INDUCED REPRESENTATIONS OF LOCALLY C^* -ALGEBRAS

MARIA JOIŢA

ABSTRACT. In this paper, by analogy with the case of C^* -algebras, we define the notion of induced representation of a locally C^* -algebra and then we prove the imprimitivity theorem for induced representations of locally C^* -algebras.

1. Introduction. Locally C^* -algebras generalize the notion of C^* -algebra. A locally C^* -algebra is a complete Hausdorff complex topological *-algebra A whose topology is determined by its continuous C^* -seminorms in the sense that the net $\{a_i\}_{i\in I}$ converges to 0 if and only if the net $\{p(a_i)\}_{i\in I}$ converges to 0 for every continuous C^* -seminorm p on A. The terminology "locally C^* -algebra" is due to Inoue, see [2]. Locally C^* -algebras were also studied by Phillips, under the name of pro C^* -algebra, see [7], Fragoulopoulou, and other people.

A representation of A on a Hilbert space H is a continuous *-morphism φ from A to L(H), the C^* -algebra of all bounded linear operators on H. Given a locally C^* -algebra A which acts non-degenerately on a Hilbert module E over a locally C^* -algebra B and a non-degenerate representation (φ, H) of B, exactly as in the case of C^* -algebras, see [8], we construct a representation of A, called the Rieffel-induced representation from B to A via E, and then we prove some properties of this representation. Thus, we prove that the theorem on induction in stages, Theorem 5.9 in [8], is also true in the context of locally C^* -algebras, Theorem 3.6. In Section 4, we prove that if A and B are two locally C^* -algebras which are strong Morita equivalent, then any non-degenerate representation of A is induced from a non-degenerate representation of B, Theorem 4.4.

2. Preliminaries. Let A be a locally C^* -algebra, and let S(A) be the set of all continuous C^* -seminorms on A. If $p \in S(A)$,

²⁰⁰⁰ AMS Mathematics Subject Classification. Primary 22D30, 46L05, 46L08. Received by the editors on March 4, 2003, and in revised form on January 26, 2004.

then $A_p = A/\ker p$ is a C^* -algebra in the norm induced by p and $A = \lim_{p \in S(A)} -A_p$. The canonical map from A onto A_p is denoted by π_p and the image of a under π_p by a_p .

An isomorphism from a locally C^* -algebra A to a locally C^* -algebra B is a bijective, continuous *-morphism Φ from A to B such that Φ^{-1} is continuous.

If (φ, H) is a representation of A, then there is $p \in S(A)$ and a representation (φ_p, H) of A_p such that $\varphi = \varphi_p \circ \pi_p$. We say that (φ_p, H) is a representation of A_p associated to (φ, H) . The representation (φ, H) is non-degenerate if $\varphi(A)H$ is dense in H. Clearly, (φ, H) is non-degenerate if and only if (φ_p, H) is non-degenerate. We say that the representations (φ_1, H_1) and (φ_2, H_2) of A are unitarily equivalent if there is a unitary operator U from H_1 onto H_2 such that $U \circ \varphi_1(a) = \varphi_2(a) \circ U$ for all $a \in A$.

Definition 2.1. A pre-Hilbert A-module is a complex vector space E which is also a right A-module, compatible with the complex algebra structure, equipped with an A-valued inner product $\langle \cdot, \cdot \rangle : E \times E \to A$ which is **C**- and A-linear in its second variable and satisfies the following relations:

- (i) $\langle \xi, \eta \rangle^* = \langle \eta, \xi \rangle$ for every $\xi, \eta \in E$;
- (ii) $\langle \xi, \xi \rangle \geq 0$ for every $\xi \in E$;
- (iii) $\langle \xi, \xi \rangle = 0$ if and only if $\xi = 0$.

We say that E is a Hilbert A-module if E is complete with respect to the topology determined by the family of semi-norms $\{\|\cdot\|_p\}_{p\in S(A)}$, where $\|\xi\|_p = \sqrt{p\left(\langle \xi, \xi \rangle\right)}$, $\xi \in E$, Definition 4.1 of [7].

