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WEIGHTED COMPOSITION OPERATORS ON
NON-LOCALLY CONVEX WEIGHTED SPACES

L. OUBBI

ABSTRACT. Let (A, τ) be a topological vector space, X
and Y Hausdorff completely regular spaces and V and U Nach-
bin families on X and Y respectively. For a pair of maps
ϕ : Y → X and ψ : Y → L(A), L(A) being the vector space
of continuous operators from A into itself, we study the con-
ditions under which the corresponding weighted composition
operator ψCϕ, assigning to each f ∈ CV (X,A) the function
y �→ ψy(f ◦ ϕ(y)), maps a subspace E of CV (X,A) contin-
uously into another given subspace F of CU(Y,A). We also
examine when ψCϕ is bounded, (locally) equicontinuous or
(locally) precompact from E into F .

1. Introduction. The weighted composition operators uCϕ :
f �→ uf ◦ ϕ on the Banach algebra C(K) of scalar-valued continuous
functions on a compact space K were studied by Kamowitz in [8];
where u ∈ C(K) and ϕ : K → K is a continuous self map on K.
Since then, numerous papers were published in connection with the
subject in the scalar case and in the vector-valued one [6, 7, 10, 12,
15, 21, 22], etc. In the scalar case, Singh and Summers [21] studied
the composition operators Cϕ on the Nachbin weighted spaces CV (X)
and CV0(X), X being a Hausdorff completely regular space and V a
Nachbin family on X. The so-called extended composition operators
between weighted spaces were the subject of [14].

Jeang and Wong [7] dealt with the weighted composition operators
uCϕ : f �→ uf◦ϕ from C0(X) into C0(Y ), whereX and Y are Hausdorff
locally compact spaces, u ∈ C(Y ) and ϕ a map from Y into X. For
special function spaces, namely the Banach spaces of analytic functions
on the unit disk, the multiplication operators were the subject of [4].

In the vector-valued setting, Jamison and Rajagopalan [6] considered
the weighted composition operators ψCϕ on the Banach space C(K,A),
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where K is a compact space, A a Banach space, ϕ a self map on X and
ψ an L(A)-valued function on K.

Such operator-valued weighted composition operators from the space
Cp(X,A) of all A-valued continuous functions f such that f(X) is
precompact were studied in [22] for an arbitrary completely regular
space X and any locally convex space A.

For weighted spaces CV (X,A) with A non-locally convex, the
weighted composition operators were studied mainly in [10, 12, 13]
and [19].

In this paper, we deal with weighted composition operators ψCϕ from
a given subspace E of CV (X,A) into another subspace F of some
CU(Y,A), A being an arbitrary Hausdorff topological vector space, Y
a Hausdorff completely regular space and U a Nachbin family on Y .
In Section 2 we produce some preliminaries and notations, while in
Section 3, we characterize those weighted composition operators which
map E continuously into CU(Y,A), into CU0(Y,A) or into an arbitrary
F ⊂ CU(Y,A). Section 4 is devoted to the conditions under which ψCϕ
is bounded, (locally) equicontinuous or (locally) precompact.

Note that, in most of the works on weighted spaces, essentiality as
defined by Prolla in [17] plays an important role. Here, we release this
condition and then cover many more situations.

2. Preliminaries. Throughout this paper, A will be a Hausdorff
topological vector space over the field K (= R or C) and N (or NA if
any confusion might occur) the collection of all closed, shrinkable and
circled 0-neighborhoods in A. This constitutes a fundamental system
of 0-neighborhoods [11]. Recall that a subset G of A is shrinkable if
rcl (G) ⊂ int (G) for every 0 ≤ r < 1, where cl (G) denotes the closure
of G in A and int (G) its interior. For every G ∈ N , PG will be the
gauge of G. This is

PG(a) = inf{α > 0 : a ∈ αG}, a ∈ A.

It is clear that PG(λa) = |λ|PG(a) for every a ∈ A and λ ∈ K.
Moreover, if H ∈ N enjoys H +H ⊂ G, then

PG(a+ b) ≤ PH(a) + PH(b), a, b ∈ A.
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A linear map T : A→ A is continuous if, and only if, for every G ∈ N ,
there is H ∈ N such that

PG(T (a)) ≤ PH(a), for all a ∈ A.

The algebra of all continuous operators from a topological vector space
C into A is denoted by L(C,A). If C = A, we just write L(A). If B is
a collection of subsets of C, we will denote by LB(C,A) the set of those
T ∈ L(C,A) which are bounded on the members of B. LB(C,A) will be
equipped with the topology τB of uniform convergence on the members
of B. A fundamental system of 0-neighborhoods for τB is given by all
the intersections of finitely many sets of the form

N(B,G) := {T ∈ LB(C,A) : T (B) ⊂ G}, G ∈ N , B ∈ B.
If B consists of the finite (respectively bounded, precompact) sets, we
will denote LB(C,A) by Lσ(C,A) (respectively Lβ(C,A), Lc(C,A))
and τB by τσ (respectively τβ, τc). When C = A, we drop it from the
notations and write LB(A).

A Nachbin family on a Hausdorff completely regular space X is any
collection V of non-negative upper semi-continuous functions onX such
that, for every x ∈ X, some v ∈ V exists so that v(x) > 0 and, for every
v1, v2 ∈ V and λ > 0, there is some v ∈ V such that λvi ≤ v, i = 1, 2.
With such a family V is associated the so-called weighted space

CV (X,A) := {f : X −→ A continuous; (vf)(X) is bounded in A,
for all v ∈ V }.

