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NON-EXISTENCE OF CERTAIN 3-STRUCTURES

T. KASHIWADA, F. MARTIN CABRERA AND MUKUT MANI TRIPATHI

ABSTRACT. We introduce the notion of an ε-framed 3-
structure. This is a general structure which includes many
widely studied 3-structures (almost quaternion, almost con-
tact, hyper f -structure, almost product, etc.). We prove the
existence of Riemannian metrics compatible with such a struc-
ture. We also study particular cases of ε-framed 3-structures
showing the non-existence of certain remarkable types of such
structures. First, we prove the non-existence of P -Sasakian
almost r-paracontact 3-structures. Then, we show the non-
existence of almost r-contact S-3-structures (with r > 1). Fi-
nally, we establish the non-existence of proper trans-Sasakian
almost contact 3-structures. A consequence of this last result
is that any b-Kenmotsu almost contact 3-structure must be
hypercosymplectic.

1. Introduction. In 1963, Yano [33] introduced the notion of an
f -structure on a manifold, which is defined by a non-null (1, 1) tensor
field f satisfying f3 + f = 0. The concept of an f -structure includes
the notions of almost complex and almost contact structures and it is
well known that it is genuinely a more general structure. For instance,
hypersurfaces of almost contact manifolds are not in general almost
complex manifolds, but they have always f -structures associated to
them.

Almost product structures are another type of structure widely stud-
ied by several authors, see [34, 21]. Analogously to the situation
for almost complex and almost contact structures, almost paracontact
structures are closely related to almost product structures. The con-
cept of an f(3, ε)-structure was introduced in [30] as a uniform way
of treating all the above geometries and several others. An f(3, ε)-
structure, ε ∈ {±1}, is defined by a non-null (1, 1) tensor field f satis-
fying f3 − εf = 0. It turns out that f is of constant rank and there are
two complementary distributions associated with the f(3, ε)-structure,
as happens with f -structures and some other known cases.
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The quaternionic analog of almost complex structure is the al-
most quaternion (hypercomplex) geometry which is defined by 3 local
(global) almost complex structures which satisfy the same relations as
the unit imaginary quaternions [12]. Quaternion Kähler manifolds and
hyper-Kähler manifolds are special and interesting cases of Riemannian
manifolds with almost quaternion and almost hypercomplex structures,
respectively. Quaternion Kähler manifolds are Einstein, hyper-Kähler
manifolds are Ricci flat and their respective holonomy groups are in-
cluded in the Berger list [1]. Hypersurfaces of manifolds with almost
hypercomplex structure inherit naturally three almost contact struc-
tures which constitute an almost contact 3-structure. This last type of
geometric structure was defined by Kuo [17] and it is closely related to
both almost quaternion and almost hypercomplex structures.

A particular and interesting class of almost contact 3-structure is the
Sasakian 3-structure. Riemannian manifolds with Sasakian 3-structure
are called 3-Sasakian manifolds. They are Einstein [14] and have many
links with quaternion Kähler and hyper-Kähler manifolds. In fact,
a 3-Sasakian manifold, with some regularity conditions, fibers over
a quaternion Kähler manifold [12] and can be imbedded in a hyper-
Kähler manifold [5].

In [11], Hernández studied quaternionic and hyper f -structures which
are the natural extension of almost quaternion and almost contact 3-
structures. He proves some interesting results, which relate f -structures
and hyper f -structures. For instance, it is shown that compact mani-
folds with regular normal hyper f -structure of corank 3 fiber over hy-
percomplex manifolds. Moreover, if the hyper f -structure is 3-contact
(in such a case, the manifold is called PS-Sasakian), then the fibration
is over a hyper-Kähler manifold. This is one of the motivations for
Hernández’ study of PS-structures.

In the present paper, we begin by giving diverse preliminary defini-
tions and related concepts which we need to introduce the notion of
an ε-framed 3-structure. This is a general structure which includes the
structures mentioned in the last two paragraphs and others (almost
product 3-structures, almost paracontact 3-structures, etc.) and, as it
happens for all these structures, it is proved that ε-framed 3-structures
always admit Riemannian metrics compatible with them.
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Next, we study particular cases of ε-framed 3-structures showing the
non-existence of certain remarkable types of such structures. First, we
prove the non-existence of almost r-paracontact 3-structures (1-framed
3-structures) of P-Sasakian type. Second, we show the non-existence
for r > 1 of almost r-contact 3-structures (−1-framed 3-structures)
where each one is an S-structure (when r = 1, an S-structure is a
Sasakian structure). It is also proved that a manifold equipped with
an almost r-contact structure (r > 1) of S-structure type cannot
be Einstein. Finally, we establish the non-existence of proper trans-
Sasakian almost contact 3-structures (a particular case of r = 1 and
−1-framed 3-structures). Namely, we prove that any trans-Sasakian
3-structure must be a-Sasakian, a type of structure whose metric is the
constant multiple a2 of a 3-Sasakian structure. Then, as a consequence
of this last result, any almost contact 3-structure of b-Kenmotsu type
[16] must be hypercosymplectic.

2. ε-framed f-structure. LetM be an n-dimensional differentiable
manifold, and let there be given a nowhere zero tensor field f of type
(1, 1) satisfying

(1) f3 − εf = 0, ε2 = 1.

We call such a structure a f (3, ε)-structure. If M is connected,
following [26], we know that the rank of f is constant. Let rank (f) =
k. If we put

l = εf2, m = I − εf2,

then the tensors l, m acting in the tangent space at each point of
M are commuting projection operators which define complementary
distributions L and M. The dimension of the distribution L is k and M
has dimension (n− k). For ε = −1, f (3, ε)-structures are f -structures
[33]; and in this case rank (f) is always even.

Let n − k = r. Suppose M admits r linearly independent vector
fields ξ1, . . . , ξr spanning the distribution M at each point of M . If in
addition, there are r 1-forms η1, . . . , ηr such that

f(ξα) = 0,(2)
f2 = ε(I − ηα ⊗ ξα),(3)
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then the structure Σ = (f, ξα, ηα) is called an ε-framed structure on M ,
and the pair (M,Σ) or simply M is called an ε-framed manifold.