Let E be a Hilbert A-module. For $p \in S(A)$, the vector space $E_p = E/\mathcal{E}_p$, where $\mathcal{E}_p = \{\xi \in E; p(\langle \xi, \xi \rangle) = 0\}$, is a Hilbert A_p -module with the action of A_p on E_p defined by $(\xi + \mathcal{E}_p) (a + \ker p) = \xi a + \mathcal{E}_p$ and the inner product defined by $\langle \xi + \mathcal{E}_p, \eta + \mathcal{E}_p \rangle = \pi_p (\langle \xi, \eta \rangle)$, [7, Lemma 4.5]. The canonical map from E onto E_p is denoted by σ_p and the image of ξ under σ_p by ξ_p . Thus, for $p, q \in S(A), p \geq q$, there is a canonical morphism of vector spaces σ_{pq} from E_p into E_q such that $\sigma_{pq}(\xi_p) = \xi_q, \ \xi_p \in E_p$. Then $\{E_p, A_p, \sigma_{pq} : E_p \rightarrow E_p \in E_p\}$

 $E_q, p \geq q; p, q \in S(A)$ } is an inverse system of Hilbert C^* -modules in the following sense: $\sigma_{pq}(\xi_p a_p) = \sigma_{pq}(\xi_p) \pi_{pq}(a_p), \xi_p \in E_p, a_p \in A_p;$ $\langle \sigma_{pq}(\xi_p), \sigma_{pq}(\eta_p) \rangle = \pi_{pq}(\langle \xi_p, \eta_p \rangle), \xi_p, \eta_p \in E_p; \sigma_{pp}(\xi_p) = \xi_p, \ \xi_p \in E_p$ and $\sigma_{qr} \circ \sigma_{pq} = \sigma_{pr}$ if $p \geq q \geq r$ and $\lim_{\stackrel{\leftarrow}{p}} E_p$ is a Hilbert A-module which may be identified with the Hilbert A-module E, [7, Proposition 4.4].

A Hilbert A-module E is full if the ideal of A generated by $\{\langle \xi, \eta \rangle, \ \xi, \eta \in E\}$ is dense in A.

Let E and F be two Hilbert A-modules. The set of all adjointable linear operators from E to F is denoted by $L_A(E,F)$, and we write $L_A(E)$ for $L_A(E,E)$. We consider on $L_A(E,F)$ the topology determined by the family of semi-norms $\{\widetilde{p}\}_{p\in S(A)}$, where $\widetilde{p}(T)=\sup\left\{\|T\xi\|_p:\|\xi\|_p\leq 1\right\}$. Then $L_A(E,F)$ is isomorphic to $\lim_{\stackrel{\leftarrow}{p}}L_{A_p}(E_p,F_p)$, [7, Proposition 4.7], and $L_A(E)$ becomes a locally C^* -algebra. The canonical maps from $L_A(E,F)$ to $L_{A_p}(E_p,F_p)$, $p\in S(A)$ are denoted by $(\pi_p)_*$ and $(\pi_p)_*$ (T) $(\sigma_p(\xi))=\sigma_p$ $(T\xi)$.

We say that the Hilbert A-modules E and F are unitarily equivalent if there is a unitary operator in $L_A(E, F)$.

A locally C^* -algebra A acts nondegenerately on a Hilbert B-module E if there is a continuous *-morphism Φ from A to $L_B(E)$ such that $\Phi(A)E$ is dense in E.

The closed vector subspace of $L_A(E,F)$ spanned by $\{\theta_{\eta,\xi}; \xi \in E, \eta \in F\}$, where $\theta_{\eta,\xi}(\zeta) = \eta \langle \xi, \zeta \rangle$, is denoted by $K_A(E,F)$, and we write $K_A(E)$ for $K_A(E,E)$. Moreover, the locally C^* -algebras $K_A(E,F)$ and $\lim_{\stackrel{\leftarrow}{p}} K_{A_p}(E_p,F_p)$ are isomorphic as well as the C^* -algebras $(K_A(E,F))_p$ and $K_{A_p}(E_p,F_p)$ for all $p \in S(A)$. Since $K_A(E)E$ is dense in $E,K_A(E)$ acts non-degenerately on E.

3. Induced representations. Let A and B be two locally C^* -algebras, let E be a Hilbert B-module, let $\Phi: A \to L_B(E)$ be a non-degenerate continuous *-morphism and let (φ, H) be a non-degenerate representation of B. We will construct a non-degenerate representation $\begin{pmatrix} A \\ E \\ \varphi, E \\ H \end{pmatrix}$ of A from (φ, H) via E.

