
ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 35, Number 6, 2005

THE ASYMPTOTIC GROWTH OF EQUIVARIANT
SECTIONS OF POSITIVE AND BIG LINE BUNDLES

ROBERTO PAOLETTI

1. Introduction. Let X be a complex manifold, say of dimension n,
and L an holomorphic line bundle on it. Suppose that a finite group G
acts holomorphically on X and that this action lifts to a holomorphic
action on L, so that for every x ∈ X and g ∈ G the induced map
Lx → Lgx is complex linear. Then G also acts on every tensor power
L⊗k, and thus it acts linearly on the spaces H0(X,L⊗k) of global holo-
morphic sections of L⊗k. Therefore, H0(X,L⊗k) splits G-equivariantly
in terms of the irreducible representations of G. Let H0(X,L⊗k)i be
the equivariant summand corresponding to the ith irreducible repre-
sentation. The first object of this paper is the asymptotic growth of
the dimension of H0(X,L⊗k)i as k → +∞, in the following two situa-
tions: i) X is complex projective and L is ample, and ii) X is complex
projective and L is big, that is, it has maximal Kodaira dimension. We
shall then discuss a generalization of this to the symplectic category.

In spite of its very short and simple proof, perhaps the main re-
sult of this article is Theorem 3, which deals with case i). This case
has been studied (in a broader algebraic formulation and with alge-
braic techniques) by various authors, see [13, 6, 7]; the two latter
papers deal with the actions of reductive groups. It follows from
this body of work that in our complex projective, ample situation
dimH0(X,L⊗k)i = aik

n + bik
n−1 + O(kn−2), where ai and bi are de-

scribed algebraically. Here we give, in terms of the Riemann-Roch
polynomial of L, an asymptotic estimate which is in many cases more
refined, if the dimension d of the locus of points in X with nontriv-
ial stabilizer in G is taken into account. More precisely, we give an
explicit asymptotic expansion with a remainder which is o(kd+1); this
is thus strictly more informative (of course, in our complex geometric
situation) if d ≤ n− 3, and equally fine if d = n− 2.

Our new approach is analytic and based on the study of the Szegő
kernel Π of L; the key ingredient is the off-diagonal estimate discussed
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in [8]. The use of Szegő kernels to study asymptotic properties in
algebraic geometry originates in [18] (see [16] for more results and
references), and is founded on Boutet de Monvel and Sjöstrand’s
microlocal description of Π [5].

Let us now come to a more detailed description of the results,
starting from case ii) for expository reasons. In this case, as in the
action free situation, there is generally no asymptotic expansion for
dimH0(X,L⊗k)i, but only a much cruder description of the asymptotic
growth of dimH0(X,L⊗k)i. Our arguments for this case are based on
an equivariant version of the arguments in [9].

Thus, let X be a smooth complex projective n-fold and L a big line
bundle onX, that is, having maximal Kodaira dimension: κ(X,L) = n.
After Fujita, the volume υ(L) = υ(X,L) is

υ(X,L) = lim sup
k→∞

n!
kn

h0(X,OX(kL)).

If L is ample, or more generally nef and big, υ(L) = (Ln), the self-
intersection number of L. The volume of a general big line bundle has
been studied in [11] and [9]; in particular, υ(L) has been given the
following geometric interpretation (Proposition 3.6 of [9]): Let (kL)

[n]

be the moving self-intersection number of kL, that is, the number of
intersection points away from the base locus of n general divisors in
the linear series |kL|. Then

υ(L) = lim sup
k→∞

(kL)
[n]

kn
.

Suppose now that a finite group G acts holomorphically on X, and
that the action linearizes to L. Let V1, . . . , Vc be the irreducible linear
representations of G. For every k, we have an induced linear action of G
on the space of global sections H0(X,L⊗k), and therefore an essentially
unique decomposition

(1) H0(X,L⊗k) =
c⊕

i=1

H0
i (X,L⊗k),

where each summand H0
i (X,L⊗k) is G-equivariantly isomorphic to a

direct sum of copies of Vi. For each i, set h0
i (X,L

⊗k) = dimH0
i (X,L⊗k)
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and then define the ith equivariant volume of L as

(2) υi(X,L) = lim sup
k→∞

n!
kn

h0
i (X,L

⊗k).