From the above two equations it follows that

ηα ◦ f = 0,(4)
ηα (ξβ) = δα

β .(5)

If M is an ε-framed manifold, there always exists a positive definite
Riemannian metric g on M with respect to which L and M are
orthogonal and

g(X, ξα) = ηα(X),(6)

g (fX, fY ) = g (X,Y ) −
∑
α

ηα (X) ηα (Y ) .(7)

The set(Σ, g) = (f, ξα, ηα, g) is said to be an ε-framed metric structure,
[30], on M and M equipped with this structure is called an ε-framed
metric manifold. The above metric is said to be a metric associated to
the ε-framed structure on M .

In view of (6) and (7), on an ε-framed metric manifold M we always
have

g(ξα, fX) = 0,(8)
F (X,Y ) := g(X, fY ) = εF (Y,X) .(9)

The ε-framed metric structure, respectively manifold, is a general
structure, respectively manifold, which in special cases reduces to
several known structures, respectively manifolds, shown below which
have been widely studied in the past.

ε r Structure/manifold

−1 framed metric [33] or
−1 almost r-contact metric [32]
−1 1 almost contact metric [3]
−1 0 almost Hermitian [34]
1 almost r-paracontact Riemannian [7]
1 1 almost paracontact Riemannian [23]
1 0 almost product Riemannian [34, 21]
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Notation. Throughout the paper the following notations will be
followed:

(a) X,Y, Z are vector fields on M .

(b) C (1, 2, 3) is the set of all cyclic permutations of (1, 2, 3).

(c) α, β, γ, ε run over {1, . . . , r}.
(d) an ε-framed 3-structure will have the constituent structures

Σ(λ) =
(
f(λ) , ξ(λ)α

, ηα
(λ)

)
, λ = 1, 2, 3 satisfying the relations (2), (3)

and (15).

3. Non-uniqueness of ε-framed structures. In view of (2) (5),
we are able to state the following theorem.

Theorem 3.1. Let (f, ξα, ηα) and (f, ξα, η̄α), respectively (f, ξ̄α, ηα),
be two ε-framed structures on a manifold M . Then we have ηα = η̄α,
respectively ξα = ξ̄α.

Thus we see that two ε-framed structures having the same f and the
same ξα, respectively ηα, on a manifold are always identical. However,
an ε-framed structure on a manifold M always induces another ε-
framed structure on M . This is proved in the following

Theorem 3.2. An ε-framed structure on a manifold is not unique.

Proof. Let (f, ξα, ηα) be an ε-framed structure on a manifold M . Let
ψ be a non-singular (1, 1) tensor on M . Defining

(10) f̄ = ψ−1fψ, ξ̄α = ψ−1ξα, η̄α = ηα ◦ ψ,

it is easy to verify that
(
f̄ , ξ̄α, η̄

α
)

is also an ε-framed structure on a
manifold M .

Moreover, if g is an associated metric to the structure (f, ξα, ηα) of
M , then a metric ḡ on M defined by

(11) ḡ (X,Y ) = g (ψX,ψY )
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provides an associated metric to the structure
(
f̄ , ξ̄α, η̄

α
)

of M . We
may state this fact as the following

Theorem 3.3. An ε-framed metric structure on a manifold is not
unique.

4. An ε-framed 3-structure. Let Σ(λ) =
(
f(λ), ξ(λ)α

, ηα
(λ)

)
,

λ = 1, 2 be two ε-framed structures on an n-dimensional manifold M
which satisfy

(12)

ηα
(1)

(
ξ(2)β

)
= 0 = ηα

(2)

(
ξ(1)β

)
,

f(1)

(
ξ(2)β

)
= εf(2)

(
ξ(1)β

)
, ηα

(1) ◦ f(2) = εηα
(2) ◦ f(1),

f(1)f(2) + εηα
(2) ⊗ ξ(1)α

= ε
(
f(2)f(1) + εηα

(1) ⊗ ξ(2)α

)
.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

Defining Σ(3) =
(
f(3), ξ(3)α

, ηα
(3)

)
on M by

(13)

f(3) = f(1)f(2) + εηα
(2) ⊗ ξ(1)α

= ε
(
f(2)f(1) + εηα

(1) ⊗ ξ(2)α

)
,

ξ(3)β
= f(1)

(
ξ(2)β

)
= εf(2)

(
ξ(1)β

)
,

ηα
(3) = ηα

(1) ◦ f(2) = εηα
(2) ◦ f(1),

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

it is easy to verify that Σ(3) defines an ε-framed structure on M . We
can also verify the following relations:
(14)

f(1) = f(2)f(3) + εηα
(3) ⊗ ξ(2)α

= ε
(
f(3)f(2) + εηα

(2) ⊗ ξ(3)α

)
,

f(2) = f(3)f(1) + εηα
(1) ⊗ ξ(3)α

= ε
(
f(1)f(3) + εηα

(3) ⊗ ξ(1)α

)
,

ξ(1)β
= f(2)

(
ξ(3)β

)
= εf(3)

(
ξ(2)β

)
, ξ(2)β

= f(3)

(
ξ(1)β

)
= εf(1)

(
ξ(3)β

)
,

ηα
(1) = ηα

(2) ◦ f(3) = εηα
(3) ◦ f(2), ηα

(2) = ηα
(3) ◦ f(1) = εηα

(1) ◦ f(3),

ηα
(2)

(
ξ(3)β

)
= 0 = ηα

(3)

(
ξ(2)β

)
, ηα

(3)

(
ξ(1)β

)
= 0 = ηα

(1)

(
ξ(3)β

)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Equations (13) and (14) together are invariant under a cyclic per-
mutation of subindices 1, 2, 3 enclosed by parenthesis. Now, we make
formally the following



CERTAIN 3-STRUCTURES 1959

Definition 4.1. Let M be a manifold with a rank 3 subbundle
F ⊂ End (TM) and a rank 3r subbundle E ⊂ TM . Suppose E has
a global basis