1926 M. JOITA

Construction 3.1 (for C^* -algebras, see [8]). Define a sesquilinear form $\langle \cdot, \cdot \rangle_0^{\varphi}$ on the vector space $E \otimes_{\text{alg}} H$ by

$$\langle \xi \otimes h_1, \eta \otimes h_2 \rangle_0^{\varphi} = \langle h_1, \varphi \left(\langle \xi, \eta \rangle_E \right) h_2 \rangle_{\varphi}$$

where $\langle \cdot, \cdot \rangle_{\varphi}$ denotes the inner product on the Hilbert space H. It is easy to see that $(E \otimes_{\text{alg}} H) / N_{\varphi}$, where N_{φ} is the vector subspace of $E \otimes_{\text{alg}} H$ generated by $\{\xi \otimes h \in E \otimes_{\text{alg}} H; \langle \xi \otimes h, \xi \otimes h \rangle_0^{\varphi} = 0\}$, is a pre-Hilbert space with the inner product defined by

$$\langle \xi \otimes h_1 + N_{\varphi}, \eta \otimes h_2 + N_{\varphi} \rangle^{\varphi} = \langle \xi \otimes h_1, \eta \otimes h_2 \rangle_0^{\varphi}.$$

The completion of $(E \otimes_{\text{alg}} H)/N_{\varphi}$ with respect to the inner product $\langle \cdot, \cdot \rangle^{\varphi}$ is denoted by $_{E}H$. Let $T \in L_{B}(E)$. Define a linear map $_{E}\varphi(T)$ from $E \otimes_{\text{alg}} H$ into $E \otimes_{\text{alg}} H$ by

$$_{E}\varphi\left(T\right) \left(\xi\otimes h\right) =T\xi\otimes h.$$

If (φ_q, H) is a representation of B_q associated to (φ, H) , then we have

$$\begin{split} \left\langle _{E}\varphi \left(T\right) \left(\xi \otimes h\right) ,_{E}\varphi \left(T\right) \left(\xi \otimes h\right) \right\rangle _{0}^{\varphi} &= \left\langle h,\varphi \left(\left\langle T\xi,T\xi\right\rangle _{E}\right) h\right\rangle _{\varphi} \\ &= \left\langle h,\varphi_{q} \left(\left\langle \left(\pi_{q}\right)_{*} \left(T\right)\sigma_{q}(\xi),\left(\pi_{q}\right)_{*} \left(T\right)\sigma_{q}(\xi)\right\rangle _{E_{q}}\right) h\right\rangle _{\varphi} \\ &\leq \widetilde{q} \left(T\right) \left\langle h,\varphi_{q} \left(\left\langle \sigma_{q}(\xi),\sigma_{q}(\xi)\right\rangle _{E_{q}}\right) h\right\rangle _{\varphi} \\ &= \widetilde{q} \left(T\right) \left\langle h,\left(\varphi_{q}\circ\pi_{q}\right) \left(\left\langle \xi,\xi\right\rangle _{E}\right) h\right\rangle _{\varphi} \\ &= \widetilde{q} \left(T\right) \left\langle \xi\otimes h,\xi\otimes h\right\rangle _{0}^{\varphi} \end{split}$$

for all $\xi \in E$ and $h \in H$. From this we conclude that $_{E}\varphi(T)$ may be extended to a bounded linear operator $_{E}\varphi(T)$ on $_{E}H$. In this way we have obtained a map $_{E}\varphi$ from $L_{B}(E)$ to $L(_{E}H)$. It is easy to see that $(_{E}\varphi,_{E}H)$ is a representation of $L_{B}(E)$ on $_{E}H$. Moreover, $_{E}\varphi$ is non-degenerate. Then $_{E}\varphi \circ \Phi$ is a non-degenerate representation of A on $_{E}H$ and it is denoted by $_{E}^{A}\varphi$.

Definition 3.2. The representation $\begin{pmatrix} A \\ E \end{pmatrix} \varphi$, EH constructed above is called the Rieffel-induced representation from B to A via E.

Remark 3.3. 1. Let (φ_1, H_1) and (φ_2, H_2) be two non-degenerate representations of B. If (φ_1, H_1) and (φ_2, H_2) are unitarily equivalent, then $({}_E^A\varphi_1, {}_EH_1)$ and $({}_E^A\varphi_2, {}_EH_2)$ are unitarily equivalent.