This space is linearly topologized, see [1] and [9], by considering as a
fundamental system of neighborhoods of zero all the sets of the form

BG,v := {f ∈ CV (X,A); (vf)(X) ⊂ G},
G running over N and v over V . The gauge of such a set is denoted by
PG,v. This is

PG,v(f) := sup{v(x)PG(f(x)), x ∈ X}, f ∈ CV (X,A).

A remarkable subspace of CV (X,A) is

CV0(X,A) := {f ∈ CV (X,A); v(PG ◦ f) vanishes at infinity,
for all v ∈ V, G ∈ N}.
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If we set for a non-negative function u on X and ε > 0,

N(u, ε) := {x ∈ X : u(x) ≥ ε} and Nu := {x ∈ X : u(x) > 0},

then a continuous function f belongs to CV0(X,A) if, and only if, for
every v ∈ V , G ∈ N and ε > 0, the set N(vPG ◦ f, ε) is compact.
Finally, following [1], X is called a VR-space if a real-valued function
on X is continuous whenever its restriction to each N(v, ε) is, v ∈ V
and ε > 0, see [1 3] for more details.

Henceforth, X and Y will be Hausdorff completely regular spaces
and V and U Nachbin families on X and Y respectively. A linear map
T from CV (X,A) into CU(Y,A) is continuous if, and only if, for all
u ∈ U , G ∈ N , there exists v ∈ V , H ∈ N :

PG,u(T (f)) ≤ PH,v(f), f ∈ CV (X,A).

The set of all A-valued functions on Y will be denoted by F(Y,A) while
C(Y,A) will be that of all the continuous ones. With arbitrary maps
ψ : Y → L(A) and ϕ : Y → X is associated the linear map ψCϕ defined
from CV (X,A) into F(Y,A) by ψCϕ(f)(y) = ψy(f(ϕ(y))). This map
will be called the weighted composition operator associated with ψ and
ϕ. From now on, E will be a linear subspace of CV (X,A) and coz (E)
its cozero set. This is:

coz (E) := {x ∈ X; f(x) 	= 0 for some f ∈ E}.

We will also consider the sets:

YE,ϕ := {y ∈ Y : ϕ(y) ∈ coz (E)} = ϕ−1(coz (E)),
YE,ϕ,ψ := coz (ψCϕ(E)).

The set YE,ϕ, respectively YE,ϕ,ψ , is an open subset of Y whenever
Cϕ(E) ⊂ C(Y,A), respectively ψCϕ(E) ⊂ C(Y,A), where Cϕ is the
composition operator f �→ f ◦ ϕ. Finally, E will be said to satisfy the
property (M) if, for every a ∈ A, G ∈ N and f ∈ E, the function
PG ◦ f ⊗ a : x �→ PG(f(x))a belongs to E. It is easily seen that,
whenever E satisfies (M), the following equality holds:

YE,ϕ,ψ = YE,ϕ ∩ coz (ψ).
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The spaces CV (X,A) itself and CV0(X,A) as well as many other
subspaces of CV (X,A) satisfy (M).

3. Continuous weighted composition operators. In this section
we study the continuity of ψCϕ from E into a subspace F of CU(Y,A).
Since ψCϕ(f) must then be continuous on Y for every f ∈ E, we first
provide instances in which this is realized. For this purpose, let γ be a
property a net from Y may or may not satisfy. Any net satisfying γ will
be called a γ-net. A function from Y into an arbitrary topological space
is γ-continuous if, for every y ∈ Y and every γ-net (yi)i converging to
y, the net (f(yi))i converges to f(y). We will say that Y is a γR-space,
if every γ-continuous function from Y into R or into any completely
regular space is continuous. At this point, it is worthwhile to recall that
the classical kR-spaces as well as the sequential, the pseudo-compact
and the VR-spaces enter in this category, see [15] for more details.
For such a property γ, denote by Lγ(A) the algebra consisting of all
continuous operators on A which are bounded on the converging γ-nets
of A, endowed with the topology of uniform convergence on such nets.
In the sequel, we will assume, in addition, that every constant net is
a γ-net and that γ is defined also in A and is conserved by A-valued
continuous functions.

Proposition 1. Let f : X → A be a map such that Cϕ(f) ∈ C(Y,A).
Under each of the following conditions ψCϕ(f) belongs to C(Y,A):

1. Y is a γR-space for some γ and ψ maps Y continuously into
Lγ(A).

2. ψ maps Y continuously into Lσ(A) and every y ∈ Y possesses
some neighborhood whose image by ψ is equicontinuous on A.

Proof. Let y0 ∈ Y and G ∈ N be given. Choose H ∈ N so that
H +H ⊂ G.

1. Since ψy0 is continuous, there exists K ∈ N with K ⊂ H and
ψy0(K) ⊂ H. In order to show that ψCϕ(f) is continuous, it suffices
to show that it is γ-continuous. Let then (yi)i∈I be a γ-net converging
to y0. Since f ◦ ϕ is continuous, the net (f ◦ ϕ(yi))i is a γ-net and the
set

N(C,K) := {T ∈ Lγ(A) : T (C) ⊂ K}
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is a 0-neighborhood in Lγ(A), where C := {f ◦ ϕ(yi), i ∈ I}. Then
there is a neighborhood Ω of y0 such that, for every y ∈ Ω, (ψy−ψy0) ∈
N(C,K). Therefore

(ψy − ψy0)(f ◦ ϕ(yi)) ∈ K, i ∈ I, y ∈ Ω.

But yi tends to y0. Then there exists i1 ∈ I so that yi ∈ Ω whenever
i ≥ i1. As f ◦ ϕ is continuous, there is some i2 ∈ I with

f ◦ ϕ(yi) − f ◦ ϕ(y0) ∈ K, for all i ≥ i2.