⋃3
λ=1{ξ(λ)1

, . . . , ξ(λ)r
} and that F has a local basis{

f(1), f(2), f(3)
}
. If each

(
f(λ), ξ(λ)α

)
extends to an ε-framed structure(

f(λ), ξ(λ)α
, ηα

(λ)

)
and these structures are compatible in the sense that

(15)

ηα
(λ)

(
ξ(μ)β

)
= 0 = ηα

(μ)

(
ξ(λ)β

)
, λ �= μ,

f(λ)

(
ξ(μ)β

)
= εf(μ)

(
ξ(λ)β

)
= ξ(ν)β

,

ηα
(λ) ◦ f(μ) = εηα

(μ) ◦ f(λ),= ηα
(ν),

f(λ)f(μ) + εηα
(μ) ⊗ ξ(λ)α

= ε
(
f(μ)f(λ) + εηα

(λ) ⊗ ξ(μ)α

)
= f(ν)

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

for (λ, μ, ν) ∈ C (1, 2, 3), then we say that M is equipped with an ε-
framed 3-structure. If F admits a global basis

{
f(1), f(2), f(3)

}
with the

above properties, we say that M admits a hyper ε-framed 3-structure.

Hyper ε-framed 3-structures and ε-framed 3-structures are general-
ized structures, which in special cases reduce to following structures.

ε r Basis of F Structure

−1 1 global almost contact 3-structure [31, 17]
−1 0 local almost quaternion structure [12]
−1 0 global almost hypercomplex structure [12]
−1 r local almost quaternionic f -structure [11]
−1 r global hyper f -structure [11]
1 1 global almost paracontact 3-structure [8]
1 0 global almost product 3-structure

Note that if we consider the local tensor fields

f(λ) − ηα
(μ) ⊗ ξ(ν)α

− εηα
(ν) ⊗ ξ(μ)α

,

for (λ, μ, ν) ∈ C (1, 2, 3), we will have another local basis of the bundle
F which, for ε = −1, satisfies the conditions of the definition of almost
quaternionic f -structure given by Hernández [11].



1960 T. KASHIWADA, F.M. CABRERA AND M.M. TRIPATHI

Theorem 4.2. If Σ(λ) =
(
f(λ), ξ(λ)α

, ηα
(λ)

)
, λ = 1, 2, 3, are three

ε-framed structures on a manifold M satisfying the conditions given by
(15), then

(i) the 3r vector fields ξ(1)β
, ξ(2)β

, ξ(3)β
are linearly independent,

(ii) the 3r 1-forms ηα
(1), η

α
(2), η

α
(3) are linearly independent, and

(iii) the 3 tensor fields f(1), f(2), f(3) are linearly independent.

Proof. Let hα
(λ) be 3r real-valued smooth functions on M such that

(16) hα
(1)ξ(1)α

+ hβ
(2)ξ(2)β

+ hγ
(3)ξ(3)γ = 0.

Operating by ηε
(λ), λ = 1, 2, 3, we get

0 = hα
(λ)δ

ε
α = hε

(λ).

Thus part (i) is proved. Similarly (ii) can be proved. Finally, let

h1f(1) + h2f(2) + h3f(3) = 0,

where h1, h2, h3 are real valued smooth functions on M . Operating
the above equation by ηα

(1) and using (4) and (15) we obtain

h2η
α
(3) + εh3η

α
(2) = 0,

which in view of (ii), gives h2 = h3 = 0, and ultimately h1 = 0. This
proves (iii).

5. Existence of an associated metric. An associated metric for
an ε-framed 3-structure in a manifold M is a Riemannian metric which
is associated to each of the three constituent local structures; in such
a case we say that we have an ε-framed metric 3-structure. In this
section we establish the existence of such a metric.

First, we give some lemmas.

Lemma 5.1. On an ε-framed metric manifold M we always have

g(ξα, fX) = 0,(17)
g(X, fY ) = εg(fX, Y ).(18)
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The proof follows from (6) and (7).

Lemma 5.2. If a hyper ε-framed 3-structure manifold admits a
Riemannian metric g which is associated to any two of the constituent
structures, then g is also associated to the third constituent structure.

Proof. Let g be a Riemannian metric associated to the structures(
f(λ), ξ(λ)α

, ηα
(λ)

)
and

(
f(μ), ξ(μ)α

, ηα
(μ)

)
. Then, we show that g is also

associated to
(
f(ν), ξ(ν)α

, ηα
(ν)

)
, where (λ, μ, ν) ∈ C (1, 2, 3). In view of

(15)2, (18), (6) and (15)3 we have

g
(
ξ(ν)α

, X
)

= g
(
f(λ)

(
ξ(μ)α

)
, X
)

= εg
(
ξ(μ)α

, f(λ)X
)

= εηα
(μ)

(
f(λ)X

)
= ηα

(ν) (X) .

Similarly,

g
(
f(ν)X, f(ν)Y

)
= g

(
f(λ)f(μ)X + εηα

(μ) (X) ξ(λ)α
, f(λ)f(μ)X + εηβ

(μ) (X) ξ(λ)β

)
= g

(
f(λ)f(μ)X, f(λ)f(μ)Y

)
+ εηα

(μ) (X) g
(
ξ(λ)α

, f(λ)f(μ)Y
)

+ εηβ
(μ) (Y ) g

(
f(λ)f(μ)X, ξ(λ)β

)
+ ηα

(μ) (X) ηβ
(μ) (Y ) g

(
ξ(λ)α

, ξ(λ)β

)
= g

(
f(μ)X, f(μ)Y

)−∑
α

ηα
(λ)

(
f(μ)X

)
ηα
(λ)

(
f(μ)Y

)
+
∑
α

ηα
(μ) (X) ηα

(μ) (Y )

= g (X,Y ) −
∑
α

ηα
(ν) (X) ηα

(ν) (Y ) ,

where (15)2, (17), (6) and (7) are used. Thus the lemma is proved.