Here we shall study the volumes υi(L) and show, in particular, that

Theorem 1. In the above situation suppose in addition that the
action of G on X is faithful. Then for every i = 1, . . . , c we have

υi(L) =
dim(Vi)2

|G| υ(L).

For the trivial representation this has also been observed by Ein and
Lazarsfeld. Furthermore, if L is ample Theorem 1 follows from algebraic
results of Howe [13]; more generally, if L is big and numerically
effective, that is, L · C ≥ 0 for every projective curve C ⊆ X,
an algebro-geometric proof can be given applying the Riemann-Roch
theorem on the quotient orbifold X/G (I am indebted to M. Brion
and J.-P. Demailly for pointing out these approaches to me). Here
we follow, however, a different path, based first on an asymptotic
estimate of the equivariant Szegő kernels in the positive case (see
below for a precise definition), and next on an equivariant version of
Fujita’s approximation theorem to extend the result to arbitrary big
line bundles. This has the following advantages: First, as we explain
below, this approach applies very naturally to the context of almost
complex quantization of compact symplectic manifolds. Second, in
the ample case, it yields the lower order terms of the expansion of
h0

i (X,L
⊗k) in decreasing powers of k, Theorem 3, in terms of the

asymptotic expansion of the total Szegő kernel, and under suitable
assumptions on the dimension of the locus of points having nontrivial
stabilizer.

As hinted above, we can consider similarly defined invariants in the
broader context of almost complex quantization. Namely, let (X,ω) be
a compact symplectic manifold with [ω]/2π ∈ H2(X,Z), and let J be an
almost complex structure onX compatible with ω. The pair (ω, J) fixes
an Hermitian, hence a Riemannian, structure on X. Furthermore, by
the integrality assumption on ω, there exists an hermitian line bundle
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L on X, having a unitary connection ∇L of curvature −2πiω. Let
H(X,L⊗k) ⊂ C∞(X,L⊗k) be the subspace of the space of smooth
global sections of L⊗k introduced and studied in [2 4, 12, 16]. When
J is integral, ω a Hodge form on X, L an ample holomorphic line
bundle, and ∇L the unique unitary connection compatible with the
holomorphic structure, H(X,L⊗k) is the usual space of holomorphic
section of L⊗k. The dimension of H(X,L⊗k) is always given, for k 
 0,
by the Riemann-Roch formula, and the projective embeddings defined
by the linear series |H(X,L⊗k)| have a good asymptotic behavior [2,
16].

Suppose now that the finite group G acts faithfully on X as a group
of symplectomorphisms. We may choose in the above a G-invariant
compatible almost complex structure J , and then all the construc-
tion can be made equivariantly. Thus G acts linearly on H(X,L⊗k),
and there is a direct sum decomposition as in (1): H(X,L⊗k) =
⊕iHi(X,L⊗k). Setting h(X,L⊗k) = dimH(X,L⊗k), hi(X,L⊗k) =
dimHi(X,L⊗k), the ith volume of L is then defined as in (2): υi(L) =
lim supk→+∞(n!/kn)hi(X,L⊗k). As explained in Remark 2, the proof
of the following theorem is essentially the same as the proof of Theo-
rem 4 below.

Theorem 2. Let (X,ω) be a compact 2n-dimensional symplectic
manifold with [ω]/2π an integral cohomology class. Choose L, J and ∇
as described above. Suppose that the finite group G acts faithfully as a
group of symplectomorphisms on X, J is G-invariant, and the action
linearizes to L. Then

υi(L) =
dim(Vi)2

|G|
∫

X

ω∧n.