Now, for i ∈ I larger than both i1 and i2, we have

ψyi
(f ◦ ϕ(yi)) − ψy0(f ◦ ϕ(y0)) = (ψyi

− ψy0)(f ◦ ϕ(yi))
+ ψy0 (f ◦ ϕ(yi) − f ◦ ϕ(y0))

∈ K +K ⊂ G.

whence the γ-continuity of ψCϕ(f) at y0 and then everywhere.

2. Let Ω1 be a neighborhood of y0 so that ψ(Ω1) is equicontinuous on
A. Then there exists K ∈ N contained in H and satisfying ψy(K) ⊂ H
for all y ∈ Ω1. Since f ◦ ϕ and ψ are continuous at y0, there exists
another neighborhood Ω2 of y0 such that:

(f ◦ϕ(y)− f ◦ϕ(y0)) ∈ K and (ψy −ψy0)(f ◦ϕ(y0)) ∈ K, y ∈ Ω2.

For every y ∈ Ω := Ω1 ∩ Ω2, one has

ψy (f ◦ ϕ(y)) − ψy0 (f ◦ ϕ(y0)) = ψy (f ◦ ϕ(y) − f ◦ ϕ(y0))
+ (ψy − ψy0) (f ◦ ϕ(y0))

∈ ψy(K) +K

⊂ H +H ⊂ G.

Whence the continuity of ψCϕ(f).

According to Proposition 1, ψCϕ(f) belongs to C(Y,A) whenever
Cϕ(f) and ψ : Y → Lβ(A) are continuous and Y is a kR−, a bR−, a
pseudo-compact, or a sequential space.
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The fact that Cϕ(E) ⊂ C(Y,A), respectively ψCϕ(E) ⊂ C(Y,A),
forces ϕ, respectively ψ, to be continuous on YE,ϕ, as we will see next.

Proposition 2. 1. If E is a Cb(X)-module and Cϕ(E) ⊂ C(Y,A),
then ϕ is continuous on YE,ϕ.

2. If E satisfies (M) and Cϕ(E) ∪ (ψCϕ)(E) ⊂ C(Y,A), then ψ is
σ-continuous on YE,ϕ.

Proof. Let y0 ∈ YE,ϕ. Then there are f0 ∈ E and K ∈ N such that
PK(f0(ϕ(y0))) = 1.

1. Let Ω be a neighborhood of ϕ(y0) and choose g ∈ Cb(X) so that
g(ϕ(y0)) = 1, 0 ≤ g ≤ 1 and supp g ⊂ Ω. Since E is a Cb(X)-module,
gf0 belongs to E. Then [g(PK ◦ f0)] ◦ ϕ is continuous on Y . Hence

Λ :=
{
y ∈ Y :

1
2
< g(ϕ(y))PK(f0(ϕ(y))) <

3
2

}

is open and contains y0. Since supp g ⊂ Ω, ϕ(y) ∈ Ω for all y ∈ Λ.
Hence ϕ(Λ) ⊂ Ω, whereby ϕ is continuous at y0 and then on the whole
YE,ϕ.

2. Let G ∈ N and a ∈ A. We have to find a neighborhood Ω
of y0 so that ψy(a) − ψy0(a) ∈ G for all y ∈ Ω. Consider H ∈ N
with H + H + H ⊂ G. The continuity of y �→ PK(f0(ϕ(y))) yields a
neighborhood Ω1 of y0 such that∣∣∣∣ 1

PK(f0(ϕ(y)))
− 1

∣∣∣∣ < 1
2
, y ∈ Ω1.

By our assumption, PK◦f0⊗a belongs toE and y �→ ψy(PK(f0(ϕ(y)))a)
is continuous at y0. Hence some neighborhood Ω ⊂ Ω1 exists so that

ψy(PK(f0(ϕ(y)))a)− ψy0(PK(f0(ϕ(y0)))a) ∈ 1
PH(ψy0(a)) + 1

H,

∀ y ∈ Ω.
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Hence

ψy(a) − ψy0(a) =
1

PK(f0(ϕ(y)))

× [ψy(PK(f0(ϕ(y))a))− ψy0(PK(f0(ϕ(y0))a))]

+
[

1
PK(f(ϕ(y)))

− 1
]
ψy0(a)

∈ 2H +H ⊂ H +H +H ⊂ G

Hence ψ is continuous at y0 and then on YE,ϕ.

The continuity of ψCϕ from E into CU(Y,A) does not imply that
of ϕ on YE,ϕ in general. Such a situation occurs for example if
ψ : Y → L(A) is a constant function with a non one-to-one value T
and E := {f ∈ CV (X,A) : f(X) ⊂ kerT}. Then E is a Cb(X)-module
and coz (E) = coz (CV (X)). Moreover, ψCϕ = 0 is continuous. But
ϕ need not be, since it is arbitrary. Notice that E does not enjoy the
property (M).

Now, we are going to characterize the continuous operators ψCϕ from
a subspace E of CV (X,A) into CU(Y,A).

Theorem 3. Assume that E ⊂ CV (X,A) is a Cb(X)-module
satisfying (M) and that ψCϕ(E) ⊂ C(Y,A). Then ψCϕ is continuous
from E into CU(Y,A) if, and only if, the following condition holds.
For all G ∈ N , u ∈ U , there exists H ∈ N , v ∈ V :

(1) u(y)PG(ψy(a)) ≤ v(ϕ(y))PH(a), for all a ∈ A, y ∈ YE,ϕ.

Proof. Necessity. Since ψCϕ : E → CU(Y,A) is continuous, for every
G ∈ N and u ∈ U , there exist H ∈ N and v ∈ V such that

PG,u(ψCϕ(f)) ≤ PH,v(f), f ∈ E.