Lemma 5.3. Let a manifold M admit a hyper ε-framed 3-structure.
Let G be a Riemannian metric associated to one of the constituent
structures, say Σ(λ); then there exists a Riemannian metric G′ on M
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which satisfies for (λ, μ, ν) ∈ C (1, 2, 3) the following relations

(19)

G′ (ξ(λ)α
, X
)

= ηα
(λ) (X) , G′ (ξ(μ)α

, X
)

= ηα
(μ) (X) ,

G′ (ξ(ν)α
, X
)

= G
(
ξ(ν)α

, X
)− ηβ

(μ) (X)G
(
ξ(μ)β

, ξ(ν)α

)
,

G′
(
ξ(λ)α

, ξ(μ)β

)
= 0, G′

(
ξ(μ)α

, ξ(ν)β

)
= 0, G′

(
ξ(ν)α

, ξ(λ)β

)
= 0.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

Proof. Let G′ be defined on M by

(20)
G′ (X,Y ) = G

(
X − ηα

(μ) (X) ξ(μ)α
, Y − ηβ

(μ) (Y ) ξ(μ)β

)
+
∑
α

ηα
(μ) (X) ηα

(μ) (Y ) .

It is easy to verify that G′ is a Riemannian metric on M . Using (20),
(15)1, (3), (6) and (7) one can easily prove the results of Lemma 5.3.

Lemma 5.4. A hyper ε-framed 3-structure manifold M always
admits a Riemannian metric g′ such that

(21) g′
(
ξ(λ)α

, X
)

= ηα
(λ) (X) , λ = 1, 2, 3.

Proof. Defining g′ on M by

(22)
g′ (X,Y ) = G′

(
X − ηα

(ν) (X) ξ(ν)α
, Y − ηβ

(ν) (Y ) ξ(ν)β

)
+
∑
α

ηα
(ν) (X) ηα

(ν) (Y ) ,

where G′ is defined by (20), we see that g′ is a Riemannian metric on
M . Again using (21), (15)1, (3), (6) and (7) along with Lemma 5.3, we
can easily prove Lemma 5.4.
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In view of the above four lemmas, we have
(23)

g′
((
f(λ)

)2
X,
(
f(λ)

)2
Y
)

= g′ (X,Y ) −
∑
α

ηα
(λ) (X) ηα

(λ) (Y ) ,

g′
(
f(λ)f(μ)X, f(λ)f(μ)Y

)
= g′

(
f(ν)X, f(ν)Y

)−∑
α

ηα
(μ) (X) ηα

(μ) (Y ) ,

g′
(
f(μ)f(λ)X, f(μ)f(λ)Y

)
= g′

(
f(ν)X, f(ν)Y

)−∑
α

ηα
(λ) (X) ηα

(λ) (Y ) .

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

Now, we are in a position to prove the main result of this section as
follows.

Theorem 5.5. A hyper ε-framed 3-structure manifold M always
admits an associated Riemannian metric.

Proof. We define a (0, 2) tensor field g on M by

(24) g (X,Y ) =
1
4

[
g′ (X,Y ) +

3∑
λ=1

(
g′
(
f(λ)X, f(λ)Y

)

+
∑
α

ηα
(λ) (X) ηα

(λ) (Y )
)]
,

where g′ is the Riemannian metric defined by (22). It is easy to verify
that g is a Riemannian metric on M . Putting X = ξ(λ)α

, λ = 1, 2, 3 in
(24) and using Lemma 5.4, (4), (3) and (15), we get

g
(
ξ(λ)α

, Y
)

=
1
4

[
g′
(
ξ(λ)α

, Y
)

+ g′
(
f(μ)ξ(λ)α

, f(μ)Y
)

+ g′
(
f(ν)ξ(λ)α

, f(ν)Y
)

+
∑

β

ηβ
(λ)

(
ξ(λ)α

)
ηβ
(λ) (Y )

]

=
1
4

(
ηα
(λ)(Y )+εg′

(
ξ(λ)α

, f(μ)Y
)
+g′

(
ξ(μ)α

, f(ν)Y
)
+ηα

(λ)(Y )
)

= ηα
(λ) (Y ) .

Replacing X and Y by f(λ)X and f(λ)Y , λ = 1, 2, 3, respectively in
(24) and using (5), (23), (15) and (24), we get

g
(
f(λ)X, f(λ)Y

)
= g (X,Y ) −

∑
α

ηα
(λ) (X) ηα

(λ) (Y ) .
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This completes the proof.

If we have an ε-framed 3-structure manifold, we can take into ac-
count Theorem 5.5 to claim the existence of local Riemannian metrics
associated with the local hyper ε-framed 3-structures. Then, by using
partitions of unity, we can construct a global metric compatible with
the ε-framed 3-structure of the manifold. Hence, we are able to state
the following

Theorem 5.6. An ε-framed 3-structure manifold always admits an
associated Riemannian metric.

Example 5.7. Taking r = 2, we construct an example of an
ε-framed metric 3-structure in the Euclidean space R6. We define(
f(λ), ξ(λ)1

, ξ(λ)2
, η1

(λ), η
2
(λ)

)
, λ = 1, 2, 3 and a metric g in R6 by their

matrices as follows:

f(1) =

⎡
⎢⎢⎢⎢⎢⎣

0 0 1 0 0 0
0 0 0 0 0 0
ε 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 ε 0 0

⎤
⎥⎥⎥⎥⎥⎦ , f(2) =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 0 ε 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 ε
0 0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎦ ,

f(3) =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0
ε 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 ε 0 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦ , ξ(1)1 =

⎡
⎢⎢⎢⎢⎢⎣

0
1
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎦ ,

ξ(1)2 =

⎡
⎢⎢⎢⎢⎢⎣

0
0
0
0
1
0

⎤
⎥⎥⎥⎥⎥⎦ , ξ(2)1 =

⎡
⎢⎢⎢⎢⎢⎣

1
0
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎦ ,
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ξ(2)2 =

⎡
⎢⎢⎢⎢⎢⎣

0
0
0
1
0
0

⎤
⎥⎥⎥⎥⎥⎦ , ξ(3)1 =

⎡
⎢⎢⎢⎢⎢⎣

0
0
1
0
0
0

⎤
⎥⎥⎥⎥⎥⎦ ,

ξ(3)2 =

⎡
⎢⎢⎢⎢⎢⎣

0
0
0
0
0
1

⎤
⎥⎥⎥⎥⎥⎦ ,

η1
(1) = [ 0 1 0 0 0 0 ] , η2

(1) = [ 0 0 0 0 1 0 ] ,

η1
(2) = [ 1 0 0 0 0 0 ] , η2

(2) = [ 0 0 0 1 0 0 ] ,

η1
(3) = [ 0 0 1 0 0 0 ] , η2

(3) = [ 0 0 0 0 0 1 ]

and
g = I6.