Let us now dwell on the lower order terms of the expansion of the
dimension of the covariant factors H0

i (X,L⊗k), in the case where X
is a complex projective manifold and L is ample. In the hypothesis of
Theorem 1, let V ⊂ X be the locus of points with non-trivial stabilizer.
Then V is a union of complex submanifolds of M ; let c be its complex
codimension.
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Theorem 3. In the hypothesis of Theorem 1, and with the above
notation, assume in addition that L is ample. Suppose s is an integer
with 0 ≤ s ≤ n− 1 and c > s. Then

h0
i (X,L

⊗k) − dim(Vi)2

|G| h0(X,L⊗k) = o(kn−s)

for every i = 1, . . . , c.

If V = ∅, i.e., the action of G on X is free, then

h0
i (X,L

⊗k) =
dim(Vi)2

|G| h0(X,L⊗k)

for every i = 1, . . . , c and k 
 0.

In particular, if c > s we may compute the first s terms in the
asymptotic expansion of H0

i (X,L⊗k) by integrating the first s terms
in the asymptotic expansion of the Szegő kernel of L restricted to
the diagonal, see below. In the projective case the first terms of this
expansion have been explicitly computed by Lu [14].

Notation. We shall occasionally loosely shift from multiplicative to
additive notation for line bundles. Furthermore, we shall generally
identify without warning an invertible sheaf with the associated line
bundle.

2. Proofs. To fix ideas, we focus on the complex projective case;
the general almost complex case is discussed in Remark 2. To ease the
exposition, in the following by a G-line bundle we shall mean a line
bundle on X to which the action of G linearizes.

Remark 1. If D is a G-invariant divisor on X (not necessarily
effective), then OX(D) is a G-line bundle. In particular, for any line
bundle H on X, ⊗g∈Gg

∗H is a G-line bundle in a natural manner,
(very) ample if so is H.

Before dealing with a general big line bundle, let us consider the
special case where L is ample.
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Theorem 4. Notation being as above (with X a complex projective
manifold of dimension n), assume again that the action of G on X is
faithful and in addition that L is an ample G-line bundle on X. Then
for every i = 1, . . . , c we have

υi(L) = lim
k→∞

n!
kn

h0
i

(
X,L⊗k

)
=

dim(Vi)2

|G| (Ln).

This is a special case of Theorem 3 (the case s = 0). We prove
it separately because it is just what is needed from the positive case
to prove Theorem 1 in full generality, and furthermore its proof also
establishes, with minor modifications, Theorem 2.

Proof. Let h = hL be an Hermitian metric on L such that the
curvature form ω of the unique compatible covariant derivative ∇L

on L is Kähler. After averaging over G, we may assume that h, ∇L

and ω are G-invariant. Thus ω is a G-invariant Kähler form, inducing
a G-invariant volume form dx on X.

Let L∗ = L−1 be the dual line bundle, with the induced Hermitian
structure and connection, and consider the unit disc bundle L∗ ⊃ S π→
X. Let iα ∈ Ω1

S(iR) be the connection form. Then dp =: π∗(dx)/2π∧α
is a G-invariant volume form on S. For every integer k ≥ 0, denote by

Pk : L2(S) −→ H̃k(S) ∼= H0(X,L⊗k)

the orthogonal projection onto the space of boundary values of holo-
morphic functions in the kth isotype with respect to the S1-action. For
each i = 1, . . . , c, let

Pk,i : L2(S) −→ H̃k,i(S) ∼= H0
i (X,L⊗k)

denote the orthogonal component onto the ith isotype of H̃k(S) with
respect to the G-action. Also, let Π̃k, Π̃k,i ∈ C∞(S×S) be the Schwartz
kernels of Πk and Πk,i, respectively. Clearly, Π̃k =

∑
i Π̃k,i and

H0
i (X,A⊗k) =

∫
S

Π̃k,i(p, p) dp.
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Now Π̃k(p, p) and Π̃k,i(p, p) descend to positive functions νk(x) and
νk,i(x) on X, [15, 16]. Hence,

υi(L) = lim sup
k→∞

n!
kn

∫
X

νk,i(x) dx.

