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INDUCED REPRESENTATIONS OF
LOCALLY C∗-ALGEBRAS

MARIA JOIŢA

ABSTRACT. In this paper, by analogy with the case of
C∗-algebras, we define the notion of induced representation
of a locally C∗-algebra and then we prove the imprimitivity
theorem for induced representations of locally C∗-algebras.

1. Introduction. Locally C∗-algebras generalize the notion of
C∗-algebra. A locally C∗-algebra is a complete Hausdorff complex
topological ∗-algebra A whose topology is determined by its continuous
C∗-seminorms in the sense that the net {ai}i∈I converges to 0 if and
only if the net {p(ai)}i∈I converges to 0 for every continuous C∗-
seminorm p on A. The terminology “locally C∗-algebra” is due to
Inoue, see [2]. Locally C∗-algebras were also studied by Phillips, under
the name of pro -C∗-algebra, see [7], Fragoulopoulou, and other people.

A representation of A on a Hilbert space H is a continuous ∗-
morphism ϕ from A to L(H), the C∗-algebra of all bounded lin-
ear operators on H. Given a locally C∗-algebra A which acts non-
degenerately on a Hilbert module E over a locally C∗-algebra B and
a non-degenerate representation (ϕ,H) of B, exactly as in the case
of C∗-algebras, see [8], we construct a representation of A, called the
Rieffel-induced representation from B to A via E, and then we prove
some properties of this representation. Thus, we prove that the theorem
on induction in stages, Theorem 5.9 in [8], is also true in the context
of locally C∗-algebras, Theorem 3.6. In Section 4, we prove that if
A and B are two locally C∗-algebras which are strong Morita equiv-
alent, then any non-degenerate representation of A is induced from a
non-degenerate representation of B, Theorem 4.4.

2. Preliminaries. Let A be a locally C∗-algebra, and let S(A)
be the set of all continuous C∗-seminorms on A. If p ∈ S(A),
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then Ap = A/ ker p is a C∗-algebra in the norm induced by p and
A = lim ←

p∈S(A)
Ap. The canonical map from A onto Ap is denoted by

πp and the image of a under πp by ap.

An isomorphism from a locally C∗-algebra A to a locally C∗-algebra
B is a bijective, continuous ∗-morphism Φ from A to B such that Φ−1

is continuous.

If (ϕ,H) is a representation of A, then there is p ∈ S(A) and a
representation (ϕp, H) of Ap such that ϕ = ϕp◦πp. We say that (ϕp, H)
is a representation of Ap associated to (ϕ,H). The representation
(ϕ,H) is non-degenerate if ϕ(A)H is dense in H. Clearly, (ϕ,H) is
non-degenerate if and only if (ϕp, H) is non-degenerate. We say that
the representations (ϕ1, H1) and (ϕ2, H2) of A are unitarily equivalent
if there is a unitary operator U from H1 onto H2 such that U ◦ϕ1(a) =
ϕ2(a) ◦ U for all a ∈ A.

Definition 2.1. A pre-Hilbert A-module is a complex vector space
E which is also a right A-module, compatible with the complex algebra
structure, equipped with an A-valued inner product 〈·, ·〉 : E ×E → A
which is C- and A-linear in its second variable and satisfies the following
relations:

(i) 〈ξ, η〉∗ = 〈η, ξ〉 for every ξ, η ∈ E;

(ii) 〈ξ, ξ〉 ≥ 0 for every ξ ∈ E;

(iii) 〈ξ, ξ〉 = 0 if and only if ξ = 0.

We say that E is a Hilbert A-module if E is complete with respect
to the topology determined by the family of semi-norms {‖·‖p}p∈S(A),
where ‖ξ‖p =

√
p (〈ξ, ξ〉) , ξ ∈ E, Definition 4.1 of [7].

Let E be a Hilbert A-module. For p ∈ S(A), the vector space
Ep = E/Ep, where Ep = {ξ ∈ E; p(〈ξ, ξ〉) = 0}, is a Hilbert Ap-module
with the action of Ap on Ep defined by (ξ + Ep) (a+ ker p) = ξa + Ep

and the inner product defined by 〈ξ + Ep, η + Ep〉 = πp (〈ξ, η〉), [7,
Lemma 4.5]. The canonical map from E onto Ep is denoted by σp

