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AN IMPLICIT FUNCTION THEOREM

I.V. ZHURAVLEV, A.YU. IGUMNOV AND V.M. MIKLYUKOV

ABSTRACT. A nonsmooth variant of the implicit function
theorem is proved.

Let m, n ≥ 1 be integers. Denote by Mn the linear space of the n×n
matrices with real elements, by In the unit matrix of Mn. Let Bn(x, r)
be the ball in Rn with center at the point x and radius r > 0.

If F (x, y) is any locally Lipschitz vector-function of variables x ∈ Rn,
y ∈ Rm and (x, y) is a point of differentiability of F , then let F ′(x, y)
be its Jacobi matrix, F ′

x(x, y) be the Jacobi matrix with respect to x
for any fixed y and F ′

y(x, y) be the Jacobi matrix with respect to y for
any fixed x.

For an arbitrary matrix C ∈ Mn we put

|C| = max
|h|=1

|Ch|.

If C(x) : D ⊂ Rm → Mn is a matrix function, then set

‖C‖D = ess supx∈D|C(x)|.
For P ⊂ Rm let K : P ⊂ Rm → Mn be an arbitrary matrix function.
We set

osc (K, P ) = ess supx,y∈P |K(x) − K(y)|.
We shall prove the following nonsmooth variant of the well-known

implicit function theorem.

Theorem. Let x0 ∈ Rn, y0 ∈ Rm. Let D = Bn(x0, r
′)×Bm(y0, r

′′)
be a domain and F : D → Rm be a locally Lipschitz mapping. Suppose
that

(1) μ ≡ ‖F ′
y − Im‖D + osc (F ′

x, D) (1 + ‖F ′‖D) < 1.
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Then there exist ρ = ρ(μ, r′, r′′) > 0 and a (unique) Lipschitz mapping

G(x) : Bn(x0, ρ) −→ Rm, G(x0) = y0,

such that

F (x, G(x)) = F (x0, y0) for all x ∈ Bn(x0, ρ).

Moreover, we can put

ρ =
r∗

L
, r∗ = min{r′, r′′}, L = (1 + ‖F ′

x‖D)/ (1 − μ),

and G satisfies the Lipschitz condition with a constant

Lip (G, Bn(x0, ρ)) ≤
√

L2 − 1.

For other nonsmooth variants of the implicit function theorem (with-
out bounds of ρ and Lip (G, Bn(x0, ρ))), see Pourciau [3], Warga [4],
Cristea [1], Zhuravlev and Igumnov [5].

For the proof we need a simple condition for locally Lipschitz map-
pings to be one-to-one on convex regions.

Lemma. Let D ⊂ Rn be a convex domain, and let f : D → Rn be
a locally Lipschitz mapping. If

(2) ‖f ′ − In‖D ≡ Ω < 1,

then f is a homeomorphism in D. Moreover, for arbitrary points
x′, x′′ ∈ D we have

(3) (1 − Ω) |x′′ − x′| ≤ |f(x′′) − f(x′)| ≤ (1 + Ω) |x′′ − x′|.

Proof. Let E be the set of the points x ∈ D in which f is differentiable.
Since f is locally Lipschitz then by the Stepanoff theorem we have
Hn(D \ E) = 0.
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By (2) almost everywhere in D the estimate

(4) |f ′(x) − In| ≤ Ω < 1

holds.

Fix arbitrary points x′, x′′ ∈ D and denote by l(x′, x′′) the line
segment joining x′ and x′′. Since the region D is convex then l(x′, x′′)
lies inside D. Let l(x̃′, x̃′′) be a line segment with endpoints x̃′ and
x̃′′ formed by a parallel translation of l(x′, x′′). For almost all such
segments sufficiently close to l(x′, x′′) we have

(5) H1(l(x̃′, x̃′′) \ E) = 0.

Let l(x̃′
k, x̃′′

k) be a sequence of segments having (5) and such that

x̃′
k → x′, x̃′′

k → x′′.

Because f is locally Lipschitz then f is absolutely continuous on
l(x̃′

k, x̃′′
k) and almost everywhere along l(x̃′

k, x̃′′
k) the derivative f ′ exists.

Integrating we find

|(f(x′′
k) − x′′

k) − (f(x′
k) − x′

k)|

=
∣∣∣∣
∫ 1

0

(f ′(x′
k + t(x′′

k − x′
k)) − I)(x′′

k − x′
k) dt

∣∣∣∣
≤

∫ 1

0

|f ′(x′
k + t(x′′

k − x′
k)) − I| |x′′

k − x′
k| dt.

Then by (4) we obtain

|(f(x′′
k) − x′′

k) − (f(x′
k) − x′

k)| ≤ Ω |x′′
k − x′

k|.

Letting k → ∞ we arrive at the estimate

(6) |(f(x′′) − x′′) − (f(x′) − x′)| ≤ Ω |x′′ − x′|, x′, x′′ ∈ D.