As in [15], we decompose νk,i(x) as the sum of two terms, the first
being a multiple of νk(x) and the second growing at most as k(n−1)/2.
More precisely, if Gx ⊆ G is the stabilizer subgroup of x ∈ X and p ∈ S
is any point lying over x, we have
(3)

νk,i(x) =
dim(Vi)

|G| · (αk
x, χi)Gx

· νk(x) +
dim(Vi)

|G|
∑

g �∈Gx

χi(g)Π̃N(g−1p, p).

Here notation is as follows: χi : G → C is the character of the
irreducible representation Vi, αx : Gx → S1 ⊂ C∗ is the unitary
character describing the action of Gx on L(x) (the fiber of L over
x), and (h, k)Gx

=
∑

g∈Gx
f(g) · k(g) is the L2-Hermitian product with

respect to the counting measure on Gx. Furthermore, there exists a > 0
such that, setting dx = min{dist (x, gx) : g /∈ Gx}, the latter term is
bounded above by Ckne−a

√
k dx , see Section 6 of [8].

If, in particular, Gx = {e}, where e ∈ G is the unit, the former term
is (dim(Vi)2/|G|) · νk(x). Let us now recall the following simple useful
fact.

Lemma 1. Suppose that the finite group G acts faithfully and
holomorphically on the connected projective manifold X. Then there
is a nonempty Zariski dense open subset U ⊆ X such that Gx = {e}
for every x ∈ U .

Set Z = X \ U ; thus Z is a proper algebraic subvariety of X of
codimension, say, c. For ε > 0 let Vε ⊆ X be the ε-neighborhood
of Z in the geodesic distance associated to ω. Then Vε has volume
≤ Cε2c, where C is a constant. On the other hand, by the above and
the asymptotic expansion of νk(x) in Theorem 1 of [18], n! k−nνk,i(x)
is in any event a bounded function. Therefore,∣∣∣∣∣
n!
kn

∫
X

νk,i(x) dx− n!
kn

∫
X\Vε

νk,i(x) dx

∣∣∣∣∣ =
∣∣∣∣ n!
kn

∫
Vε

νk,i(x) dx
∣∣∣∣ ≤ Cε2c.
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There exists δ = δε > 0 such that dist (x, gx) > δ if x ∈ X \ Vε and
g �= e. Hence

n!
kn

∣∣∣∣∣
∫

X\Vε

νk,i(x) dx− dim(Vi)2

|G|
∫

X\Vε

νk(x) dx

∣∣∣∣∣ ≤ Ce−
√

k δ.

Summing up,
∣∣∣∣ n!
kn

∫
X

νk,i(x) dx− n!
kn

· dim(Vi)2

|G|
∫

X

νk(x) dx
∣∣∣∣ ≤ C(ε2c + e−

√
k δ).

Since n! k−n
∫

X
νk(x) dx → vol(L) = (Ln), the statement follows by

taking k 
 1/ε
 0.

Remark 2. The asymptotic expansions used in the proof also hold in
almost complex quantization [2, 15, 16], but the off-diagonal estimate
on the kth Fourier coefficient of the Szegő kernel from [8] has been
proved only in the complex projective case. However, in the more
general almost complex case we still have the estimate

|Πk(x, y)| ≤ Cνk(x)e−kdist(x,y)2/2 +O(k(n−1)/2),

from [2] and [16], which is still enough to prove the theorem. Further-
more, since G preserves the Riemannian structure on X associated to
ω and J , in place of Lemma 1 we may as well use Theorem 8.1 on page
213 of [17]: the set of all x ∈ X with non-trivial stabilizer is a finite
collection of proper submanifolds (the action being faithful). The same
argument, with minor changes, thus also proves Theorem 2.

Lemma 2. In the same hypothesis, let A and B be G-line bundles
on X, with A ample. Then H0

i (X,A⊗m⊗B) �= 0 for every i = 1, . . . , c
and m
 0.

