ROCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 36, Number 1, 2006

AN IMPLICIT FUNCTION THEOREM

I.V. ZHURAVLEV, A.YU. IGUMNOV AND V.M. MIKLYUKOV

ABSTRACT. A nonsmooth variant of the implicit function theorem is proved.

Let $m, n \ge 1$ be integers. Denote by M_n the linear space of the $n \times n$ matrices with real elements, by I_n the unit matrix of M_n . Let $B^n(x, r)$ be the ball in \mathbf{R}^n with center at the point x and radius r > 0.

If F(x, y) is any locally Lipschitz vector-function of variables $x \in \mathbf{R}^n$, $y \in \mathbf{R}^m$ and (x, y) is a point of differentiability of F, then let F'(x, y) be its Jacobi matrix, $F'_x(x, y)$ be the Jacobi matrix with respect to x for any fixed y and $F'_y(x, y)$ be the Jacobi matrix with respect to y for any fixed x.

For an arbitrary matrix $C \in M_n$ we put

$$|C| = \max_{|h|=1} |Ch|.$$

If $C(x): D \subset \mathbf{R}^m \to M_n$ is a matrix function, then set

$$||C||_D = \operatorname{ess\,sup}_{x \in D} |C(x)|.$$

For $P \subset {\bf R}^m$ let $K: P \subset {\bf R}^m \to M_n$ be an arbitrary matrix function. We set

$$\operatorname{osc}(K, P) = \operatorname{ess\,sup}_{x, y \in P} |K(x) - K(y)|.$$

We shall prove the following nonsmooth variant of the well-known implicit function theorem.

Theorem. Let $x_0 \in \mathbf{R}^n$, $y_0 \in \mathbf{R}^m$. Let $D = B^n(x_0, r') \times B^m(y_0, r'')$ be a domain and $F : D \to \mathbf{R}^m$ be a locally Lipschitz mapping. Suppose that

(1)
$$\mu \equiv \|F'_y - I_m\|_D + \operatorname{osc}\left(F'_x, D\right)\left(1 + \|F'\|_D\right) < 1.$$

²⁰⁰⁰ AMS Mathematics Subject Classification. Primary 26B35, Secondary 26B10. Received by the editors on April 22, 2003, and in revised form on July 30, 2003.

Copyright ©2006 Rocky Mountain Mathematics Consortium

Then there exist $\rho = \rho(\mu, r', r'') > 0$ and a (unique) Lipschitz mapping

$$G(x): B^n(x_0, \rho) \longrightarrow \mathbf{R}^m, \quad G(x_0) = y_0,$$

such that

$$F(x, G(x)) = F(x_0, y_0) \quad \text{for all} \quad x \in B^n(x_0, \rho).$$

Moreover, we can put

$$\rho = \frac{r^*}{L}, \quad r^* = \min\{r', r''\}, \quad L = (1 + \|F'_x\|_D)/(1 - \mu),$$

and G satisfies the Lipschitz condition with a constant

Lip
$$(G, B^n(x_0, \rho)) \le \sqrt{L^2 - 1}$$
.

For other nonsmooth variants of the implicit function theorem (without bounds of ρ and Lip $(G, B^n(x_0, \rho))$), see Pourciau [3], Warga [4], Cristea [1], Zhuravlev and Igumnov [5].

For the proof we need a simple condition for locally Lipschitz mappings to be one-to-one on convex regions.

Lemma. Let $D \subset \mathbf{R}^n$ be a convex domain, and let $f : D \to \mathbf{R}^n$ be a locally Lipschitz mapping. If

(2)
$$||f' - I_n||_D \equiv \Omega < 1,$$

then f is a homeomorphism in D. Moreover, for arbitrary points $x', x'' \in D$ we have

(3)
$$(1-\Omega)|x''-x'| \le |f(x'')-f(x')| \le (1+\Omega)|x''-x'|.$$

Proof. Let E be the set of the points $x \in D$ in which f is differentiable. Since f is locally Lipschitz then by the Stepanoff theorem we have $\mathcal{H}^n(D \setminus E) = 0.$ By (2) almost everywhere in D the estimate

$$(4) |f'(x) - I_n| \le \Omega < 1$$

holds.