- 2. Let F be a Hilbert B-module which is unitarily equivalent to E. If U is a unitary element in $L_B(E,F)$ and A acts on F by $a \to U \circ \Phi(a) \circ U^*$, then the representations $\binom{A}{E}\varphi, EH$ and $\binom{A}{F}\varphi, FH$ of A are unitarily equivalent.
- *Proof.* (1) If U is a unitary operator from H_1 onto H_2 , then it is not hard to check that the linear operator V from $E \otimes_{\text{alg}} H_1$ onto $E \otimes_{\text{alg}} H_2$ defined by $V(\xi \otimes h) = \xi \otimes Uh$ may be extended to a unitary operator V from EH_1 onto EH_2 and, moreover, $V \circ_E^A \varphi_1(a) = E^A \varphi_2(a) \circ V$ for all A in A.
- (2) Consider the linear operator W from $E \otimes_{\text{alg}} H$ onto $F \otimes_{\text{alg}} H$ defined by $W(\xi \otimes h) = U\xi \otimes h$. Then we have

$$\begin{pmatrix} {}_{F}\varphi(a)\circ W \end{pmatrix}(\xi\otimes h) = (U\circ\Phi(a)\circ U^{*})(U\xi)\otimes h = U(\Phi(a)\xi)\otimes h$$
$$= W(\Phi(a)\xi\otimes h) = (W\circ_{E}^{A}\varphi(a))(\xi\otimes h)$$

for all a in A, ξ in E and h in H. It is not difficult to see that W may be extended to a unitary operator from $_EH$ onto $_FH$ and $_F^A\varphi(a)\circ W=W\circ_E^A\varphi(a)$ for all a in A. \square

Proposition 3.4. Let (φ, H) be a non-degenerate representation of B. If (φ_q, H) is a non-degenerate representation of B_q associated to (φ, H) , then there is $p \in S(A)$ such that A_p acts non-degenerately on E_q and the representations $\binom{A}{E}\varphi, EH$ and $\binom{A_p}{E_q}\varphi_q \circ \pi_p, E_qH$ of A are unitarily equivalent.

Proof. Define a linear map U from $E \otimes_{\text{alg}} H$ into $E_q \otimes_{\text{alg}} H$ by

$$U(\xi \otimes h) = \sigma_q(\xi) \otimes h.$$

Since

$$\begin{split} \left\langle U\left(\xi\otimes h\right), U\left(\xi\otimes h\right)\right\rangle_{0}^{\varphi_{q}} &= \left\langle h, \varphi_{q}\left(\left\langle \sigma_{q}\left(\xi\right), \sigma_{q}\left(\xi\right)\right\rangle_{E_{q}}\right) h\right\rangle_{\varphi} \\ &= \left\langle h, \left(\varphi_{q}\circ\pi_{q}\right)\left(\left\langle \xi, \xi\right\rangle_{E}\right) h\right\rangle_{\varphi} \\ &= \left\langle \xi\otimes h, \xi\otimes h\right\rangle_{0}^{\varphi} \end{split}$$

1928 M. JOIŢA

for all $\xi \in E$ and $h \in H$, U may be extended to a bounded linear operator U from $_EH$ onto $_{E_q}H$. It is easy to verify that U is unitary and $U \circ_E \varphi(T) = \left(_{E_q} \varphi \circ (\pi_q)_* \right) (T) \circ U$ for all $T \in L_B(E)$. Hence the representations $(_E\varphi,_EH)$ and $\left(_{E_q}\varphi_q \circ (\pi_q)_*,_{E_q}H \right)$ of $L_B(E)$ are unitarily equivalent.

