

i=1

fi(z)k = 1.

Suppose that at least one of the fi is not a polynomial and that p is the
smallest number n satisfying (3.3.1). Then p2− p > k for k ≥ 3, i.e.,
p > 1/2 +

√
k + 1/4 for k ≥ 3.
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The proof of Theorem 3.3.1 is similar to that of Theorem 3.2.1, so we
omit it.

3.4. The proof of Hayman’s theorem. We conclude this
paper by discussing the proof of Hayman’s theorem [9, p. 2], which is
Theorem 1.1.2 in this paper, for polynomials. Suppose that k ≥ 2 and
that n ≥ 2. Let f1, f2, . . . , fn be nonconstant polynomials satisfying

n∑
i=1

fi(z)k = z.

Suppose that p is the smallest number n satisfying the above equation.
Since F1 = f1

k, F2 = f2
k, . . . , Fp = fp

k and Fp+1 = z, we get

(3.4.1) Ni(r) ≤ p − 1
k

T (r) + O(1) for 1 ≤ i ≤ p,

and

(3.4.2) Np+1(r) = log r.

Hayman considered only

Δ(z) =

∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1
(F ′

1/F1) (F ′
2/F2) · · · (F ′

p/Fp)
(F ′′

1 /F1) (F ′′
2 /F2) · · · (F ′′

p /Fp)
...

...
. . .

...
(F (p−1)

1 /F1) (F (p−1)
2 /F2) · · · (F (p−1)

p /Fp)

∣∣∣∣∣∣∣∣∣∣∣
and set

(3.4.3) S(r) =
1
2π

∫ 2π

0

log |Δ(reiθ)| dθ + O(1).

Then
Δ(z) = O

(
z−(p(p−1))/2

)
.

Now, we estimate Δ(z) more precisely. We define di = deg Fi,
where 1 ≤ i ≤ p, and Fi = adi

zdi + adi−1z
di−1 + · · · . Then

F ′
i = adi

diz
di−1 + adi−1(di − 1)zdi−2 + · · · . Hence,

F ′
i

Fi
=

adi
diz

di−1 + adi−1(di − 1)zdi−2 + · · ·
adi

zdi + adi−1zdi−1 + · · · =
di

z
+ O(z−2).
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Similarly,

F ′′
i

Fi
=

adi
di(di − 1)zdi−2 + adi−1(di − 1)(di − 2)zdi−3 + · · ·

adi
zdi + adi−1zdi−1 + · · ·

=
di(di − 1)

z2
+ O(z−3).

Similarly, we can write

F
(l)
i

Fi
=

di(di − 1) · · · (di − (l − 1))
zl

+ O

(
1

zl+1

)
,

where 1 ≤ l ≤ p−1. Consider the determinant δ where each (i, j)-entry
is the leading term of the (i, j)-entry in Δ. Then

δ(z) =∣∣∣∣∣∣∣∣∣∣∣

1 1

d1/z d2/z

(d1(d1 − 1))/z2 (d2(d2 − 1))/z2

...
...

(d1(d1 − 1) · · · (d1 − p + 2))/zp−1 (d2(d2 − 1) · · · (d2 − p + 2))/zp−1

· · · 1

· · · dp/z

· · · (dp(dp − 1))/z2

. . .
...

· · · (dp(dp − 1) · · · (dp − p + 2))/zp−1

∣∣∣∣∣∣∣∣∣∣∣
.

By applying elementary row operations to δ we get δ =
(
z−(p(p−1))/2

)
δ′,

where

δ′ =

∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1
d1 d2 · · · dp

d1
2 d2

2 · · · dp
2

...
...

. . .
...

d1
p−1 d2

p−1 · · · dp
p−1

∣∣∣∣∣∣∣∣∣∣
.

Since the last determinant δ′ is the van der Monde determinant [2], we
get

δ′ =
∏
i<j

(dj − di).
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Since there exist di and dj such that di = dj = max1≤n≤p dn, where
i �= j, we obtain δ′ = 0 and we get

(3.4.4) Δ(z) = O
(
z(−p(p−1)/2)−1

)
.

The equation (3.4.3) together with (3.4.4) gives

(3.4.5) S(r) ≤
(−p(p − 1)

2
− 1
)

log r + O(1).

If it were sufficient to consider only this Δ as Hayman [9, p. 4] claimed,
it would follow from Cartan’s theorem as stated by Hayman [9, p. 3],
(3.4.1), (3.4.2), and (3.4.5) that

(3.4.6) T (r) ≤ p(p − 1)
k

T (r) + log r +
(−p(p − 1)

2
− 1
)

log r + O(1).

Thus

(3.4.7)
(

1 − p(p − 1)
k

)
T (r) ≤ −p(p − 1)

2
log r + O(1).

For the case k = 2 and p = 2, we know that (z + (1/4))2 −
(z − (1/4))2 = z. Let F1(z) = (z + (1/4))2, F2(z) = − (z − (1/4))2,
and F3(z) = z. Then we obtain

Δ(z) =
∣∣∣∣ 1 1
F ′

1/F1 F ′
2/F2

∣∣∣∣ =
2

(z − (1/4))
− 2

(z + (1/4))

=
1

(z − (1/4)) (z + (1/4))
= O

(
1
z2

)

as z → ∞. Thus, by the inequality (3.4.7), we get

0 ≤ − log r + O(1)

as r → ∞. This is a contradiction. Thus we need to consider the
maximum of |Δ(z)| for all choices of {α1, α2} from {1, 2, 3} to use
Cartan’s theorem. Since

Δ(1,3)(z) =
∣∣∣∣ 1 1
F ′

1/F1 F ′
3/F3

∣∣∣∣ = − 1
(z + (1/4))

+
1/4

z (z + (1/4))

= O

(
1
z

)
+ O

(
1
z2

)
= O

(
1
z

)
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as z → ∞ and

Δ(2,3)(z) =
∣∣∣∣ 1 1
F ′

2/F2 F ′
3/F3

∣∣∣∣ = − 1
(z − (1/4))

+
−1/4

z (z − (1/4))

= O

(
1
z

)
+ O

(
1
z2

)
= O

(
1
z

)

as z → ∞, the maximum of |Δ(z)| for all choices of {α1, α2} from
{1, 2, 3} is O(1/z) and not O(z−2).

The above consideration shows the sharpness of Cartan’s theorem: it
is really necessary to define w in the proof of Cartan’s theorem [1, p.
13] and S(r) in (3.1.7) as the maximum involving several determinants,
not only using one determinant. Hayman [9, p. 4] incorrectly quoted
Cartan’s theorem in terms of one determinant only. Luckily, he
estimated this one determinant in a cruder fashion than he could have,
and his cruder upper bound is, in fact, an upper bound for the required
maximum. Therefore the final conclusions of Hayman remain valid.
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