By direct computation, we find that the above set provides the required
structure on R6 and g is its associated metric.

6. Non-existence of an almost r-paracontact metric 3-
structure of P -Sasakian type. Taking ε = 1, the ε-framed metric
structure becomes an almost r-paracontact metric structure [7], that
is,

(26)
f2 = I − ηα ⊗ ξα,

F (X,Y ) = g(X, fY ) = F (Y,X) .

}

An almost r-paracontact metric structure is [6] of paracontact type if

(27) 2F (X,Y ) = (∇Xη
α)Y + (∇Y η

α)X,

of s-paracontact type if

(28) fX = ∇Xξα or equivalently F (X,Y ) = (∇Xη
α)Y,
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of P -Sasakian type if it is of s-paracontact type and

(29)

(∇ZF ) (X,Y ) = −
∑

β

ηβ (X) (g (Y, Z) −
∑
α

ηα (Y ) ηα (Z))

−
∑

β

ηβ (Y ) (g (X,Z) −
∑
α

ηα (X) ηα (Z)),

of SP -Sasakian type if it is of s-paracontact type and

(30) F (X,Y ) = e

(
g (X,Y ) −

∑
α

ηα (X) ηα (Y )

)
, e2 = 1.

An almost r-paracontact metric structure of SP -Sasakian type is
always of P -Sasakian type.

Setting ε = 1, in Definition 4.1, we can define

Definition 6.1. A manifold M equipped with three almost r-
paracontact structures Σ(λ) =

(
f(λ), ξ(λ)α

, ηα
(λ)

)
, λ = 1, 2, 3 satisfying

(31)

ηα
(λ)

(
ξ(μ)β

)
= 0 = ηα

(μ)

(
ξ(λ)β

)
, λ �= μ,

f(λ)

(
ξ(μ)β

)
= f(μ)

(
ξ(λ)β

)
= ξ(ν)β

,

ηα
(λ) ◦ f(μ) = ηα

(μ) ◦ f(λ),= ηα
(ν),

f(λ)f(μ) + ηα
(μ) ⊗ ξ(λ)α

= f(μ)f(λ) + ηα
(λ) ⊗ ξ(μ)α

= f(ν),

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

where (λ, μ, ν) ∈ C (1, 2, 3), will be called an almost r-paracontact 3-
structure.

Moreover, from Theorem 5.5, there is an associated Riemannian
metric g on M such that for λ = 1, 2, 3 we have

g
(
ξ(λ)α

, X
)

= ηα
(λ) (X) ,(32)

g
(
f(λ)X, f(λ)Y

)
= g (X,Y ) −

∑
α

ηα
(λ) (X) ηα

(λ) (Y ) .(33)

Now, we need a lemma.
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Lemma 6.2. If M admits an almost r-paracontact metric 3-
structure, such that each of the constituent structures is of s-paracontact
type, then

(34)

(∇Xf(λ)

)
ξ(λ)α

= − (f(λ)

)2
X,(∇Xf(λ)

)
ξ(μ)α

= ηβ
(μ) (X) ξ(λ)β

,(∇Xf(λ)

)
ξ(ν)α

= ηβ
(ν) (X) ξ(λ)β

,

⎫⎪⎪⎬
⎪⎪⎭

where (λ, μ, ν) ∈ C (1, 2, 3).

Proof. The proof follows from Definition 6.1 and (28).

The above lemma implies the following proposition.

Proposition 6.3. On an almost r-paracontact metric 3-structure
manifold, such that each of the constituent structures is of s-paracontact
type, we have

(35)

(
∇ξ(λ)β

f(λ)

)
ξ(λ)α

= 0,(
∇ξ(λ)β

f(λ)

)
ξ(μ)α

= 0,
(
∇ξ(λ)β

f(λ)

)
ξ(ν)α

= 0,(
∇ξ(ν)β

f(λ)

)
ξ(μ)α

= 0,
(
∇ξ(μ)β

f(λ)

)
ξ(ν)α

= 0,(
∇ξ(μ)β

f(λ)

)
ξ(μ)α

= ξ(λ)β
,

(
∇ξ(ν)β

f(λ)

)
ξ(ν)α

= ξ(λ)β
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

where (λ, μ, ν) ∈ C (1, 2, 3).

Now, we prove the main result of this section.

Theorem 6.4. If M is a manifold equipped with an almost r-
paracontact metric 3-structure (Σ(λ), g) =

(
f(λ), ξ(λ)α

, ηα
(λ), g

)
, λ =

1, 2, 3, then all of the constituent structures cannot be of P -Sasakian
type simultaneously.

Proof. For λ = 1, 2, 3, we have

(36)
(∇ZF(λ)

)
(X,Y ) = g

((∇Zf(λ)

)
X,Y

)
,
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where F(λ) (X,Y ) = g
(
X, f(λ)Y

)
. Suppose all of the constituent

structures are of P -Sasakian type. Now, putting Z = ξ(μ)β
, X = ξ(μ)α

in (36) and using (35), we get

(37)
(
∇ξ(μ)β

F(λ)

) (
ξ(μ)α

, Y
)

= g
(
ξ(λ)β

, Y
)

= ηβ
(λ) (Y ) ,

while, from (29), we obtain

(38)

(
∇ξ(μ)β

F(λ)

) (
ξ(μ)α

, Y
)

= −
∑

γ

ηγ
(λ) (Y ) g

(
ξ(ν)α

, ξ(ν)β

)

= −
∑

γ

ηγ
(λ) (Y ) δα

β .