Then for every y ∈ Y , one has

u(y)PG(ψy(f(ϕ(y))) ≤ sup{v(x)PH(f(x)), x ∈ X}.
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Let y0 be given in YE,ϕ. There is some f ∈ E such that f(ϕ(y0)) 	= 0.
Then we may (and do) take f and H so that PH(f(ϕ(y0))) = 1.
Consider then the open neighborhood

Un :=
{
x ∈ X : v(x) < v(ϕ(y0)) +

1
n

and PH(f(x)) < 1 +
1
n

}

of ϕ(y0) and take a continuous functions gn ∈ Cb(X) such that
gn(ϕ(y0)) = 1, 0 ≤ gn ≤ 1 and supp gn ⊂ Un. Since E is a Cb(X)-
module and satisfies (M), the function gnPH ◦ f ⊗ a belongs to E for
arbitrary a ∈ A. Hence we have

u(y0)PG(ψy0(a)) ≤
(
v(ϕ(y0)) +

1
n

)(
1 +

1
n

)
PH(a).

As n tends to infinity, we get

u(y0)PG(ψy0(a)) ≤ v(ϕ(y0))PH(a),

which is the required inequality.

Sufficiency. Let f ∈ E, G ∈ N and u ∈ U be given. By (1), there
exist v ∈ V and H ∈ N so that

(2) u(y)PG(ψy(f(ϕ(y)))) ≤ v(ϕ(y))PH(f(ϕ(y))), for all y ∈ Y.

Therefore,

PG,u(ψCϕ(f)) := sup{u(y)PG(ψy(f(ϕ(y)))), y ∈ Y }
≤ sup{v(ϕ(y))PH(f(ϕ(y))), y ∈ Y }
≤ PH,v(f) < +∞.

This shows that ψCϕ(f) ∈ CU(Y,A) and, since f is arbitrary in E,
that ψCϕ is continuous.

It follows from Theorem 3 that, for any Cb(X)-module E ⊂ CV (X,A)
satisfying (M), if coz (E) = coz (CV (X,A)) and ψCϕ(CV (X,A)) ⊂
C(Y,A), then ψCϕ maps CV (X,A) continuously into CU(Y,A) if, and
only if, the same holds for E.
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Whenever ψCϕ(f) is continuous for some f , (1) implies that ψCϕ(f)
belongs to CU(Y,A). However, (1) does not imply the continuity of
ψCϕ(f) although f, ψ and ϕ are all continuous. Such an example is
obtained by taking X = Y = N̂ the one point compactification of
N, V = U the collection of all non-negative functions vanishing on X
except on a finite set, ϕ the identity map and A = C[0, 1] with the
norm of L1[0, 1]. Let (gn)n be a null sequence in A such that (gnfn)n
does not converge to 0 for some other null sequence (fn)n. Define ψ by
ψ(n) = Lgn

: f �→ fgn for n ∈ N and ψ(∞) = 0. Then ψ is continuous
from X into Lσ(A) such that (1) is fulfilled, for ||ψy(h)|| ≤ ||ψy||∞||h||,
h ∈ A. Nevertheless, for f ∈ CV (X,A) defined by f(n) = fn for n ∈ N
and f(∞) = 0, ψCϕ(f) is not continuous at ∞, since fngn does not
converge to 0.

Next, we will examine when ψCϕ is a continuous weighted composi-
tion operator ranging in a smaller subspace F of CU(Y,A). We first
look at the case F = CU0(Y,A). To this aim, let us set

Cst (E) := {K ⊂ X : ∀ a ∈ A, ∃f ∈ E with f = a identically on K}.
It is easily seen that every v ∈ V is bounded on every K ∈ Cst(E).

Theorem 4. Let E ⊂ CV (X,A) be a Cb(X)-module satisfying (M)
such that ψCϕ(E) ⊂ C(Y,A). Assume that, for every v ∈ V , G ∈ N ,
f ∈ E and ε > 0, N(vPG ◦ f, ε) ∈ Cst(E) and f(N(vPG ◦ f, ε)) is
precompact in A. Then ψCϕ is continuous from E into CU0(Y,A) if,
and only if, (1) in Theorem 3 holds and

ϕ−1(K) ∩ {y ∈ Y : u(y)PG(ψy(a)) ≥ ε}
is relatively compact, for all K ∈ Cst(E), G ∈ N , u ∈ U , a 	= 0 and
ε > 0.

Proof. Necessity. (1) follows from Theorem 3. Now, assume that
K ∈ Cst(E) and let u ∈ U , G ∈ N , a ∈ A \ {0} and ε > 0 are given.
Choose f ∈ E such that f = a identically on K. As ψCϕ(f) belongs
to CU0(Y,A), the set

S := {y ∈ Y : u(y)PG (ψy(f(ϕ(y)))) ≥ ε}
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is compact and contains

ϕ−1(K) ∩ {y ∈ Y : u(y)PG(ψy(a)) ≥ ε}.
Hence the latter is relatively compact.

Sufficiency. Let f ∈ E, G ∈ N , u ∈ U and ε > 0 be arbitrary
and consider again the set S defined as above. Let H ∈ N satisfy
H +H ⊂ G. By (1), there are I ∈ N and v ∈ V with

u(y)PH (ψy(a)) ≤ v(ϕ(y))PI(a), a ∈ A, y ∈ YE,ϕ.

But K := N(vPI ◦ f, (ε/2)) belongs to Cst (E) and satisfies ϕ(S) ⊂ K.
In order to show that ψCϕ(f) belongs to CU0(Y,A), it suffices to show
that S is contained in some union of finitely many sets of the form

Ci :=
{
y ∈ Y : u(y)PH(ψy(ai)) ≥ ε

2

}

for some ai ∈ A \ {0}. But f(ϕ(S)) is contained in f(K) which
is precompact, then it is itself precompact in A. Thus there are
y1, . . . , yn ∈ S such that

f(ϕ(S)) ⊂
n⋃
i=1

(
f(ϕ(yi)) +

ε

2m
I

)
,

with m = sup{v(x), x ∈ K}. Then, for y ∈ S, there is some
i ∈ {1, . . . , n} so that

v(ϕ(y))PI(f(ϕ(y)) − f(ϕ(yi))) ≤ ε

2
.