The continuity of Φ implies that there is $p \in S(A)$ such that $\widetilde{q}(\Phi(a)) \leq p(a)$ for all a in A and so there is a *-morphism Φ_p from A_p to $L_{B_q}(E_q)$ such that $\Phi_p \circ \pi_p = (\pi_q)_* \circ \Phi$. Moreover, Φ_p is non-degenerate. From

$$U \circ_{E}^{A} \varphi(a) = U \circ_{E} \varphi(\Phi(a)) = \left({}_{E_{q}} \varphi_{q} \circ (\pi_{q})_{*} \right) (\Phi(a)) \circ U$$
$$= \left({}_{E_{q}} \varphi_{q} \left(\Phi_{p} \left(\pi_{p} \left(a \right) \right) \right) \right) \circ U = \left({}_{E_{q}}^{A_{p}} \varphi_{q} \circ \pi_{p} \right) (a) \circ U$$

for all $a \in A$, we conclude that the representations $\binom{A}{E}\varphi, EH$ and $\binom{A_p}{E_q}\varphi_q \circ \pi_p, E_qH$ of A are unitarily equivalent and the proposition is proved. \square

Corollary 3.5. If $(\varphi, H) = (\bigoplus_{i \in I} \varphi_i, \bigoplus_{i \in I} H_i)$, then $({}_E^A \varphi, {}_E H)$ is unitarily equivalent to $(\bigoplus_{i \in I} {}_E^A \varphi_i, \bigoplus_{i \in I} {}_E H_i)$.

Proof. Let (φ_q, H) be a representation of B_q associated to (φ, H) . It is easy to see that there is a representation (φ_{iq}, H_i) of B_q such that $\varphi_{iq} \circ \pi_q = \varphi_i$ for each $i \in I$. Moreover, $\varphi_q = \bigoplus_{i \in I} \varphi_{iq}$. By Proposition 3.4, there is a $p \in S(A)$ such that the representations $\binom{A}{E}\varphi, EH$ and $\binom{A_p}{E_q}\varphi_q \circ \pi_p, E_qH$ of A are unitarily equivalent as well as the representations $\binom{A}{E}\varphi_i, EH$ and $\binom{A_p}{E_q}\varphi_{iq} \circ \pi_p, E_qH_i$ for all $i \in I$.

On the other hand, we know that the representations $\begin{pmatrix} A_p \\ E_q \end{pmatrix} \varphi_q$, $E_q H$ and $\begin{pmatrix} \bigoplus_{i \in I} A_p \\ E_q \end{pmatrix} \varphi_{iq}$, $\bigoplus_{i \in I} E_q H_i$ of A_p are unitarily equivalent, [8, Corollary 5.4]. This implies that the representations $\begin{pmatrix} A_p \\ E_q \end{pmatrix} \varphi_q \circ \pi_p$, $E_q H$ and $\begin{pmatrix} \bigoplus_{i \in I} A_p \\ E_q \end{pmatrix} \varphi_{iq} \circ \pi_p$, $\bigoplus_{i \in I} E_q H_i$ of A are unitarily equivalent and the corollary is proved. \square

Let A, B and C be three locally C^* -algebras, let E be a Hilbert B-module and F a Hilbert C-module and let $\Phi_1: A \to L_B(E)$ and $\Phi_2: B \to L_C(F)$ be non-degenerate continuous *-morphisms. If $E \otimes_{\Phi_2} F$ is the inner tensor product of E and F using Φ_2 , then $E \otimes_{\Phi_2} F = \lim_{\substack{r \in S(C) \\ r \in S(C)}} E \otimes_{\Phi_{2r}} F_r$ and the locally C^* -algebras $L_C(E \otimes_{\Phi_2} F)$ and $\lim_{\substack{r \in S(C) \\ r \in S(C)}} K_{C_r}(E \otimes_{\Phi_{2r}} F_r)$ are isomorphic as well as $K_C(E \otimes_{\Phi_2} F)$ and $\lim_{\substack{r \in S(C) \\ r \in S(C)}} K_{C_r}(E \otimes_{\Phi_{2r}} F_r)$, where $\Phi_{2r} = (\pi_r)_* \circ \Phi_2$, see [3]. Moreover, there is a non-degenerate continuous *-morphism $(\Phi_2)_*$ from $L_B(E)$ to $L_C(E \otimes_{\Phi_2} F)$ defined by $(\Phi_2)_* (T) (\xi \otimes_{\Phi_2} \eta) = T\xi \otimes_{\Phi_2} \eta$. Let $\Phi = (\Phi_2)_* \circ \Phi_1$. Then Φ is a non-degenerate continuous *-morphism from A to $L_C(E \otimes_{\Phi_2} F)$.

Theorem 3.6. Let A, B, C, E, F, Φ_1 and Φ_2 be as above. If (φ, H) is a non-degenerate representation of C, then the representations $\binom{A}{G}\varphi, _{G}H$, where $G = E \otimes_{\Phi_2} F$, and $\binom{A}{E}\binom{B}{F}\varphi$, $_{E}(_{F}H)$ of A are unitarily equivalent.