When α �= β, from (37) and (38) we have ηβ
(λ) (Y ) = 0 for all Y , which

is a contradiction.

Since an almost r-paracontact metric structure of SP -Sasakian type
is always of P -Sasakian type, in view of Theorem 6.4, we have the
following corollary.

Corollary 6.5. Not all the constituent structures of an almost r-
paracontact metric 3-structure manifold can be of SP -Sasakian type.

In case of r = 1, we have the following corollary.

Corollary 6.6 [8]. Not all the constituent structures of an almost
paracontact metric 3-structure manifold can be of P -Sasakian type or
SP -Sasakian type.

7. Non-existence of S-3-structure. Taking ε = −1, the ε-framed
metric structure becomes a framed metric structure [34] (or almost
r-contact metric structure [32]), that is,

(39)
f2 = −I + ηα ⊗ ξα,

F (X,Y ) = g(X, fY ) = −F (Y,X) .

}
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A framed metric structure is called normal if

[f, f ] + 2dηα ⊗ ξα = 0,

and an S-structure [2] if it is normal and F = dηα, α ∈ {1, . . . , r}.
When r = 1, a framed metric structure is an almost contact metric
structure, while an S-structure is a Sasakian structure.

If a framed metric structure on M is an S-structure then it is known
(Blair [2]) that

(∇Xf)Y =
∑
α

(
g(fX, fY ) ξα + ηα(Y )f2X

)
,(40)

f = −∇ξα, α ∈ {1, . . . , r}.(41)

The converse may also be proved. In case of Sasakian structure, that
is, r = 1, (40) implies (41).

For the sake of simplicity, we will write as

∑
ξ̃ ⊗ ξ̃ :=

∑
α

ξα ⊗ ξα,

(
in local coordinates,

∑
ξ̃iξ̃j :=

∑
α

ξi
αξ

j
α

)
.

We will also write ∑ ˜̃
ξi ˜̃
ξj :=

∑
β

ξi
βξ

j
β.

Differentiating (40) covariantly, we have

(∇Z∇f)(X,Y ) = − r
(
g(X,Y ) −

∑
η̃(X) η̃(Y )

)
fZ

+
(
g(fZ,X)

∑
η̃(Y ) + g(fZ, Y )

∑
η̃(X)

)∑
ξ̃

+ r
(
X −

∑
η̃(X)ξ̃

)
g(fZ, Y )

−
(
g(fZ,X)

∑
ξ̃ + fZ

∑
η̃(X)

)∑
η̃(Y ),
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that is,

∇m∇if = −r
(
gij −

∑
η̃iη̃j

)
fm

k

+
(
fmi

∑
η̃j + fmj

∑
η̃i

)∑
ξ̃k

+ r
(
δk
i −

∑
η̃i ξ̃

k
)
fmj

−
(
fmi

∑ ˜̃
ξk + fm

k
∑

η̃i

)∑
η̃j

by noticing

∑
∇ξ̃ = −rf, ∇m(

∑
η̃i η̃j) = −fmi

∑
η̃j − fmj

∑
η̃i.

Making use of the Ricci identity (with respect to Z,X in the above),
we have

(42) g(R(Z,X)fY,W ) + g(R(Z,X)Y, fW )

= −
(
rg(X,Y ) − r

∑
η̃(X) η̃(Y ) +

∑
η̃(Y )

∑
η̃(X)

)
g(fZ,W )

−
(
rg(X,W )− r

∑
η̃(X) η̃(W ) +

∑
η̃(W )

∑
η̃(X)

)
g(fZ, Y )

+
(
rg(Z, Y ) − r

∑
η̃(Z) η̃(Y ) +

∑
η̃(Y )

∑
η̃(Z)

)
g(fX,W )

−
(
rg(Z,W ) − r

∑
η̃(Z) η̃(W ) +

∑
η̃(W )

∑
η̃(Z)

)
g(fX, Y ),

that is,

Rmiskfj
s +Rmijsfk

s = −
(
rgij − r

∑
η̃i η̃j +

∑
η̃j

∑
η̃i

)
fmk

+
(
rgik − r

∑
η̃i η̃k +

∑
η̃k

∑
η̃i

)
fmj

+
(
rgmj − r

∑
η̃m η̃j +

∑
η̃j

∑
η̃m

)
fik

−
(
rgmk − r

∑
η̃m η̃k +

∑
η̃k

∑
η̃m

)
fij ,

cf. Blair [2, Lemma 2.2]. Contracting (42) with respect to Z,W , and
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by using
∑n

c=1

∑
α,β η

α(ec) ηβ(ec) = r, we have

(43) (−Rmijsf
ms+Ri

sfsj =)
1
2
Rijmsf

ms+Ri
sfsj = r(n− r−1)fij ,

where {ec}is an orthonormal basis of TM .

Example 7.1. Every n-dimensional Lie group G admits a framed
f -structure of rank 2k, where k is any positive integer less than
(n+ 1) /2, cf. [15].

Theorem 7.2. An S-structure is not Einstein if r > 1.

Proof. Let (f, ξα, ηα, g) be an S-structure on an n-dimensional
manifold M . From (40) and (41) for γ = 1, . . . , r(= n− 2k), we have

(∇X∇ξγ)Y = −
(
g (X,Y ) −

∑
β

ηβ (X) ηβ (Y )

)∑
α

ξα

+

(
X −

∑
β

ηβ (X) ξβ

)∑
α

ηα (Y ) .

In an S-manifold each ξα is a Killing vector. Since a Killing vector ξ
satisfies

(∇X∇ξ)Y = −R (ξ,X)Y

where R (X,Y )Z = [∇X ,∇Y ]−∇[X,Y ]; therefore, for γ = 1, . . . , r, we
have

(44)

R(ξγ , X)Y =

(
g (X,Y ) −

∑
β

ηβ (X) ηβ (Y )

)∑
α

ξα

−
(
X −

∑
β

ηβ (X) ξβ

)∑
α

ηα (Y )

or

(45)

∇if
k
j ( = −∇i∇jξ

k
γ = ξs

γRsijk )

=

(
gij −

∑
β

ηβ
i η

β
j

)∑
α

ξk
α −

(
δk
i −

∑
β

ηβ
i ξ

k
β

)∑
α

ηα
j .
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Now, let S be the Ricci operator given by

SX =
n∑

c=1

R(X, ec)ec,

where {ec} is an orthonormal basis of TM . Contracting (44) in X,Y ,
we have for γ = 1, . . . , r,

(46) Sξγ = (n− r)
∑
α

ξα

because of
n∑

c=1

∑
β

ηβ(ec) ηβ(ec) = r,
n∑

c=1

ηα(ec)ec = ξα,

and
n∑

c=1

((∑
β

ηβ (ec) ξβ

)∑
α

ηα (ec)

)
=
∑

β

ξβ.