By (1), We get

u(y)PH (ψy(f(ϕ(y))− ψy(f(ϕ(yi))) ≤ ε

2
.

Therefore,

ε ≤ u(y)PG (ψy(f(ϕ(y))))
≤ u(y)PH [ψy(f(ϕ(y)) − ψy(f(ϕ(yi))] + u(y)PH (ψy(f(ϕ(yi))))

≤ ε

2
+ u(y)PH (ψy(f(ϕ(yi)))) ,
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whereby
ε

2
≤ u(y)PH (ψy(f(ϕ(yi)))) ,

and consequently

S ⊂
n⋃
i=1

{
y ∈ Y : u(y)PH(ψy(ai)) ≥ ε

2

}
, with ai := f(ϕ(yi)).

To prove the continuity of ψCϕ, just proceed as at the end of the proof
of Theorem 3.

In case E ⊂ CV0(X,A), we get the following

Theorem 5. Let E ⊂ CV0(X,A) be a Cb(X)-module satisfying (M)
such that ψCϕ(E) ⊂ C(Y,A). Then ψCϕ is continuous from E into
CU0(Y,A) if, and only if, (1) holds and

ϕ−1(K) ∩ {y ∈ Y : u(y)PG(ψy(a)) ≥ ε}
is relatively compact, for every compact K ⊂ coz (E), G ∈ N , u ∈ U ,
a 	= 0 and ε > 0.

Proof. A similar proof as that of Theorem 4 works provided that, for
every v ∈ V , G ∈ N , f ∈ E and ε > 0, f(N(vPG ◦ f, ε)) is precompact
in A and N(vPG ◦ f, ε) ∈ Cst(E). But, N(vPG ◦ f, ε) is compact, so its
image by f is precompact. The second condition is a consequence of

Lemma 6. Let E ⊂ CV (X,A) be a Cb(X)-module satisfying (M).
If K ⊂ coz (E) is a compact set and C ⊂ X a closed set such that
K ∩ C = ∅, then for every a ∈ A, there exists f ∈ E such that f = a
on K and f = 0 on C.

Proof. For every x ∈ K, consider Gx ∈ N and fx ∈ E so that
PGx

(fx(x)) = 1. Choose then gx ∈ Cb(X) with gx(x) = 1, 0 ≤ gx ≤ 1
and gx = 0 identically on C. Set jx := gxPGx

◦fx and hx := |jx|2Γ(j2x),
where, for a function g,

Γ(g)(t) :=
{ |g(t)| |g(t)| ≤ 1

1/|g(t)| otherwise.



WEIGHTED COMPOSITION OPERATORS 2077

Then hx(x) = 1, 0 ≤ hx ≤ 1 and hx = 0 on C. By a compactness
argument, there exist x1, x2, . . . , xm in X such that

K ⊂
m⋃
i=1

{t ∈ X : hxi
(t) > 1/2}.

Now, the function

h :=
m∑
n=1

hxn

satisfies h(t) > 1/2 for every t ∈ K. Hence, for a ∈ A, the function
f := 2hΓ(2h) ⊗ a belongs to E, for E is a Cb(X)-module and satisfies
(M), and enjoys the required conditions.

According to Theorem 5, for any Cb(X)-module E ⊂ CV0(X,A)
satisfying (M), if coz (E) = coz (CV0(X,A)) and ψCϕ(CV0(X,A)) ⊂
C(Y,A), then ψCϕ maps continuously CV0(X,A) into CU0(Y,A) if,
and only if, the same holds for E.

Remark 7. 1. A subspace E of CV (X,A) satisfying the hypotheses
of Theorem 4 need not be contained in CV0(X,A). For instance, take
X = R, A a topological vector space in which every bounded set is
precompact (e.g., a semi-Montel space or a locally convex space with
its weak topology) and E = Cb(X,A). For every integer n ≥ 2, define
a continuous function wn on X by

wn(x) =

⎧⎨
⎩
n(x− n+ (1/n)) n− (1/n) ≤ x ≤ n

n(n+ (1/n) − x) n ≤ x ≤ n+ (1/n)
0 otherwise.

Put then

w(x) =
+∞∑
n=2

wn(x) and v(x) := max(e−|x|, w(x)).

Then V = {λv, λ > 0} is a Nachbin family on X such that E ⊂
CV (X,A) satisfies all the hypotheses of Theorem 4. However, the non-
zero constant functions belong to E but not to CV0(X,A).
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2. In Theorem 5 the second condition does not hold for compact
sets not contained in coz (E). For such an example, take X = [0,+∞[,
Y = ]0,+∞[, ϕ(y) = (1/y), y ∈ Y , U = V = Z, A = C, ψ the constant
function with value 1 and E = {f ∈ CV0(X) : f(0) = 0}, where Z is the
Nachbin family on X consisting of all the positive constant functions.
Then ψCϕ is even an isometry from E into CU0(Y ). However, for the
compact K = [0, 1], ϕ−1(K) ∩ {y ∈ Y : ψy(1) ≥ 1}, being [1,+∞[, is
not relatively compact.

3. In Theorem 4 and Theorem 5, the second condition implies that
ψCϕ(f) belongs to CU0(Y,A) whenever (1) holds. In general, we will
say that F is Eϕ-solid if a function g ∈ C(Y,A) belongs to F whenever
for all G ∈ N , u ∈ U , there exists H ∈ N , v ∈ V , f ∈ E:

(3) (uPG ◦ g)(y) ≤ (vPH ◦ f)(ϕ(y)), for all y ∈ YE,ϕ.