and the image of ξ under σp by ξp. Thus, for p, q ∈ S(A), p ≥ q,
there is a canonical morphism of vector spaces σpq from Ep into
Eq such that σpq (ξp) = ξq, ξp ∈ Ep. Then {Ep, Ap,σpq : Ep →
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Eq, p ≥ q; p, q ∈ S(A)} is an inverse system of Hilbert C∗-modules
in the following sense: σpq(ξpap) = σpq(ξp)πpq(ap), ξp ∈ Ep, ap ∈ Ap;
〈σpq(ξp), σpq(ηp)〉 = πpq(〈ξp, ηp〉), ξp, ηp ∈ Ep; σpp(ξp) = ξp, ξp ∈ Ep

and σqr ◦ σpq = σpr if p ≥ q ≥ r and lim←
p
Ep is a Hilbert A-module

which may be identified with the Hilbert A-module E, [7, Proposition
4.4].

A HilbertA-module E is full if the ideal ofA generated by {〈ξ, η〉 , ξ, η ∈
E} is dense in A.

Let E and F be two Hilbert A-modules. The set of all adjointable lin-
ear operators from E to F is denoted by LA(E,F ), and we write LA(E)
for LA(E,E). We consider on LA(E,F ) the topology determined by the
family of semi-norms {p̃}p∈S(A), where p̃(T ) = sup

{
‖Tξ‖p ; ‖ξ‖p ≤ 1

}
.

Then LA(E,F ) is isomorphic to lim←
p
LAp

(Ep, Fp), [7, Proposition
4.7], and LA(E) becomes a locally C∗-algebra. The canonical maps
from LA(E,F ) to LAp

(Ep, Fp), p ∈ S(A) are denoted by (πp)∗ and
(πp)∗ (T ) (σp(ξ)) = σp (Tξ).

We say that the Hilbert A-modules E and F are unitarily equivalent
if there is a unitary operator in LA(E,F ).

A locally C∗-algebra A acts nondegenerately on a Hilbert B-module
E if there is a continuous ∗-morphism Φ from A to LB(E) such that
Φ(A)E is dense in E.

The closed vector subspace of LA(E,F ) spanned by {θη,ξ; ξ ∈ E,
η ∈ F}, where θη,ξ(ζ) = η 〈ξ, ζ〉, is denoted by KA(E,F ), and we write
KA(E) for KA(E,E). Moreover, the locally C∗-algebras KA(E,F )
and lim←

p
KAp

(Ep, Fp) are isomorphic as well as the C∗-algebras
(KA(E,F ))p and KAp

(Ep, Fp) for all p ∈ S(A). Since KA(E)E is
dense in E, KA(E) acts non-degenerately on E.

3. Induced representations. Let A and B be two locally C∗-
algebras, let E be a Hilbert B-module, let Φ : A → LB(E) be a non-
degenerate continuous ∗-morphism and let (ϕ,H) be a non-degenerate
representation of B. We will construct a non-degenerate representation(
A
Eϕ,EH

)
of A from (ϕ,H) via E.
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Construction 3.1 (for C∗-algebras, see [8]). Define a sesquilinear
form 〈·, ·〉ϕ0 on the vector space E ⊗alg H by

〈ξ ⊗ h1, η ⊗ h2〉ϕ0 = 〈h1, ϕ (〈ξ, η〉E)h2〉ϕ

where 〈·, ·〉ϕ denotes the inner product on the Hilbert space H. It is
easy to see that (E ⊗alg H) /Nϕ , where Nϕ is the vector subspace of
E ⊗alg H generated by {ξ ⊗ h ∈ E ⊗alg H; 〈ξ ⊗ h, ξ ⊗ h〉ϕ0 = 0}, is a
pre-Hilbert space with the inner product defined by

〈ξ ⊗ h1 +Nϕ , η ⊗ h2 +Nϕ〉ϕ = 〈ξ ⊗ h1, η ⊗ h2〉ϕ0 .

The completion of (E ⊗alg H) /Nϕ with respect to the inner product
〈·, ·〉ϕ is denoted by EH. Let T ∈ LB(E). Define a linear map Eϕ (T )
from E ⊗alg H into E ⊗alg H by

Eϕ (T ) (ξ ⊗ h) = Tξ ⊗ h.