Now, assume that g is Einstein. By (46), we obtain
τ

n
ξγ = (n− r)

∑
α

ξα,

where τ is the scalar curvature. As {ξ1, . . . , ξr} are linearly indepen-
dent, the above relation implies n− r = 0 if r > 1, which means f
vanishes. Hence, we know that an S-structure is not Einstein if r>1.

Setting ε = −1, in Definition 4.1, we have the following definition.

Definition 7.3 [15]. An n-dimensional manifold M equipped with
three-framed f -structures Σ(λ) =

(
f(λ), ξ(λ)α

, ηα
(λ)

)
, λ = 1, 2, 3 of the

same rank 2k satisfying

(47)

ηα
(λ)

(
ξ(μ)β

)
= 0, ηα

(μ)

(
ξ(λ)β

)
= 0, λ �= μ,

f(λ)

(
ξ(μ)β

)
= −f(μ)

(
ξ(λ)β

)
= ξ(ν)β

,

ηα
(λ) ◦ f(μ) = −ηα

(μ) ◦ f(λ) = ηα
(ν),

f(λ) ◦ f(μ) − ηα
(μ) ⊗ ξ(λ)α

= −f(μ) ◦ f(λ) + ηα
(λ) ⊗ ξ(μ)α

= f(ν),

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭
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where (λ, μ, ν) ∈ C (1, 2, 3), is said to have a framed f -3-structure.

An associated metric to a framed 3-structure in a manifold M is a
Riemannian metric which is associated to each of the three constituent
structures. In fact, there always exists such an associated Riemannian
metric g on M satisfying

g
(
ξ(λ)α

, X
)

= ηα
(λ) (X) ,(48)

g
(
f(λ)X, f(λ)Y

)
= g (X,Y ) −

∑
α

ηα
(λ) (X) ηα

(λ) (Y ) .(49)

If each of the constituent structures is an S-structure, the framed metric
3-structure will be called an S-3-structure. An S-3-structure with r = 1
is a Sasakian 3-structure [17].

Example 7.4 [15]. Every n-dimensional Lie group G admits a
framed f -3-structure of rank 2k, where k is even or odd according
to whether n is even or odd.

Now, we prove the main result of this section.

Theorem 7.5. If M is an n-dimensional manifold equipped with a
framed metric 3-structure

(
f(λ), ξ(λ)α

, ηα
(λ), g

)
, λ = 1, 2, 3 of rank 2k,

then all of the constituent structures cannot be S-structures simultane-
ously provided n− 2k = r > 1.

Proof. Let
(
f(λ), ξ(λ)α

, ηα
(λ)

)
, λ = 1, 2, 3, be an S-3-structure. Then

f(3) = −f(2) ◦ f(1) +
∑

˜η(1) ⊗ ˜ξ(2),

ηα
(λ)(ξ(μ)β) = 0 for λ �= μ;

ξ(3)α = f(1)
(
ξ(2)α

)
, η(3)

α = −η(2)α ◦ f(1),
that is,

f(3)i
j = −f(1)i

sf(2)s
j +

∑
˜η(1)i

˜ξ(2)
j
,

ξ(3)
j
α

= f(1)
j
s
ξ(2)

s
α
, η(3)

j
α

= −η(2)α
s
f(1)

s
j
.
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Now, f(1) satisfies the relation (43):

1
2
Rijmsf

ms
(1) +Ri

sf(1)sj
= r(n− r − 1)f(1)ij

.

So, let us calculate the interior product with ξ(2)ε :

ξ(2)ε
i

(
1
2
Rijmsf

ms
(1) +Ri

sf(1)sj

)
= ξ(2)ε

i
(
r(n− r − 1)f(1)ij

)
.

Making use of (45), for ξ(2)ε, the left-hand side of the equation is

1
2

{(
gjm −

∑
˜̃η(2)j

˜̃η(2)m

)∑
˜η(2)s

−
(
gjs −

∑
˜̃η(2)j

˜̃η(2)s

)∑
˜η(2)m

}
fms
(1) + (n−r)

∑
ξ̃s
(2)fsj

=
(
gjm −

∑
˜̃η(2)j

˜̃η(2)m

)(
−
∑

˜ξ(3)
m
)

+ (n−r)
∑

˜η(3)j

= (n− r − 1)
∑

˜η(3)j
,

where (46), ηα
(2)s

fms
(1) = −ξm

(3)α, and
(∑ ˜̃η(2)j

˜̃η(2)m

)∑ ˜ξ(3)
m

= 0 are
used; while the right-hand side is equal to

r(n− r − 1)ηε
(3)j

.

Then ∑
˜ξ(3) = rξ(3)ε, for each ε = 1, . . . , r.

Hence, there exists no linearly independent set {ξ(3)1, . . . , ξ(3)r} if
r > 1.

8. Non-existence of proper trans-Sasakian 3-structure. An
almost contact metric structure (f, ξ, η, g) is a special case of an ε-
framed metric structure when ε = −1 and r = 1. Let M be an almost
contact metric manifold ([3]) with an almost contact metric structure
(f, ξ, η, g), that is, f is a (1, 1) tensor field, ξ is a vector field; η is a
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1-form and g is a compatible Riemannian metric such that

f2 = −I + η ⊗ ξ, η(ξ) = 1,(50)
F (X,Y ) = g(X, fY ) = −F (Y,X), g (X, ξ) = η(X)(51)

for all X,Y ∈ TM .