Fix arbitrary points $x', x'' \in D$ and denote by l(x', x'') the line segment joining x' and x''. Since the region D is convex then l(x', x'')lies inside D. Let $l(\tilde{x}', \tilde{x}'')$ be a line segment with endpoints \tilde{x}' and \tilde{x}'' formed by a parallel translation of l(x', x''). For almost all such segments sufficiently close to l(x', x'') we have

(5)
$$\mathcal{H}^1(l(\tilde{x}', \tilde{x}'') \setminus E) = 0.$$

Let $l(\tilde{x}'_k, \tilde{x}''_k)$ be a sequence of segments having (5) and such that

$$\tilde{x}'_k \to x', \quad \tilde{x}''_k \to x''.$$

Because f is locally Lipschitz then f is absolutely continuous on $l(\tilde{x}'_k, \tilde{x}''_k)$ and almost everywhere along $l(\tilde{x}'_k, \tilde{x}''_k)$ the derivative f' exists. Integrating we find

$$\begin{split} |(f(x_k'') - x_k'') - (f(x_k') - x_k')| \\ &= \left| \int_0^1 (f'(x_k' + t(x_k'' - x_k')) - I)(x_k'' - x_k') \, dt \right| \\ &\leq \int_0^1 |f'(x_k' + t(x_k'' - x_k')) - I| \, |x_k'' - x_k'| \, dt. \end{split}$$

Then by (4) we obtain

$$|(f(x_k'') - x_k'') - (f(x_k') - x_k')| \le \Omega \, |x_k'' - x_k'|.$$

Letting $k \to \infty$ we arrive at the estimate

(6)
$$|(f(x'') - x'') - (f(x') - x')| \le \Omega |x'' - x'|, \quad x', x'' \in D.$$

Let $\phi(x) = f(x) - x$. For arbitrary points $x', x'' \in D$ we have

$$f(x'') - f(x') = (\phi(x'') - \phi(x')) + (x'' - x').$$

Thus,

$$|f(x'') - f(x')| \le |\phi(x'') - \phi(x')| + |x'' - x'|.$$

Using (6) we can write

$$|f(x'') - f(x')| \le (1 + \Omega) |x'' - x'|.$$

Analogously,

$$|f(x'') - f(x')| \ge |x'' - x'| - |\phi(x'') - \phi(x')|$$

and next,

$$|f(x'') - f(x')| \ge (1 - \Omega) |x'' - x'|.$$

Thus (3) holds and the lemma is proved. \Box

Proof of Theorem. Consider the mapping $\Phi: D \to \mathbf{R}^n \times \mathbf{R}^m$ defined by

$$(x,y) \xrightarrow{\Phi} (X,Y) = (x_1,\ldots,x_n,F_1(x,y),\ldots,F_m(x,y))$$

We need to prove that $\Phi(x, y)$ satisfies the assumptions of the lemma. The Jacobi matrix of Φ has the form

$$\Phi'(x,y) = \begin{pmatrix} I_n & Z_m^n \\ F'_x(x,y) & F'_y(x,y) \end{pmatrix},$$

where Z_m^n is the zero $n\times m$ matrix.

Consider the $(n+m) \times (n+m)$ matrix

$$Q(x,y) = \begin{pmatrix} I_n & Z_m^n \\ -F'_x(x,y) & I_m \end{pmatrix}.$$

For almost every $(x_1, y_1), (x_2, y_2) \in D$ we have

$$|Q(x_1, y_1) - Q(x_2, y_2)| \le |F'_x(x_1, y_1) - F'_x(x_2, y_2)| \le \operatorname{osc}(F'_x, D).$$

We observe now that

$$Q(x,y)\Phi'(x,y) - I_{m+n} = \begin{pmatrix} I_n & Z_m^n \\ Z_n^m & F'_y(x,y) \end{pmatrix} - I_{n+m}$$
$$= \begin{pmatrix} Z_n^n & Z_m^n \\ Z_n^m & F'_y(x,y) - I_m \end{pmatrix}.$$

Hence,

(7)
$$\|Q\Phi' - I_{n+m}\|_D = \|F'_y - I_m\|_D.$$

For an arbitrary fixed point $(x^*, y^*) \in D$ we define the map

(8)
$$\Psi(x,y) = Q(x^*,y^*)\Phi(x,y) : D \to \mathbf{R}^n \times \mathbf{R}^m.$$

Using (7) we find

$$\begin{aligned} ||\Psi' - I_{n+m}||_D &= ||Q(x^*, y^*)\Phi' - I_{n+m}||_D \\ &= ||Q\Phi' - I_{n+m} + (Q(x^*, y^*) - Q)\Phi'||_D \\ &\leq ||Q\Phi' - I_{n+m}||_D + ||Q(x^*, y^*) - Q||_D ||\Phi'||_D \\ &\leq ||F'_y - I_m||_D + \operatorname{osc}(F'_x, D) ||\Phi'||_D. \end{aligned}$$