Proof. Let (φ_r, H) be a non-degenerate representation of C_r associated to (φ, H) . Then there is $q \in S(B)$ and a non-degenerate continuous *-morphism $\Psi_{2q}: B_q \to L_{C_r}(F_r)$ such that $\Psi_{2q} \circ \pi_q = (\pi_r)_* \circ \Phi_2$ and there is $p \in S(A)$ and a non-degenerate continuous *-morphism $\Psi_{1p}: A_p \to L_{B_q}(E_q)$ such that $\Psi_{1p} \circ \pi_p = (\pi_q)_* \circ \Phi_1$ and a non-degenerate continuous *-morphism $\Phi_p: A_p \to L_{C_r}(G_r)$ such that $\Phi_p \circ \pi_p = (\pi_r)_* \circ \Phi$.

To show that the representations $\begin{pmatrix} A \\ G \varphi, {}_{G}H \end{pmatrix}$ and $\begin{pmatrix} A \\ E \end{pmatrix} \begin{pmatrix} B \\ F \varphi \end{pmatrix}, {}_{E} \begin{pmatrix} F \\ F \end{pmatrix} \end{pmatrix}$ of A are unitarily equivalent it is sufficient to prove that the representations $\begin{pmatrix} A_{p} \\ G_{r} \varphi_{r}, G_{r}H \end{pmatrix}$ and $\begin{pmatrix} A_{p} \\ E_{q} \end{pmatrix} \begin{pmatrix} B_{q} \\ F_{r} \varphi_{r} \end{pmatrix}, {}_{E_{q}} \begin{pmatrix} F_{r} \\ F_{r} \end{pmatrix}$ of A_{p} are unitarity

1930 M. JOITA

ily equivalent. But we know that the representations $\binom{A_p}{X_r}\varphi_r, X_rH$, where $X_r = E_q \otimes_{\Psi_{2q}} F_r$, and $\binom{A_p}{E_q}\binom{B_q}{F_r}\varphi_r$, $E_q(F_rH)$ of A_p are unitarily equivalent, [8, Theorem 5.9], and so it is sufficient to prove that the representations $\binom{A_p}{X_r}\varphi_r, X_rH$ and $\binom{A_p}{G_r}\varphi_r, G_rH$ of A_p are unitarily equivalent.

It is not hard to check that the linear map $U: G_r \to X_r$ defined by $U(\xi \otimes_{\Phi_{2r}} \eta) = \sigma_q(\xi) \otimes_{\Psi_{2q}} \eta$ is a unitary operator in $L_{C_r}(G_r, X_r)$ and moreover, $(\Phi_{2r})_*(T) = U^* \circ (\Psi_{2q})_*((\pi_q)_*(T)) \circ U$ for all T in $L_B(E)$, see the proof of Proposition 4.4 in [3]. Since

$$\begin{split} \Phi_{p}(\pi_{p}(a)) &= (\pi_{r})_{*} ((\Phi_{2})_{*} (\Phi_{1}(a))) = (\Phi_{2r})_{*} (\Phi_{1}(a)) \\ &= U^{*} \circ (\Psi_{2q})_{*} ((\pi_{q})_{*} (\Phi_{1}(a))) \circ U \\ &= U^{*} \circ ((\Psi_{2q})_{*} \circ \Psi_{1p}) (\pi_{p}(a)) \circ U \end{split}$$

for all a in A and by Remark 3.3 (2), the representations $\begin{pmatrix} A_p \\ G_r \\ \varphi_r, G_r \end{pmatrix}$ and $\begin{pmatrix} A_p \\ X_r \\ \varphi_r, X_r \end{pmatrix}$ of A_p are unitarily equivalent and the theorem is proved. \Box