If X = Y , ϕ = IdX and A = K, we get the classical notion of being
solid.

Examples of such solid spaces are given in the following

Examples. 1. Clearly, CU(Y,A) is Eϕ-solid for every subspace E of
CV (X,A).

2. If, for every v ∈ V , u ∈ U and every compact subset K of
Nv ∩ coz (E), ϕ−1(K) ∩ Nu is relatively compact, then CU0(Y,A) is
Eϕ-solid for every subspace E of CV0(X,A).

3. If ClV (X,A) = {f ∈ CV (X,A); for all v ∈ V , G ∈ N , there exists
v′ ∈ V : vPG(f) ≤ v′} and if V ◦ϕ ≤ U , then ClU(Y,A) is Eϕ-solid for
every E ⊂ ClV (X,A). Indeed, assume that g ∈ C(Y,A) satisfies (3).
Then

u(y)PG(g(y)) ≤ (vPH ◦ f)(ϕ(y))
≤ v′(ϕ(y)), (for PH ◦ f ∈ ClV (X))
≤ u′(y), (since V ◦ ϕ ≤ U),

hence PG ◦ g ∈ ClU(Y ) and then g ∈ ClU(Y,A).

4. If CAV (X,A) = {f ∈ CV (X,A); for all v ∈ V , f(Nv) is bounded
in A} and, for every u ∈ U , there is some v ∈ V such that (v ◦ ϕ)/u is
bounded on Nu, then CAU(Y,A) is Eϕ-solid for every E ⊂ CAV (X,A).
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If we combine 2 with 3, respectively 2 with 4, we get sufficient
conditions for

ClU0(Y,A) := CU0(Y,A) ∩ ClU(Y,A),

respectively

CAU0(Y,A) := CAU(Y,A) ∩ CU0(Y,A)),

to be Eϕ-solid for every subspace E of ClV0(X,A), respectively
CAV0(X,A). We refer to [5] and [16] for details on the spaces
CAV (X,A) and ClV (X,A).

It is easy to show

Proposition 8. Let E ⊂ CV (X,A) be a Cb(X)-module satisfying
(M) such that ψCϕ(E) ⊂ C(Y,A). If F is Eϕ-solid, then ψCϕ is
continuous from E into F if, and only if, (1) holds.

4. Bounded weighted composition operators. A linear map
θ is said to be bounded, precompact or compact, if it maps some 0-
neighborhood into a bounded, precompact or compact set respectively.
It will be called locally bounded (respectively locally precompact, lo-
cally compact) if it maps every bounded set into a bounded (respec-
tively precompact, compact) one. Whenever θ ranges in a space of
continuous functions on Y , it will be said to be locally equicontinuous,
respectively equicontinuous, on Y0 ⊂ Y , if the image by θ of every
bounded set, respectively of some 0-neighborhood, is equicontinuous at
any point y ∈ Y0.

In this section we deal with bounded, (locally) equicontinuous and
(locally) precompact weighted composition operators. For this purpose,
we need the following lemma generalizing Lemma 10 of [15] to the non-
locally convex setting.

Lemma 9. Let L be a subset of CV (X,A) such that C+
b (X)L ⊂ L

and L satisfies (M). Then, for every G ∈ N , v ∈ V and x ∈ coz(L),
the equality

1
v(x)

= sup{PG(f(x)), f ∈ BG,v ∩ L}

holds, with 1/0 = +∞.
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Proof. The same as that of Lemma 10 of [15] with gauges of members
of N instead of continuous semi-norms.

Henceforth, when there is no risk of confusion, we will use the same
notation BG,v to mean BG,v ∩ E.

Theorem 10. Assume that E ⊂ CV (X,A) is a Cb(X)-module
satisfying (M) and that ψCϕ(E) ⊂ C(Y,A). Then ψCϕ is bounded
from E into CU(Y,A) if, and only if, the following condition holds.
There exists H ∈ N , v ∈ V : for all G ∈ N , u ∈ U , there exists λ > 0:

(4) u(y)PG(ψy(a)) ≤ λv(ϕ(y))PH(a), for all a ∈ A, y ∈ YE,ϕ.

Moreover, if ψCϕ is bounded, then so is also ψy for every y ∈ YE,ϕ.

Proof. Necessity. Since ψCϕ : E → CU(Y,A) is bounded, there exist
H ∈ N and v ∈ V such that, for every G ∈ N and u ∈ U , there is some
λ > 0 enjoying

PG,u(ψCϕ(f)) ≤ λ, f ∈ BH,v.

In particular,

u(y)PG(ψy(PH ◦ f ⊗ a)(ϕ(y))) ≤ λ, y ∈ Y, f ∈ BG,v, a ∈ H

or

u(y)PH(f(ϕ(y)))PG(ψy(a)) ≤ λ, y ∈ Y, f ∈ BG,v, a ∈ H.

By Lemma 9 and a classical argument, we get

(5) u(y)PG(ψy(a)) ≤ λv(ϕ(y))PH(a), y ∈ YE,ϕ, a ∈ A.

Sufficiency. Assume that, for every G ∈ N and u ∈ U , (4) holds. Then,
for f ∈ E and y ∈ Y , we have

u(y)PG(ψy(f(ϕ(y)))) ≤ λv(ϕ(y))PH(f(ϕ(y)), y ∈ Y.

In particular, for f ∈ BH,v, we get

u(y)PG(ψy(f(ϕ(y)))) ≤ λ, y ∈ YE,ϕ,
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giving PG,u(ψCϕ(f)) ≤ λ, f ∈ BH,v.