Proof. Let H be any ample G-line bundle on X. Then, perhaps
after replacing H by H⊗k|G| for some fixed k 
 0, we may assume
that the linear series

∣∣H0(X,H)G
∣∣ (corresponding to the subspace of

G-invariant sections of H) is base point free. In fact, by [15], for any
i = 1, . . . , c and k 
 0 the base locus of

∣∣H0
i (X,H⊗k)

∣∣ is contained in
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the locus {x ∈ X : (αk
x, χi)Gx

= 0} (notation here is as in the proof of
Theorem 4, with L = H). If |G| divides k then (αk

x, χi) =
∑

g∈Gx
χi(g);

if Vi is the trivial representation this is |Gx| �= 0.

Let then V1, . . . , Vn−1 ∈ ∣∣H0(X,H)G
∣∣ be general divisors; their

complete intersection is a smooth G-invariant curve C ⊆ X. As A
is ample, for m
 0 the restriction

H0(X,A⊗m ⊗B) −→ H0(C,A⊗m ⊗B ⊗OC)

is a surjective G-equivariant linear map. Hence for every i = 1, . . . , c,
we have surjective maps

H0
i (X,A⊗m ⊗B) −→ H0

i (C,A⊗m ⊗ B ⊗OC).

On the other hand, A⊗m⊗B⊗OC = W⊗dm
m , where Wm is a line bundle

of degree one on C (hence ample) and dm = m(A · C) + (B · C). In
other words, for m
 0 and every i there are surjections

H0
i (X,A⊗m ⊗B) −→ H0

i (C,W⊗dm
m ).

Since Pic1(C) is compact, for any ε > 0 there is a uniform estimate

h0
i (C,W

⊗dm
m ) ≥ dm

(
dim(Vi)2

|G| − ε

)

for m ≥ mε. This completes the proof.

Lemma 3. Let X be a smooth complex projective n-fold, G a finite
group acting holomorphically on X and L a big G-line bundle on X.
Then for any G-line bundle H on X and any ε > 0 there exists m0 ∈ N
such that for every integer m ≥ m0 and every i = 1, . . . , c we have

υi

(
L⊗m ⊗H−1

)
≥ mn

(
υi(L) − ε

)
.

Proof. This extends to our setting Lemma 3.5 in [9], and the proof
only requires some slight modifications to the argument given there. Fix
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i ∈ {1, . . . , c} and ε > 0. By definition, there is a sequence kν ↑ +∞
such that

h0
i (X,L

⊗kν ) ≥ kn
ν

n!

(
υi(L) − ε

2

)
.

Fix m 
 0 and set �ν = [kν/m], rν = kν − �νm so that, in additive
notation,

�ν(mL−H) = kνL− (rνL+ �νH).

After replacing H by H⊗E for a suitably positive G-line bundle E on
X, we may suppose thatH is a very ample G-line bundle. Furthermore,
as in the proof of Lemma 2, perhaps after replacing H by a suitably
large tensor power of H⊗|G|, we may also assume that

∣∣H0(X,H)G
∣∣ is

base point free. Choose a smooth divisor D ∈ ∣∣H0(X,H)G
∣∣. Since D is

a G-invariant submanifold of X, perhaps after a change of linearization
we may also suppose that the bundle action of G on H is the natural
action on OX(D) induced by the action on k(X). Thus for every G-line
bundle A on X we have a G-equivariant isomorphism

H0(X,A(−D)) = H0(X,A⊗ ID) ∼= H0(X,A⊗H−1),

where IZ ⊆ OX denotes the ideal sheaf of a closed subscheme Z ⊆ X.
Furthermore, for every i = 1, . . . , c the short exact sequence of sheaves

0 −→ A(−D) −→ A −→ A⊗OD −→ 0

induces an exact sequence

(4) 0 −→ H0
i (X,A(−D)) −→ H0

i (X,A) → H0
i (D,A⊗OD).