Taking into consideration that

$$\begin{split} ||\Phi'||_{D} &= \mathrm{esssup}_{(x,y)\in D} \left\{ \max_{|h|=1} |\Phi'(x,y) \cdot h| \right\} \\ &\leq \mathrm{esssup}_{(x,y)\in D} \left\{ \max_{|h|=1} \left(|h| + |(F'_{x}(x,y) + F'_{y}(x,y)) \cdot h| \right) \right\} \\ &\leq 1 + ||F'||_{D}, \end{split}$$

we obtain

$$\|\Psi' - I_{n+m}\|_D \le \|F'_y - I_m\|_D + \operatorname{osc}(F'_x, D)(1 + \|F'\|_D).$$

Thus by (1) for the fixed point (x^*, y^*) we have

(9)
$$||\Psi' - I_{m+n}||_D \le \mu < 1.$$

The domain $D = B^n(x_0, r') \times B^m(y_0, r'')$ is convex and we may use the lemma. By the inequality (9) we conclude that the map

$$\Psi(x,y) = Q(x^*,y^*)\Phi(x,y)$$

is a homeomorphism. By Horn, Johnson [2, Corollary 5.6.16] from (9) it follows also that the matrix $\Psi'(x, y)$ is nonsingular. Therefore

361

from this relation it follows that matrices $\Phi'(x, y)$ and $Q^* \equiv Q(x^*, y^*)$ are nonsingular. Thus the map $\Phi = Q^{*-1}\Psi : D \to \mathbf{R}^{n+m}$ is also a homeomorphism.

For the evaluation of $\rho = \rho(\mu, r', r'')$ we shall need some special information about Ψ . Using (9) and (3) we find

$$(1-\mu) |(x-x_0, y-y_0)| \le |\Psi(x, y) - \Psi(x_0, y_0)| \le (1+\mu) |(x-x_0, y-y_0)|.$$

Then by $\Psi = Q^* \Phi$ we may write

(10)
$$\frac{1-\mu}{|Q^*|} |(x-x_0, y-y_0)| \le |\Phi(x, y) - \Phi(x_0, y_0)| \le (1+\mu) |Q^{*-1}| |(x-x_0, y-y_0)|.$$

However,

$$\begin{pmatrix} I_n & Z_m^n \\ -F'_x(x_0^*, y_0^*) & I_m \end{pmatrix} = \begin{pmatrix} I_n & Z_m^n \\ Z_n^m & I_m \end{pmatrix} + \begin{pmatrix} Z_n^n & Z_m^n \\ -F'_x(x_0^*, y_0^*) & Z_m^m \end{pmatrix}$$

and hence $|Q^*| \leq 1 + ||F'_x||_D$. Let $a = (x_0, y_0)$. Since the ball $B^{n+m}(a, r^*)$ is contained in D from (10) we find

(11)
$$B' \equiv B^{n+m} \left(\Phi(a), r^*(1-\mu)/|Q^*| \right) \subset \Phi(B^{n+m}(a, r^*)).$$

Further,

(12)
$$B'' \equiv B^{n+m}(\Phi(a), r^*(1-\mu)/(1+\|F'_x\|_D)) \subset B' \subset \Phi(D)$$

By (3) the mapping Ψ^{-1} satisfies the Lipschitz condition in $\Psi(D)$ with a constant

$$\operatorname{Lip}\left(\Psi^{-1},\Psi(D)\right) \leq \frac{1}{1-\mu}.$$

The mapping $\Phi(x,y)$ had been defined such that its inverse map has the form

(13)
$$x = X, \quad y = \Theta(X, Y).$$

Moreover, $\Phi^{-1} = \Psi^{-1}Q^*$ where Q^* is the invertible linear transformation and Ψ^{-1} is the Lipschitz map. Hence, Φ^{-1} satisfies the Lipschitz condition in $\Phi(D)$ with a constant

(14)
$$\operatorname{Lip}\left(\Phi^{-1}, \Phi(D)\right) \le |Q^*| \operatorname{Lip}\left(\Psi^{-1}, \Psi(D)\right) \le L.$$

Next we observe that

$$(X,Y) = \Phi(\Phi^{-1}(X,Y)) = (X,F(X,\Theta(X,Y))).$$

From this relation it follows that

(15)
$$F(X,\Theta(X,Y)) = Y.$$

From (11) it follows that B' lies in $\Phi(D)$. The intersection Π of the ball B' and the plane $Y_1 = F_1(x_0, y_0), \ldots, Y_m = F_m(x_0, y_0)$ is a connected set with the codimension m containing the point $(X_0, Y_0) =$ $(x_0, F(a))$. Denote by j the orthogonal projection from $\mathbf{R}^n \times \mathbf{R}^m$ onto \mathbf{R}^n . For any set $A \subset \mathbf{R}^n \times \mathbf{R}^m$ we have

$$j(A) = \bigcup_{y \in \mathbf{R}^m} \{ x \in \mathbf{R}^n : (x, y) \in A \}.$$

By the definition of Φ we may write

(16)
$$j(\Phi(A')) = \Phi(j(A')) \quad \forall A' \subset D, \\ j(\Phi^{-1}(A'')) = \Phi^{-1}(j(A'')) \quad \forall A' \subset \Phi(D).$$