4. The imprimitivity theorem. Let A and B be locally C^* -algebras. We recall that A and B are strongly Morita equivalent, written $A \sim_M B$, if there is a full Hilbert A-module E such that the locally C^* -algebras B and $K_A(E)$ are isomorphic. The strong Morita equivalence is an equivalence relation in the set of all locally C^* -algebras, see [4]. Also the vector space $K_A(E,A)$, denoted by \widetilde{E} , is a full Hilbert $K_A(E)$ -module with the action of $K_A(E)$ on $K_A(E,A)$ defined by $(T,S) \to T \circ S$, $S \in K_A(E)$ and $T \in K_A(E,A)$, and the inner product defined by $\langle T,S \rangle = T^* \circ S$, $T,S \in K_A(E,A)$. Moreover, the linear map α from A to $K_{K_A(E)}\left(\widetilde{E}\right)$ defined by $\alpha(a)$ $(\theta_{b,\xi}) = \theta_{ab,\xi}$ is an isomorphism of locally C^* -algebras, see [4]. Since the locally C^* -algebras B and $K_A(E)$ are isomorphic, \widetilde{E} may be regarded as a Hilbert B-module.

It is not hard to check that the linear operator U_p from $\left(\widetilde{E}\right)_p$ to $\widetilde{E_p}$ defined by $U_p\left(T + \ker\left(\widetilde{p}\right)\right) = \left(\pi_p\right)_*(T)$ is unitary. Thus the Hilbert $K_{A_p}(E_p)$ -modules $\left(\widetilde{E}\right)_p$ and $\widetilde{E_p}$ may be identified.

Lemma 4.1. If $A \sim_M B$, then for each $p \in S(A)$ there is a $q_p \in S(B)$ such that $A_p \sim_M B_{q_p}$. Moreover, the set $\{q_p \in S(B); p \in S(A) \text{ and } A_p \sim_M B_{q_p}\}$ is a cofinal subset of S(B).

Proof. If Φ is an isomorphism of locally C^* -algebras from B onto $K_A(E)$, then the map $\tilde{p} \circ \Phi$, denoted by q_p , is a continuous C^* -seminorm on B. Since $\ker \pi_{q_p} = \ker (\pi_p)_* \circ \Phi$, there is a unique continuous *-morphism Φ_{q_p} from B_{q_p} onto $K_{A_p}(E_p)$ such that $\Phi_{q_p} \circ \pi_{q_p} = (\pi_p)_* \circ \Phi$. Moreover, Φ_{q_p} is an isomorphism of C^* -algebras, and since E_p is a full Hilbert A_p -module, we conclude that $A_p \sim_M B_{q_p}$.

To show that $\{q_p \in S(B); p \in S(A) \text{ and } A_p \sim_M B_{q_p}\}$ is a cofinal subset of S(B), let $q \in S(B)$. Then there is $p_0 \in S(A)$ such that

$$q\left(\Phi^{-1}\left(\Phi\left(b\right)\right)\right) \leq \widetilde{p_0}\left(\Phi\left(b\right)\right)$$

for all $b \in B$, whence, since $q\left(\Phi^{-1}\left(\Phi\left(b\right)\right)\right) = q(b)$ and $\widetilde{p_0}\left(\Phi\left(b\right)\right) = q_{p_0}(b)$, we deduce that $q \leq q_{p_0}$. \square

Remark 4.2. If E is a Hilbert B-module which gives the strong Morita equivalence between the locally C^* -algebras A and B, then E_p gives the strong Morita equivalence between the C^* -algebras A_p and B_{q_p} .

Theorem 4.3. Let A and B be two locally C^* -algebras such that $A \sim_M B$ and let (φ, H) be a non-degenerate representation of A. Then (φ, H) is unitarily equivalent to $\left(\frac{A}{E}\begin{pmatrix} B\varphi\\ E\varphi\end{pmatrix}, \widetilde{E}(EH)\right)$, where E is a Hilbert A-module which gives the strong Morita equivalence between A and B.

Proof. Let (φ_p, H) be a non-degenerate representation of A_p associated to (φ, H) . By Lemma 4.1 there is a $q \in S(B)$ such that $A_p \sim_M B_q$. Moreover, the Hilbert A_p -module E_p gives the strong Morita equivalence between A_p and B_q , Remark 4.2. Then the representations (φ_p, H) and $\left(\frac{A_p}{\widetilde{E}_p}\begin{pmatrix}B_q\\E_p\varphi_p\end{pmatrix}, \widetilde{E}_p\begin{pmatrix}E_pH\end{pmatrix}\right)$ of A_p are unitarily equivalent, [8, Theorem 6.23] and by Remark 3.3 (2), the representations $\left(\frac{A_p}{\widetilde{E}_p}\begin{pmatrix}B_q\\E_p\varphi_p\end{pmatrix}, \widetilde{E}_p\begin{pmatrix}E_pH\end{pmatrix}\right)$ and $\left(\frac{A_p}{\widetilde{E}_p}\begin{pmatrix}B_q\\E_p\varphi_p\end{pmatrix}, \widetilde{E}_p\begin{pmatrix}E_pH\end{pmatrix}\right)$ of A_p