Finally, by the statement of Lemma 2 we may also assume that
∣∣H0(X,H⊗b ⊗ L−r)G

∣∣ �= ∅,

for all integers 0 ≤ r ≤ m−1 and b ≥ 1. If σ ∈ H0(X,H⊗m⊗L−rν )G is
non-zero, in additive notation tensor product by σ determines injections

H0
i

(
X,L⊗kν (−(�ν +m)D)

)
↪→ H0

i

(
X,L⊗m�ν (−�νD)

)
for every ν; therefore,

hi

(
X,OX(�ν(mL− h))

) ≥ h0
i

(
X,OX(kνL− (�ν +m)h)

)
.
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Now we set A = L⊗kν (−jD) in (4) and proceed inductively as in loc.
cit., Lemma 3.5. More precisely, for any s > 0 the exact sequences

0 −→ L⊗kν (−(j + 1)D) −→ L⊗kν (−jD) −→ L⊗kν (−jD) ⊗OD −→ 0

for 0 ≤ j < s imply

h0
i

(
X,L⊗kν (−sD)

) ≥ hi

(
X,L⊗kν

) − ∑
0≤j<s

h0
i

(
D,L⊗kν (−jD) ⊗OD

)

≥ h0
i

(
X,L⊗kν

) − s h0(D,L⊗kν ⊗OD)

≥ kn
ν

n!

(
υi(L) − ε

2

)
− sCkn−1

ν .

The statement follows as in [9] by letting �ν 
 m
 1.

In particular, if L is any big G-line bundle on X, for any ε > 0 there
is m0 ∈ N such that

(5) υi(L) ≥ m−nυi(mL) ≥ υi(L) − ε

for every integer m ≥ m0. Unless Vi is the trivial representation,
the spaces H0

i (X,L⊗k) do not form a graded linear series. Therefore
homogeneity of υi does not follow directly from Lemma 3.4 of [10].

Lemma 4. Let L be an nef and big G-line bundle on X. Then

υi(L) =
dim(Vi)2

|G| (Ln).

Proof. By the definition of υi,
∑

i υi(L) ≥ υ(L). Fix rational numbers
ε, δ > 0 and let A be an ample G-line bundle on X. Let r 
 0
be an integer such that rδ ∈ N. By choosing r sufficiently large
and divisible, we may assume that there exists a G-invariant non-zero
section σ ∈ H0

(
X,OX(rδA)

)G. Tensor product by σ determines for
every i injective maps

H0
i (X,OX(rL)) ↪→ H0

i (X,OX(r(L+ δA)).
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Since L+ δA is ample, for r 
 0 we have

dim(Vi)2

|G| rn
(
(L+ δA)n

)
= υi

(
r(L+ δA)

) ≥ υi(rL) ≥ rn(υi(L) − ε),

and taking ε and δ arbitrarily small we conclude that

dim(Vi)2

|G| (Ln) ≥ υi(L)

for every i. Thus, since
∑

i dim(Vi)2 = |G|,

υ(L) = (Ln) =
∑

i

dim(Vi)2

|G| (Ln) ≥
∑

i

υi(L) ≥ υ(L).

This implies the statement.

Lemma 5. Let L be any big G-line bundle on X. Then υi(L) > 0
for every i = 1, . . . , c.

Proof. Fix m
 0 with dimφm(X) = n, where

φm : X− −→ PH0(X,L⊗m)∗

is the rational map associated to the linear series |L⊗m|. Let ψ : X ′ →
X be a G-equivariant resolution of singularities of |L⊗m| [1]. Then

|ψ∗(L⊗m)| = |M | + F,

where F is the fixed divisor of |ψ∗(L⊗m)| and M is a base point free
(hence nef) big G-line bundle on X ′. For every k we have G-equivariant
injective maps

H0
(
X ′,M⊗k

) −→ H0
(
X ′, ψ∗(L⊗mk)

) ∼= H0(X,L⊗mk).

Therefore, υi(L) ≥ m−nυi(L⊗m) ≥ m−nυi(M) for every i. The
statement then follows from the nef and big case of Lemma 4.
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Lemma 6. Let L be a big G-line bundle on X. Then for every
i = 1, . . . , c and every m
 0 there exists D ∈ |H0

i (X,L⊗m)| which can
be written as D = A+E, where A ⊂ X is a G-invariant ample divisor
and E ⊂ X is an effective divisor such that OX(E) is an effective
G-line bundle with E ∈ |H0

i (X,OX(E))|.