The equation of the connected piece of the surface $\Phi^{-1}(\Pi)$ containing $a = (x_0, y_0)$ can be rewritten in the nonparametric form. Namely, let

$$(X, Y) = (x, \Theta(x, Y_0)), \quad x \in \Phi^{-1}(j(B')).$$

We put $G(x) = \Theta(x, Y_0)$.

By (15) we now find

$$F(x, G(x)) = Y_0 = F(x_0, y_0),$$

where

$$G(x_0) = \Theta(x_0, Y_0) = \Theta(X_0, Y_0) = y_0.$$

Uniqueness of the map G follows from the bijectivity of $\Phi(x, y)$. In fact, if $(x, y_1), (x, y_2) \in D$ and $F(x, y_1) = F(x, y_2)$ then $\Phi(x, y_1) = \Phi(x, y_2)$. Thus $y_1 = y_2$.

The relation (12) states that the ball B'' is contained in B' and guarantees, together with (16), that the ball $B^n(x_0, \rho)$ lies in $\Phi^{-1}(j(B'))$. This implies the necessary bound for ρ .

Now we estimate the Lipschitz constant of the function Θ . For arbitrary

$$(X', Y'), (X'', Y'') \in B^{n+m}(a, \rho)$$

from (14) it follows

$$\left| \Phi^{-1} \left(X', Y' \right) - \Phi^{-1} \left(X'', Y'' \right) \right| \le L \left| \left(X'' - X', Y'' - Y' \right) \right|.$$

By the relations (13), which describe Φ^{-1} , we may rewrite this inequality in the following form

$$|(X'' - X', \Theta(X'', Y'') - \Theta(X', Y'))| \le L |(X'' - X', Y'' - Y')|.$$

Further,

$$|X'' - X'|^{2} + |\Theta(X'', Y'') - \Theta(X', Y')|^{2} \le L^{2} |X'' - X'|^{2} + L^{2} |Y'' - Y'|^{2},$$

and

$$\left|\Theta\left(X'',Y''\right) - \Theta\left(X',Y'\right)\right|^{2} \le \left(L^{2}-1\right) \cdot \left|X''-X'\right|^{2} + L^{2}\left|Y''-Y'\right|^{2}.$$

Using the definition of G, we may choose $Y'' = Y' = Y_0$ and put X = x. Then we obtain

$$|G(x'') - G(x')|^2 \le (L^2 - 1) |x'' - x'|^2.$$

That is,

$$\operatorname{Lip}\left(G, B^{n}\left(x_{0}, \rho\right)\right) \leq \sqrt{L^{2} - 1}.$$

The theorem is proved completely. \Box

Acknowledgments. The authors would like to thank the referee and the editor, Professor Josefina Alvarez, for their precious and thoughtful suggestions on this paper.

REFERENCES

1. M. Cristea, Local inversion theorems and implicit function theorems without assuming continuous differentiability, Bull. Math. Soc. Sci. Math. Roumainie 36 (1992), 227–236.

2. R.A. Horn and C.R. Johnson, *Matrix analysis*, Cambridge University Press, Cambridge, 1986.

3. B.H. Pourciau, Analysis and optimization of Lipschitz continuous mappings, J. Optim. Theory Appl. **22** (1977), 311–351.

4. J. Warga, Fat homeomorphisms and unbounded derivate containers, J. Math. Anal. Appl. **81** (1981), 545–560.

5. I.V. Zhuravlev and A.Yu. Igumnov, *On implicit functions*, Proc. of Dept. of Mathematical Analysis and Functions Theory, Volgograd State Univ. Press, Volgograd (2002), 41–46.

Department of Mathematics, VolgGU, 2Prodolnaya 30, Volgograd, 400062, Russia *E-mail address:* igor.zhuravlev@volsu.ru

DEPARTMENT OF MATHEMATICS, VOLGGU, 2PRODOLNAYA 30, VOLGOGRAD, 400062, RUSSIA *E-mail address:* Alexander.Igumnov@volsu.ru

Department of Mathematics, VolgGU, 2Prodolnaya 30, Volgograd, 400062, Russia *E-mail address:* miklyuk@vlink.ru