Now, assume that ψCϕ(BG,v) is bounded in A, and let y0 ∈ YE,ϕ
and f0 ∈ BG,v be such that f0(ϕ(y0)) 	= 0. Let H ∈ N enjoy
PH(f0(ϕ(y0))) = 1 and α > PH,v(f0). Then (1/α)PH ◦f0⊗a belongs to
BG,v for all a ∈ G. Given I ∈ N and let u ∈ U be such that u(y0) 	= 0.
There exists λ > 0 so that:[

uψCϕ

(
1
α
PH ◦ f0 ⊗ a

)]
(Y ) ⊂ λ

α
I, a ∈ G.

In particular, u(y0)ψy0(a) ∈ λI. Since a ∈ G and I ∈ N are arbitrary,
ψy0(G) is bounded in A.

A similar proof yields

Theorem 11. Assume that E ⊂ CV0(X,A) is a Cb(X)-module
satisfying (M) and that ψCϕ(E) ⊂ C(Y,A). Then ψCϕ is bounded
from E into CU0(Y,A) if, and only if, (4) holds and

ϕ−1(K) ∩ {y ∈ Y : u(y)PG(ψy(a)) ≥ ε}

is relatively compact for every compact K ⊂ coz (E), u ∈ U , G ∈ N ,
a 	= 0 and ε > 0.

We now examine the equicontinuity of ψCϕ.

Theorem 12. Assume that E ⊂ CV (X,A) is a Cb(X)-module
satisfying (M) and that ψCϕ(E) ⊂ C(Y,A). Then ψCϕ is locally
equicontinuous on YE,ϕ,ψ if, and only if, the following conditions hold:

1. ϕ is locally constant on YE,ϕ,ψ.

2. ψ is continuous from Y into Lβ(A).

Proof. Necessity. 1. Assume that ϕ is constant on no neighborhood
of some y0 ∈ YE,ϕ,ψ and choose f0 ∈ E with ψy0(f0(ϕ(y0))) 	= 0.
If V is the collection of all neighborhoods of y0, then every Ω ∈ V
contains some yΩ with ϕ(y0) 	= ϕ(yΩ). Consider fΩ ∈ Cb(X) such
that 0 ≤ fΩ ≤ 1, fΩ(ϕ(yΩ)) = 0 and fΩ(ϕ(y0)) = 1. The set
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{gΩ := fΩf0,Ω ∈ V} is bounded in E and then its image by ψCϕ is
equicontinuous at y0. Therefore, for every G ∈ N , there exists Ω0 ∈ V
such that

ψy(gΩ(ϕ(y)))− ψy0(gΩ(ϕ(y0))) ∈ G, for all y ∈ Ω0, Ω ∈ V .

Hence, for every Ω ⊂ Ω0 and y = yΩ, we get ψy0(f0(ϕ(y0))) ∈ G. Since
G is arbitrary, ψy0(gΩ(ϕ(y0))) = 0 which is a contradiction.

2. Let y0 ∈ YE,ϕ,ψ , B a bounded set in A and H ∈ N be given. By
1 there exists a neighborhood Ω0 of y0 on which ϕ is constant with
value, say, x0. Choose f0 ∈ E so that ψy0(f0(x0)) 	= 0 and H ∈ N with
PH(ψy0(f0(ϕ(y0)))) = 1. Since the set

K := {PH ◦ f0 ⊗ b, b ∈ B}

is bounded in E, ψCϕ(K) is equicontinuous at y0. Hence there is some
y0-neighborhood Ω contained in Ω0 such that

[ψy(PH(f0(ϕ(y)))b) − ψy0(PH(f0(ϕ(y0)))b)] ∈ G, y ∈ Ω, b ∈ B.

This yields ψy − ψy0 ∈ N(B,G) for every y ∈ Ω, showing that ψ is
β-continuous at y0. Since y0 is arbitrary in YE,ϕ,ψ , ψ is β-continuous
on YE,ϕ,ψ .

Sufficiency. Given a bounded set B ⊂ E, y0 ∈ YE,ϕ,ψ and G ∈ N .
By our assumption, there is some neighborhood Ω0 of y0 so that ϕ
is constant on Ω0. Choose v ∈ V with v(ϕ(y0)) 	= 0. Since the set
B := {v(x)f(x), f ∈ B, x ∈ X} is bounded in A and ψ is β-continuous
at y0, there is some other neighborhood Ω of y0 such that Ω ⊂ Ω0 and

ψy − ψy0 ∈ N(B, v(ϕ(y0))G), y ∈ Ω.

This is

ψy(v(x)f(x)) − ψy0(v(x)f(x)) ∈ v(ϕ(y0))G, y ∈ Ω, x ∈ X,

yielding
ψCϕ(f)(y) − ψCϕ(f)(y0) ∈ G, y ∈ Ω,

whereby ψCϕ(B) is equicontinuous at y0 and then on YE,ϕ,ψ .
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A trivial consequence of Theorem 12 is

Corollary 13. Assume that E is a Cb(X)-module satisfying (M). If
ϕ is not constant on any open set (in particular, if X has no isolated
point and ϕ is one to one), then ψCϕ is locally equicontinuous from E
into C(Y,A) if, and only if, it is identically zero.

In case of multiplication operators, we get the following corollary
improving Proposition 11 of [15].

Corollary 14. Let E be a Cb(X)-module satisfying (M) and ψ :
X → L(A) a map. If Mψ : E → C(X,A) is locally equicontinuous,
then coz (Mψ(E)) is a discrete space.

Proof. Take in Theorem 12 Y = X and ϕ = IdX . ThenMψ is nothing
but ψCϕ and then IdX is locally constant on YE,ϕ,ψ . This means that
coz (Mψ(E)) = YE,ϕ,ψ is discrete.