If (ϕq, H) is a representation of Bq associated to (ϕ,H), then we have

〈Eϕ (T ) (ξ ⊗ h) ,Eϕ (T ) (ξ ⊗ h)〉ϕ0 = 〈h, ϕ (〈Tξ, Tξ〉E)h〉ϕ
=

〈
h, ϕq

(〈
(πq)∗ (T )σq(ξ), (πq)∗ (T )σq(ξ)

〉
Eq

)
h
〉

ϕ

≤ q̃ (T )
〈
h, ϕq

(
〈σq(ξ), σq(ξ)〉Eq

)
h
〉

ϕ

= q̃ (T ) 〈h, (ϕq ◦ πq) (〈ξ, ξ〉E)h〉ϕ
= q̃ (T ) 〈ξ ⊗ h, ξ ⊗ h〉ϕ0

for all ξ ∈ E and h ∈ H. From this we conclude that Eϕ (T ) may
be extended to a bounded linear operator Eϕ (T ) on EH. In this way
we have obtained a map Eϕ from LB(E) to L (EH). It is easy to see
that (Eϕ,EH) is a representation of LB(E) on EH. Moreover, Eϕ is
non-degenerate. Then Eϕ ◦ Φ is a non-degenerate representation of A
on EH and it is denoted by A

Eϕ.

Definition 3.2. The representation
(
A
Eϕ,EH

)
constructed above is

called the Rieffel-induced representation from B to A via E.
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Remark 3.3. 1. Let (ϕ1, H1) and (ϕ2, H2) be two non-degenerate
representations of B. If (ϕ1, H1) and (ϕ2, H2) are unitarily equivalent,
then

(
A
Eϕ1,EH1

)
and

(
A
Eϕ2,EH2

)
are unitarily equivalent.

2. Let F be a Hilbert B-module which is unitarily equivalent to
E. If U is a unitary element in LB(E,F ) and A acts on F by
a → U ◦ Φ(a) ◦ U∗, then the representations

(
A
Eϕ,EH

)
and

(
A
Fϕ, FH

)
of A are unitarily equivalent.

Proof. (1) If U is a unitary operator from H1 onto H2, then it is not
hard to check that the linear operator V from E⊗algH1 onto E⊗algH2

defined by V (ξ ⊗ h) = ξ ⊗ Uh may be extended to a unitary operator
V from EH1 onto EH2 and, moreover, V ◦A

E ϕ1(a) = A
Eϕ2(a) ◦V for all

a in A.

(2) Consider the linear operator W from E ⊗alg H onto F ⊗alg H
defined by W (ξ ⊗ h) = Uξ ⊗ h. Then we have(

A
Fϕ(a) ◦W )

(ξ ⊗ h) = (U ◦ Φ(a) ◦ U∗) (Uξ) ⊗ h = U (Φ (a) ξ) ⊗ h

= W (Φ (a) ξ ⊗ h) =
(
W ◦A

E ϕ(a)
)
(ξ ⊗ h)

for all a in A, ξ in E and h in H. It is not difficult to see that
W may be extended to a unitary operator from EH onto FH and
A
Fϕ(a) ◦W = W ◦A

E ϕ(a) for all a in A.

Proposition 3.4. Let (ϕ,H) be a non-degenerate representation of
B. If (ϕq, H) is a non-degenerate representation of Bq associated to
(ϕ,H), then there is p ∈ S(A) such that Ap acts non-degenerately on

Eq and the representations
(
A
Eϕ,EH

)
and

(
Ap

Eq
ϕq ◦ πp,Eq

H
)

of A are
unitarily equivalent.

Proof. Define a linear map U from E ⊗alg H into Eq ⊗alg H by

U (ξ ⊗ h) = σq (ξ) ⊗ h.

Since

〈U (ξ ⊗ h) , U (ξ ⊗ h)〉ϕq

0 =
〈
h, ϕq

(
〈σq (ξ) , σq (ξ)〉Eq

)
h
〉

ϕ

= 〈h, (ϕq ◦ πq) (〈ξ, ξ〉E)h〉ϕ
= 〈ξ ⊗ h, ξ ⊗ h〉ϕ0
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for all ξ ∈ E and h ∈ H, U may be extended to a bounded linear
operator U from EH onto Eq

H. It is easy to verify that U is unitary
and U ◦E ϕ(T ) =

(
Eq
ϕ ◦ (πq)∗

)
(T ) ◦ U for all T ∈ LB(E). Hence

the representations (Eϕ,EH) and
(
Eq
ϕq ◦ (πq)∗ ,Eq

H
)

of LB(E) are
unitarily equivalent.