Proof. Fix a G-invariant very ample smooth divisor A ⊆ X, and let
σ ∈ H0(X,OX(A))G be a section with A = div (σ). Consider the short
exact sequence

0 −→ H0
i

(
X,L⊗m(−A)

) ⊗σ−→ H0
i (X,L⊗m) −→ H0

i (A,L⊗m ⊗OA).

By Lemma 5, H0
i (X,L⊗m) = O(mn); since H0

i (A,L⊗m ⊗ OA) ≤
Cmn−1, we conclude that H0

i (X,L⊗m(−A)) �= 0 for m
 0.

By taking Vi to be the trivial representation, we see in particular
that there exists D ∈ |L| of the form D = A + E, where A and E are
G-invariant Q-divisors, with A ample and E effective. If m ∈ N is
such that mA and mE are integral, we obtain G-invariant injections
H0(X,OX(mkA)) → H0(X,L⊗km) for every k, whence

υi(L) ≥ m−nυi(L⊗m) ≥ m−nυi

(OX(mA)
)

= m−n dim(Vi)2

|G|
(
(mA)n

)
=

dim(Vi)2

|G| (An).

Similarly, of course, υ(L) ≥ (An).

Theorem 1 is now a consequence of the following equivariant version
of a theorem of Fujita [9, 11].

Theorem 5. Let X be a smooth projective n-fold, G a finite group
acting holomorphically and faithfully on X. Let L be a big G-line
bundle on X. Fix ε > 0. Then there exists a G-equivariant birational
modification, depending on ε,

μ : X ′ −→ X

and a decomposition μ∗(L) ≡ E + A, where E and A are G-invariant
Q-divisor on X ′, with E effective and A ample, such that (An) ≥
υ(X,L) − ε and dim(Vi)2/|G|(An) ≥ υi(X,L) − ε.
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Proof. By Fujita’s theorem, for every ε > 0 there exist a birational
modification μ : X ′ → X and a decomposition μ∗(L) ≡ A + E,
with Q-divisors A and E, ample and effective respectively, such that
(An) ≥ υ(X,L) − ε. Thus, in order to ensure the second inequality
for every i we need only give an equivariant version of the proof in [9],
Theorem 3.2.

To this end, it suffices to produce for every ε > 0 a birational
modification μ : X ′ → X and a decomposition μ∗(L) ≡ A + E,
where A and E are G-invariant Q-divisors on X ′, A is big and nef
and E is effective, satisfying the stated numerical conditions. In fact,
by Lemma 6, A ≡ A′ + D, where A′ and D are ample and effective
G-invariant divisors, respectively. Therefore, for any δ ∈ Q+ we have
A+E ≡ A′′ + F , where A′′ = (1− δ)A+ δA′ is ample, F = E + δD is
effective and ((A′′)n) approximates (An) as closely as desired.

Let B be a G-line bundle on X, so positive that R =: KX ⊗B⊗(n+1)

is very ample and H(X,R)G �= {0}, Lemma 2. Fix a nonzero section
σ ∈ H(X,R)G and set Mm = L⊗m⊗R−1. Then for m sufficiently large
Mm is a big G-line bundle and υi(Mm) ≥ mn(υi(L) − ε), Lemma 3.
Tensoring with σ⊗� determines for every � ≥ 1 and i = 1, . . . , c,
injective linear maps

H0
i

(
X,OX(M⊗�

m )
) −→ H0

i

(
X,OX(L⊗�m)

)
,

whence υi(L⊗m) ≥ υ(Mm). Summing up,

mnυi(L) ≥ υi(L⊗m) ≥ υi(Mm) ≥ mn
(
υi(L) − ε

)
.

Let us now consider the asymptotic multiplier ideal [9]

J = J (X, ||Mm||).