In [27], Tanno gave a classification for connected almost contact met-
ric manifolds whose automorphism groups have the maximum dimen-
sion. For such a manifold, the sectional curvature of plane sections
containing ξ is a constant, say c. He showed that they can be divided
into three classes: (1) homogeneous normal contact Riemannian man-
ifolds with c > 0, (2) global Riemannian products of a line or a circle
with a Kähler manifold of constant holomorphic sectional curvature if
c = 0 and (3) warped product spaces R ×f Cn if c < 0. It is known
that the manifolds of class (1) are characterized by some tensorial re-
lations admitting a Sasakian structure. Kenmotsu [16] characterized
the differential geometric properties of the third case by tensor equa-
tion (∇Xf)Y = g(fX, Y )ξ − η(Y )fX. The structure so obtained is
now known as a Kenmotsu structure. In general, this structure is not
Sasakian [16].

In the Gray-Hervella classification of almost Hermitian manifolds
[10], there appears a class, W4, of Hermitian manifolds which are
closely related to locally conformal Kähler manifolds (for geometry of
locally conformal Kähler manifolds we refer to the book of Dragomir
and Ornea [9]). An almost contact metric structure (f, ξ, η, g) on M is
called a trans-Sasakian structure (Oubina [22]) if (M×R, J,G) belongs
to the class W4, where J is the almost complex structure on M × R
defined by

J(X, cd/dt) = (fX − c ξ, η(X)d/dt)

for all vector fields X on M̄ and smooth functions c on M×R and G is
the product metric on M ×R. This may be expressed by the condition
(Blair and Oubina [4])

(52) (∇Xf)Y = a(g(X,Y )ξ − η(Y )X) + b(g(X, fY )ξ + η(Y )fX)

for some smooth functions a and b on M , and we call such a trans-
Sasakian structure as (a, b)-trans-Sasakian structure. From the formula
(52) it follows that [4]

(53) ∇Xξ = −afX − bX + bη(X)ξ.
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In [29], it is proved that trans-Sasakian manifolds are generalized
quasi-Sasakian (Mishra [20]). It is also proved that certain Legendre
curves of a Kenmotsu manifold are circles [28].

The class C6⊕C5 [18] coincides with the class of (a, b)-trans-Sasakian
structures. We note that (0, 0)-trans-Sasakian structures are cosym-
plectic [3], (0, b)-trans-Sasakian structures are b-Kenmotsu [13] and
(a, 0)-trans-Sasakian structures are a-Sasakian [13].

If we have an almost contact metric 3-structure (fλ, ξλ, ηλ, g), λ =
1, 2, 3, [17] on a connected manifold M of dimension 4n + 3, then we
have the following

Theorem 8.1. If (fλ, ξλ, ηλ, g), λ = 1, 2, 3, are (aλ, bλ)-trans-
Sasakian, then b1 = b2 = b3 = 0 and a1 = a2 = a3 = a, where a
is constant. Therefore, we have an a-Sasakian 3-structure.

Proof. In fact, since (f3, ξ3, η3, g) is (a3, b3)-trans-Sasakian, by (53)
we have

(54) ∇Xξ3 = b3η3(X)ξ3 − b3X − a3fX.

On the other hand, from the defining conditions of 3-structure we have

∇Xξ3 = (∇Xf1) (ξ2) + f1 (∇Xξ2) .

Taking (52) and (53) into account, we get

(55)

∇Xξ3 = b1η3(X)ξ1 + b2η2(X)ξ3 − b2f1X + (a1 − a2)η2(X)ξ1 − a2f3X.

Now from (54) and (55) it follows

∇ξ1ξ3 = −a2ξ2 = −a3ξ2 − b3ξ1.

Therefore, a2 = a3 and b3 = 0. Analogously, we get

∇ξ2ξ3 = a1ξ1 = a3ξ1.

Then a1 = a3. Finally,

∇ξ3ξ3 = b1ξ1 + b2ξ2 = 0.
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Therefore, b1 = b2 = b3 = 0 and a1 = a2 = a3 = a. Thus, we have an
a-Sasakian 3-structure and, in such a case, it follows that

dFλ = 0, dηλ = 2aFλ(X,Y ).

where Fλ(X,Y ) = g(X, fλY ) and λ = 1, 2, 3. Since, 0 = da ∧ Fλ, for
λ = 1, 2, 3, we get

0 = da(ξλ)Fλ(ξμ, ξν) = −da(ξλ),

where (λ, μ, ν) ∈ C (1, 2, 3). If E is a unitary vector orthogonal to ξ1,
ξ2, and ξ3, we have

0 = da(E)Fλ(ξμ, ξν) = −da(E).

It follows that da = 0.

Remark 8.2. We also note that, even in a more general context,
a is constant. For instance, for a trans-Sasakian 3-structure in the
sense of Martin Cabrera, cf. [19, Corollary 4.15], a is constant. Here,
M has a trans-Sasakian almost contact 3-structure, if M × R has a
locally conformal quaternionic Kähler structure. However, each almost
complex structure of M × R is not necessarily W4 and each almost
contact structure of M is not necessarily trans-Sasakian.

From Theorem 8.1 we have the following corollaries.

Corollary 8.3. If (fλ, ξλ, ηλ, g), λ = 1, 2, 3, are bλ-Kenmotsu, then
b1 = b2 = b3 = 0. Therefore, we have a hypercosymplectic 3-structure
[19].

Corollary 8.4. If (fλ, ξλ, ηλ, g), λ = 1, 2, 3, are aλ-Sasakian, then
a1 = a2 = a3 = a, where a is constant. Therefore, we have an a-
Sasakian 3-structure.

Remark 8.5. In [24, 25], submanifolds of a manifold equipped with a
Kenmotsu almost contact 3-structure are studied. In view of the above
discussion, such structure cannot exist. However, the results of [24, 25]
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may be true when the ambient manifold carries a hypercosymplectic 3-
structure [19]. A (4n+ 3)-dimensional torus T4n+3 (n ≥ 1) is a typical
example carrying a hypercosymplectic 3-structure.
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