The continuity of Φ implies that there is p ∈ S(A) such that
q̃(Φ(a)) ≤ p(a) for all a in A and so there is a ∗-morphism Φp from Ap to
LBq

(Eq) such that Φp◦πp = (πq)∗◦Φ. Moreover, Φp is non-degenerate.
From

U ◦A
E ϕ (a) = U ◦E ϕ(Φ(a)) =

(
Eq
ϕq ◦ (πq)∗

)
(Φ(a)) ◦ U

=
(
Eq
ϕq (Φp (πp (a)))

) ◦ U =
(

Ap

Eq
ϕq ◦ πp

)
(a) ◦ U

for all a ∈ A, we conclude that the representations
(
A
Eϕ,EH

)
and(

Ap

Eq
ϕq ◦ πp,Eq

H
)

of A are unitarily equivalent and the proposition is
proved.

Corollary 3.5. If (ϕ,H) = (⊕i∈Iϕi,⊕i∈IHi), then
(
A
Eϕ,EH

)
is

unitarily equivalent to
(⊕i∈I

A
Eϕi,⊕i∈I EHi

)
.

Proof. Let (ϕq, H) be a representation of Bq associated to (ϕ,H).
It is easy to see that there is a representation (ϕiq, Hi) of Bq such
that ϕiq ◦ πq = ϕi for each i ∈ I. Moreover, ϕq = ⊕i∈Iϕiq. By
Proposition 3.4, there is a p ∈ S(A) such that the representations(
A
Eϕ,EH

)
and

(
Ap

Eq
ϕq ◦ πp,Eq

H
)

of A are unitarily equivalent as well

as the representations
(
A
Eϕi,EH

)
and

(
Ap

Eq
ϕiq ◦ πp,Eq

Hi

)
for all i ∈ I.

On the other hand, we know that the representations
(

Ap

Eq
ϕq,Eq

H
)

and
(
⊕i∈I

Ap

Eq
ϕiq,⊕i∈I Eq

Hi

)
of Ap are unitarily equivalent, [8, Corol-

lary 5.4]. This implies that the representations
(

Ap

Eq
ϕq ◦ πp,Eq

H
)

and(
⊕i∈I

Ap

Eq
ϕiq ◦ πp,⊕i∈I Eq

Hi

)
of A are unitarily equivalent and the

corollary is proved.
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Let A, B and C be three locally C∗-algebras, let E be a Hilbert
B-module and F a Hilbert C-module and let Φ1 : A → LB(E) and
Φ2 : B → LC(F ) be non-degenerate continuous ∗-morphisms. If
E ⊗Φ2 F is the inner tensor product of E and F using Φ2, then
E⊗Φ2F = lim ←

r∈S(C)
E⊗Φ2r

Fr and the locally C∗-algebras LC(E⊗Φ2F )

and lim ←
r∈S(C)

LCr
(E ⊗Φ2r

Fr) are isomorphic as well as KC(E ⊗Φ2 F )

and lim ←
r∈S(C)

KCr
(E ⊗Φ2r

Fr), where Φ2r = (πr)∗ ◦ Φ2, see [3].

Moreover, there is a non-degenerate continuous ∗-morphism (Φ2)∗ from
LB(E) to LC(E⊗Φ2 F ) defined by (Φ2)∗ (T ) (ξ ⊗Φ2 η) = Tξ⊗Φ2 η. Let
Φ = (Φ2)∗ ◦ Φ1. Then Φ is a non-degenerate continuous ∗-morphism
from A to LC(E ⊗Φ2 F ).

Theorem 3.6. Let A, B,C,E, F, Φ1 and Φ2 be as above. If
(ϕ,H) is a non-degenerate representation of C, then the representations(
A
Gϕ,GH

)
, where G = E ⊗Φ2 F , and

(
A
E

(
B
Fϕ

)
,E (FH)

)
of A are

unitarily equivalent.

Proof. Let (ϕr, H) be a non-degenerate representation of Cr associ-
ated to (ϕ,H). Then there is q ∈ S(B) and a non-degenerate continu-
ous ∗-morphism Ψ2q : Bq → LCr

(Fr) such that Ψ2q ◦ πq = (πr)∗ ◦ Φ2

and there is p ∈ S(A) and a non-degenerate continuous ∗-morphism
Ψ1p : Ap → LBq

(Eq) such that Ψ1p ◦ πp = (πq)∗ ◦ Φ1 and a non-
degenerate continuous ∗-morphism Φp : Ap → LCr

(Gr) such that
Φp ◦ πp = (πr)∗ ◦ Φ.