Then J = J (|kMm|/k) = J (bkMm
/k) for k 
 0, where bkMm

⊂ OX

is the base ideal of the linear series
∣∣M⊗k

m

∣∣. As Mm is a G-line bundle,
J is a G-invariant ideal sheaf. Let μ : X ′ → X be a G-equivariant
log-resolution of J [1], so that μ∗J = OX′(−Em) for some G-invariant
effective divisor Em on X ′.

Since

L⊗m ⊗ J (||Mm||) = Mm ⊗KX ⊗B⊗(n+1) ⊗ J (||Mm||),
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is globally generated by Theorem 1.8 of [9], so is the G-line bundle
Am =: μ∗(L⊗m)(−Em) on X ′. Since all the sheaves involved are G-
sheaves and σ and Em are G-invariant, using Theorem 1.8 (iii) of loc.
cit., subadditivity and tensor product by σ⊗� we have a chain of G-
equivariant inclusions

H0
(
X,M⊗�

m

) ∼= H0
(
X,M⊗�

m ⊗ J (||M⊗�||)) ⊆ H0(X,M⊗�
m ⊗ J �)

⊆ H0(X,L⊗m� ⊗ J �) ⊆ H0(X ′, L⊗m�(−�Em))
= H0(X ′, A⊗�

m ).

Thus Am is an nef and big G-line bundle on X ′; we have

(An
m) = υ(X ′, Am) ≥ υ(X,Mm) ≥ mn

(
υ(L) − ε

)
and

dim(Vi)2

|G| (An
m) = υi(X ′, Am) ≥ υi(X,Mm) ≥ mn

(
υi(L) − ε

)

for every i = 1, . . . , c. Now we are done. We need only choose some
Dm ∈ ∣∣H(X ′, Am)G

∣∣ and set A = Dm/m, E = Em/m.

3. Proof of Theorem 3. By Theorem 8.1 on page 213 of [17], V
is a union of submanifolds. If H ⊂ X is a subgroup and VH ⊂ X is the
submanifold of the points fixed byH, around any p ∈ VH there are local
coordinates in terms of which every g ∈ H is a linear transformation,
and therefore VH is a linear subspace. Therefore, H acts freely on
the unit sphere bundle of the normal bundle of VH , and this implies
that there is a > 0 such that dist (gx, x) ≥ a dist (x, VH), for any x
sufficiently close to VH and every g ∈ H\{e}. It follows, in the notation
of the theorem, that there exists a > 0 such that if x �∈ Vε for sufficiently
small ε > 0, then dist (gx, x) ≥ aε for g �= e (e is the neutral element
of G). The constants involved in the coming estimates will be allowed
to vary from line to line without mention.

In view of the above and the off-diagonal estimate on the Szegő kernel
discussed in Section 6 of [8], if x /∈ Vε and g �= e, then

|Πk(gx, x)| ≤ Ckne−a
√

k ε.
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Arguing as in the proof of Theorem 1, we have the following estimates:

∣∣∣∣h0
i (X,L

⊗k) − dim(Vi)2

|G| h0(X,L⊗k)
∣∣∣∣

=
∣∣∣∣
∫

X

(
νk,i(x) − dim(Vi)2

|G| νk(x)
)
dx

∣∣∣∣
≤

∫
Vε

∣∣∣∣νk,i(x) − dim(Vi)2

|G| νk(x)
∣∣∣∣ dx

+
∫

X\Vε

∣∣∣∣νk,i(x) − dim(Vi)2

|G| νk(x)
∣∣∣∣ dx

≤ Ckn(ε2c + e−a
√

k ε).

If now α ∈ (s/c, 1) and ε = k−α/2, we have kn(ε2c +e−a
√

k ε) = o(kn−s)
as k → ∞.

Acknowledgments. I am grateful to M. Brion, J.-P. Demailly and
S. Zelditch for many interesting remarks.
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Bergman et de Szegő, Astérisque 34 35 (1976), 123 164.

6. M. Brion, Sur les modules de covariants, Ann. Sci. École Norm. Sup. (4) 26
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