Theorem 15. Assume that E ⊂ CV (X,A) is a Cb(X)-module sat-
isfying (M) and that ψCϕ(E) ⊂ C(Y,A). Then ψCϕ is equicontinuous
on YE,ϕ,ψ if, and only if, the following two conditions hold:

1. ϕ is locally constant on YE,ϕ,ψ.

2. There exists G ∈ N such that, for every y0 ∈ YE,ϕ,ψ and H ∈ N ,
there is some neighborhood Ω of y0 so that ψy − ψy0 ∈ N(G,H) for
every y ∈ Ω.

Under conditions 1 and 2 every point y0 ∈ YE,ϕ,ψ admits a neighborhood
whose image by ψ is equicontinuous on A.

Proof. Assume that there exist v ∈ V and G ∈ N so that ψCϕ(BG,v)
is equicontinuous on YE,ϕ,ψ . By Theorem 12, there exists a neighbor-
hood Ω0 of y0 on which ϕ is constant with value, say, x0.

Necessity. 1. follows from Theorem 12 since an equicontinuous map
is already locally equicontinuous.
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2. Let y0 ∈ YE,ϕ,ψ and H ∈ N be given. By property (M), we may
choose f0 ∈ BG,v so that PG(f0(x0)) 	= 0. Since the set

K := {PG ◦ f0 ⊗ a, a ∈ G}

is contained in BG,v, ψCϕ(K) is equicontinuous on Y . Hence there is
some y0-neighborhood Ω contained in Ω0 such that

[ψy(PG(f0(ϕ(y)))a)− ψy0(PG(f0(ϕ(y0)))a)] ∈ PG(f0(x0))H,
y ∈ Ω, a ∈ G.

This leads to ψy − ψy0 ∈ N(G,H) for every y ∈ Ω.

For the remainder, let y0 ∈ YE,ϕ,ψ and H ∈ N . Choose again f0 ∈
BG,v so that α := PG(f(x0)) 	= 0. Since ψCϕ(BG,v) is equicontinuous
at y0, for every I ∈ N satisfying I+I ⊂ H, there exists a neighborhood
Ω ⊂ Ω0 of y0 such that

ψCϕ(f)(y) − ψCϕ(f)(y0) ∈ αI, y ∈ Ω, f ∈ BG,v.

This is

ψy(f(x0)) − ψy0((f(x0)) ∈ αI, y ∈ Ω, f ∈ BG,v.

For an arbitrary a ∈ G, PG ◦ f0 ⊗ a still belongs to BG,v. Hence

PG(f0(x0))[ψy(a) − ψy0(a)] ∈ αI, y ∈ Ω,

or ψy(a) − ψy0(a) ∈ I, y ∈ Ω. Now, the continuity of ψy0 yields a 0-
neighborhood J ∈ N such that ψy0(J) ⊂ I. Finally, for a ∈ R := J∩G,

ψy(a) = [ψy(a) − ψy0(a)] + ψy0(a) ∈ I + I ⊂ H, y ∈ Ω,

showing that {ψy, y ∈ Ω} is equicontinuous at 0 and then everywhere
on A.

In [1], Bierstedt showed that the precompact sets are equicontinuous
in CV (X) whenever X is a VR-space. Bierstedt’s result was extended
in [18] to the space

CVp(X,A) := {f ∈ CV (X,A) : (vf)(X) is precompact in A, ∀v ∈ V },



WEIGHTED COMPOSITION OPERATORS 2085

where A is a locally convex space. Later, this result was extended in
[15] to CV (X,A), again with A locally convex. Actually, this result
holds for CV (X,A) for arbitrary topological vector space A. Indeed, let
δx denote the evaluation f �→ f(x) at the point x and Δ the evaluation
map x �→ δx defined from X into L(CV (X,A), A). Then we have

Proposition 16. 1. The evaluation map Δ is continuous from
X into Lc(CV (X,A), A) if, and only if, every precompact subset of
CV (X,A) is equicontinuous.

2. If X is a VR-space, then every precompact subset of CV (X,E) is
equicontinuous.

Proof. 1. is straightforward. Next, in view of 1 and our assumption
on X, it suffices to show that Δ is continuous on each Nv,1 := {x ∈
X : v(x) ≥ 1}. Let then v ∈ V and x ∈ Nv,1 be given. If Λ is a
neighborhood of δx in Lc(CV (X,A), A), then there exist G ∈ N and
a precompact set C ⊂ CV (X,E) such that δx + N(C,G) ⊂ Λ. But
there exist hi ∈ C, i ∈ {1, 2, . . . n}, so that C ⊂ ∪ni=1(hi + H), where
H+H+H ⊂ G. Consider a neighborhood Ω of x with hi(t)−hi(x) ∈ H
for every i = 1, 2 . . . n and t ∈ Ω. Now, if t ∈ Ω∩Nv,1 and h ∈ C, then
h = hi + f for some i ∈ {1, 2 . . . , n} and some f ∈ BH,v. Hence

δt(h) − δx(h) = h(t) − h(x)

= hi(t) − hi(x) +
1
v(t)

(v(t)f(t)) − 1
v(x)

(v(x)f(x))

∈ H +
1
v(t)

H +
1

v(x)
H ⊂ G.

Since h is arbitrary in C, Δ(t) − Δ(x) ∈ N(C,G) and thus Δ is
continuous on Nv,1 and 2 is proved.

According to Corollary 13 and Proposition 16, for a Cb(X)-module
E satisfying (M), if Y is a UR-space and ϕ is constant on no open set,
then ψCϕ is locally precompact from E into CU(Y,A) if, and only if,
it is identically zero.
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