According to Proposition 3.4, the representations
(
A
Gϕ,GH

)
and(

Ap

Gr
ϕr ◦ πp,Gr

H
)

of A are unitarily equivalent as well as the repre-

sentations
(
B
Fϕ, FH

)
and

(
Bq

Fr
ϕr ◦ πq, Fr

H
)

of B. Since the representa-

tions
(
B
Fϕ, FH

)
and

(
Bq

Fr
ϕr ◦ πq, Fr

H
)

of B are unitarily equivalent, by
Proposition 3.4 and Remark 3.3 (1) we deduce that the representations(
A
E

(
B
Fϕ

)
,E (FH)

)
and

(
Ap

Eq

(
Bq

Fr
ϕr

)
◦ πp,Eq

(Fr
H)

)
of A are unitarily

equivalent.

To show that the representations
(
A
Gϕ,GH

)
and

(
A
E

(
B
Fϕ

)
,E (FH)

)
of A are unitarily equivalent it is sufficient to prove that the repre-
sentations

(
Ap

Gr
ϕr,Gr

H
)

and
(

Ap

Eq

(
Bq

Fr
ϕr

)
,Eq

(Fr
H)

)
of Ap are unitar-
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ily equivalent. But we know that the representations
(

Ap

Xr
ϕr,Xr

H
)
,

where Xr = Eq ⊗Ψ2q
Fr, and

(
Ap

Eq

(
Bq

Fr
ϕr

)
,Eq

(Fr
H)

)
of Ap are uni-

tarily equivalent, [8, Theorem 5.9], and so it is sufficient to prove that
the representations

(
Ap

Xr
ϕr,Xr

H
)

and
(

Ap

Gr
ϕr,Gr

H
)

of Ap are unitarily
equivalent.

It is not hard to check that the linear map U : Gr → Xr defined by
U (ξ ⊗Φ2r

η) = σq (ξ) ⊗Ψ2q
η is a unitary operator in LCr

(Gr, Xr) and
moreover, (Φ2r)∗ (T ) = U∗ ◦ (Ψ2q)∗

(
(πq)∗ (T )

) ◦U for all T in LB(E),
see the proof of Proposition 4.4 in [3]. Since

Φp(πp(a)) = (πr)∗ ((Φ2)∗ (Φ1 (a))) = (Φ2r)∗ (Φ1(a))
= U∗ ◦ (Ψ2q)∗

(
(πq)∗ (Φ1(a))

) ◦ U
= U∗ ◦ (

(Ψ2q)∗ ◦ Ψ1p

)
(πp(a)) ◦ U

for all a in A and by Remark 3.3 (2), the representations
(

Ap

Gr
ϕr,Gr

H
)

and
(

Ap

Xr
ϕr,Xr

H
)

of Ap are unitarily equivalent and the theorem is
proved.

4. The imprimitivity theorem. Let A and B be locally C∗-
algebras. We recall that A and B are strongly Morita equivalent,
written A ∼M B, if there is a full Hilbert A-module E such that
the locally C∗-algebras B and KA(E) are isomorphic. The strong
Morita equivalence is an equivalence relation in the set of all locally
C∗-algebras, see [4]. Also the vector space KA(E,A), denoted by Ẽ, is
a full Hilbert KA(E)-module with the action of KA(E) on KA(E,A)
defined by (T, S) → T ◦ S , S ∈ KA(E) and T ∈ KA(E,A), and the
inner product defined by 〈T, S〉 = T ∗ ◦ S, T, S ∈ KA(E,A). Moreover,
the linear map α from A to KKA(E)

(
Ẽ

)
defined by α(a) (θb,ξ) = θab,ξ

is an isomorphism of locally C∗-algebras, see [4]. Since the locally C∗-
algebras B and KA(E) are isomorphic, Ẽ may be regarded as a Hilbert
B-module.

It is not hard to check that the linear operator Up from
(
Ẽ

)
p

to Ẽp

defined by Up (T + ker (p̃)) = (πp)∗ (T ) is unitary. Thus the Hilbert

KAp
(Ep)-modules

(
Ẽ

)
p

and Ẽp may be identified.
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Lemma 4.1. If A ∼M B, then for each p ∈ S(A) there is a qp ∈
S(B) such that Ap ∼M Bqp

. Moreover, the set {qp ∈ S(B); p ∈ S(A)
and Ap ∼M Bqp

} is a cofinal subset of S(B).