1932 M. JOIŢA

are unitarily equivalent. From these facts we conclude that the representations (φ, H) and $\begin{pmatrix} A_p \\ \widetilde{E}_p \end{pmatrix} \begin{pmatrix} B_q \\ E_p \end{pmatrix} \circ \pi_p$, $\widetilde{E}_p \begin{pmatrix} E_p H \end{pmatrix}$ of A are unitarily equivalent.

On the other hand, according to Proposition 3.4, the representations $\binom{B}{E}\varphi_{,E}H$ and $\binom{B_q}{E_p}\varphi_p\circ\pi_q$, E_pH of B are unitarily equivalent. From this, using Remark 3.3 (1) and Proposition 3.4, we deduce that the representations $\binom{A}{\widetilde{E}}\binom{B}{E}\varphi$, E_p and $\binom{A_p}{\widetilde{E}_p}\binom{B_q}{E_p}\varphi_p$, E_p are unitarily equivalent and the theorem is proved. \square

Theorem 4.4. Let A and B be locally C^* -algebras. If $A \sim_M B$, then there is a bijective correspondence between equivalence classes of non-degenerate representations of A and B which preserves direct sums and irreducibility.

Proof. Let E be a Hilbert A-module which gives the strong Morita equivalence between A and B. By Theorem 4.3 and Remark 3.3 (1) the map from the set of all non-degenerate representations of A to the set of all non-degenerate representations of B which maps (φ, H) onto $(^B_E\varphi, _EH)$ induces a bijective correspondence between equivalence classes of non-degenerate representations of A and B. Moreover, this correspondence preserves direct sums, Corollary 3.5.

Let (φ, H) be an irreducible, non-degenerate representation of A. Suppose that $\binom{B}{E}\varphi, {}_{E}H$ is not irreducible. Then $\binom{B}{E}\varphi, {}_{E}H$ = $(\psi_{1} \oplus \psi_{2}, H_{1} \oplus H_{2})$ and by Corollary 3.5 and Theorem 4.3 the representations $\binom{A}{\widetilde{E}}\psi_{1} \oplus \binom{A}{\widetilde{E}}\psi_{2}, {}_{\widetilde{E}}H_{1} \oplus {}_{\widetilde{E}}H_{2}$ and (φ, H) of A are unitarily equivalent, a contradiction. So the bijective correspondence defined above preserves irreducibility.

REFERENCES

- ${\bf 1.}$ M. Fragoulopoulou, An introduction to representation theory of topological *-algebras, Schriftenreihe, Univ. Münster, 1988.
- 2. A. Inoue, Locally C*-algebras, Mem. Faculty Sci. Kyushu Univ. Ser. A, 25 (1971), 197–235.

- 3. M. Joiţa, Tensor products of Hilbert modules over locally C^* -algebras, Czech. Math. J. 54 (2004), 727–737.
- 4. ——, Morita equivalence for locally C^* -algebras, Bull. London Math. Soc. 36 (2004), 802–810.
- **5.** C. Lance, $Hilbert C^*$ -modules. A toolkit for operator algebraists, London Math. Soc. Lecture Note Ser., vol. 210, Cambridge Univ. Press, Cambridge, 1995.
- **6.** N.P. Landasman, Lecture notes on C^* -algebras, Hilbert C^* -modules and quantum mechanics, arXiv: math-ph/98030v1, 24 July 1998.
- 7. N.C. Phillips, *Inverse limits of C*-algebras*, J. Operator Theory 19 (1988), 159–195.
- ${\bf 8.}$ M.A. Rieffel, Induced representations of C^* -algebras, Adv. Math. ${\bf 13}$ (1974), 176–257.

Department of Mathematics, Faculty of Chemistry, University of Bucharest, Bd. Regina Elisabeta nr. 4-12, Bucharest, Romania $E\text{-}mail\ address:\ mjoita@fmi.unibuc.ro,\ mjoita@hotmail.com$