Proof. If Φ is an isomorphism of locally C∗-algebras from B onto
KA(E), then the map p̃◦Φ, denoted by qp, is a continuous C∗-seminorm
on B. Since kerπqp

= ker (πp)∗ ◦ Φ, there is a unique continuous ∗-
morphism Φqp

from Bqp
onto KAp

(Ep) such that Φqp
◦πqp

= (πp)∗ ◦Φ.
Moreover, Φqp

is an isomorphism of C∗-algebras, and since Ep is a full
Hilbert Ap-module, we conclude that Ap ∼M Bqp

.

To show that {qp ∈ S(B); p ∈ S(A) and Ap ∼M Bqp
} is a cofinal

subset of S(B), let q ∈ S(B). Then there is p0 ∈ S(A) such that

q
(
Φ−1 (Φ (b))

) ≤ p̃0 (Φ (b))

for all b ∈ B, whence, since q
(
Φ−1 (Φ (b))

)
= q(b) and p̃0 (Φ (b)) =

qp0(b), we deduce that q ≤ qp0 .

Remark 4.2. If E is a Hilbert B-module which gives the strong Morita
equivalence between the locally C∗-algebras A and B, then Ep gives
the strong Morita equivalence between the C∗-algebras Ap and Bqp

.

Theorem 4.3. Let A and B be two locally C∗-algebras such that
A ∼M B and let (ϕ,H) be a non-degenerate representation of A.
Then (ϕ,H) is unitarily equivalent to

(
A

Ẽ

(
B
Eϕ

)
,
Ẽ

(EH)
)
, where E is

a Hilbert A-module which gives the strong Morita equivalence between
A and B.

Proof. Let (ϕp, H) be a non-degenerate representation of Ap as-
sociated to (ϕ,H). By Lemma 4.1 there is a q ∈ S(B) such that
Ap ∼M Bq. Moreover, the Hilbert Ap-module Ep gives the strong
Morita equivalence between Ap and Bq, Remark 4.2. Then the rep-

resentations (ϕp, H) and
(

Ap

Ẽp

(
Bq

Ep
ϕp

)
,
Ẽp

(
Ep
H

))
of Ap are unitarily

equivalent, [8, Theorem 6.23] and by Remark 3.3 (2), the represen-

tations
(

Ap

Ẽp

(
Bq

Ep
ϕp

)
,
Ẽp

(
Ep
H

))
and

(
Ap

Ẽp

(
Bq

Ep
ϕp

)
,
Ẽp

(
Ep
H

))
of Ap
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are unitarily equivalent. From these facts we conclude that the repre-

sentations (ϕ,H) and
(

Ap

Ẽp

(
Bq

Ep
ϕp

)
◦ πp, Ẽp

(
Ep
H

))
of A are unitarily

equivalent.

On the other hand, according to Proposition 3.4, the representations(
B
Eϕ,E H

)
and

(
Bq

Ep
ϕp ◦ πq,Ep

H
)

of B are unitarily equivalent. From
this, using Remark 3.3 (1) and Proposition 3.4, we deduce that the

representations
(

A

Ẽ

(
B
Eϕ

)
,
Ẽ

(EH)
)

and
(

Ap

Ẽp

(
Bq

Ep
ϕp

)
◦ πp, Ẽp

(
Ep
H

))
of

A are unitarily equivalent and the theorem is proved.

Theorem 4.4. Let A and B be locally C∗-algebras. If A ∼M B,
then there is a bijective correspondence between equivalence classes of
non-degenerate representations of A and B which preserves direct sums
and irreducibility.

Proof. Let E be a Hilbert A-module which gives the strong Morita
equivalence between A and B. By Theorem 4.3 and Remark 3.3 (1)
the map from the set of all non-degenerate representations of A to
the set of all non-degenerate representations of B which maps (ϕ,H)
onto

(
B
Eϕ,EH

)
induces a bijective correspondence between equivalence

classes of non-degenerate representations of A and B. Moreover, this
correspondence preserves direct sums, Corollary 3.5.

Let (ϕ,H) be an irreducible, non-degenerate representation of A.
Suppose that

(
B
Eϕ,EH

)
is not irreducible. Then

(
B
Eϕ,EH

)
= (ψ1 ⊕ ψ2 ,

H1 ⊕H2) and by Corollary 3.5 and Theorem 4.3 the representations(
A

Ẽ
ψ1 ⊕A

Ẽ
ψ2, ẼH1 ⊕Ẽ

H2

)
and (ϕ,H) of A are unitarily equivalent, a

contradiction. So the bijective correspondence defined above preserves
irreducibility.
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