Let φ(x) = f(x) − x. For arbitrary points x′, x′′ ∈ D we have

f(x′′) − f(x′) = (φ(x′′) − φ(x′)) + (x′′ − x′).
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Thus,
|f(x′′) − f(x′)| ≤ |φ(x′′) − φ(x′)| + |x′′ − x′|.

Using (6) we can write

|f(x′′) − f(x′)| ≤ (1 + Ω) |x′′ − x′|.

Analogously,

|f(x′′) − f(x′)| ≥ |x′′ − x′| − |φ(x′′) − φ(x′)|
and next,

|f(x′′) − f(x′)| ≥ (1 − Ω) |x′′ − x′|.
Thus (3) holds and the lemma is proved.

Proof of Theorem. Consider the mapping Φ : D → Rn ×Rm defined
by

(x, y) Φ−→ (X, Y ) = (x1, . . . , xn, F1(x, y), . . . , Fm(x, y)).

We need to prove that Φ(x, y) satisfies the assumptions of the lemma.
The Jacobi matrix of Φ has the form

Φ′(x, y) =
(

In Zn
m

F ′
x(x, y) F ′

y(x, y)

)
,

where Zn
m is the zero n × m matrix.

Consider the (n + m) × (n + m) matrix

Q(x, y) =
(

In Zn
m

−F ′
x(x, y) Im

)
.

For almost every (x1, y1), (x2, y2) ∈ D we have

|Q(x1, y1) − Q(x2, y2)| ≤ |F ′
x(x1, y1) − F ′

x(x2, y2)| ≤ osc (F ′
x, D).

We observe now that

Q(x, y)Φ′(x, y) − Im+n =
(

In Zn
m

Zm
n F ′

y(x, y)

)
− In+m

=
(

Zn
n Zn

m

Zm
n F ′

y(x, y) − Im

)
.
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Hence,

(7) ‖Q Φ′ − In+m‖D = ‖F ′
y − Im‖D.

For an arbitrary fixed point (x∗, y∗) ∈ D we define the map

(8) Ψ(x, y) = Q(x∗, y∗)Φ(x, y) : D → Rn × Rm.

Using (7) we find

||Ψ′ − In+m||D = ‖Q(x∗, y∗)Φ′ − In+m‖D

= ‖Q Φ′ − In+m + (Q(x∗, y∗) − Q) Φ′‖D

≤ ‖Q Φ′ − In+m‖D + ‖Q(x∗, y∗) − Q‖D‖Φ′‖D

≤ ‖F ′
y − Im‖D + osc (F ′

x, D) ‖Φ′‖D.

Taking into consideration that

||Φ′||D = esssup(x,y)∈D

{
max
|h|=1

|Φ′(x, y) · h|
}

≤ esssup(x,y)∈D

{
max
|h|=1

(|h| + |(F ′
x(x, y) + F ′

y(x, y)) · h|)
}

≤ 1 + ‖F ′‖D,

we obtain

‖Ψ′ − In+m‖D ≤ ‖F ′
y − Im‖D + osc (F ′

x, D) (1 + ‖F ′‖D).

Thus by (1) for the fixed point (x∗, y∗) we have

(9) ||Ψ′ − Im+n||D ≤ μ < 1.

The domain D = Bn(x0, r
′) × Bm(y0, r

′′) is convex and we may use
the lemma. By the inequality (9) we conclude that the map

Ψ(x, y) = Q(x∗, y∗)Φ(x, y)

is a homeomorphism. By Horn, Johnson [2, Corollary 5.6.16] from
(9) it follows also that the matrix Ψ′(x, y) is nonsingular. Therefore
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from this relation it follows that matrices Φ′(x, y) and Q∗ ≡ Q(x∗, y∗)
are nonsingular. Thus the map Φ = Q∗−1Ψ : D → Rn+m is also a
homeomorphism.

For the evaluation of ρ = ρ(μ, r′, r′′) we shall need some special
information about Ψ. Using (9) and (3) we find

(1 − μ) |(x − x0, y − y0)| ≤ |Ψ(x, y) − Ψ(x0, y0)|
≤ (1 + μ) |(x − x0, y − y0)|.

Then by Ψ = Q∗Φ we may write

(10)

1 − μ

|Q∗| |(x − x0, y − y0)| ≤ |Φ(x, y) − Φ(x0, y0)|

≤ (1 + μ) |Q∗−1| |(x − x0, y − y0)|.

However,

(
In Zn

m

−F ′
x(x∗

0, y
∗
0) Im

)
=

(
In Zn

m

Zm
n Im

)
+

(
Zn

n Zn
m

−F ′
x(x∗

0, y
∗
0) Zm

m

)

and hence |Q∗| ≤ 1 + ‖F ′
x‖D. Let a = (x0, y0). Since the ball

Bn+m(a, r∗) is contained in D from (10) we find

(11) B′ ≡ Bn+m (Φ(a), r∗(1 − μ)/|Q∗|) ⊂ Φ(Bn+m(a, r∗)).

Further,

(12) B′′ ≡ Bn+m(Φ(a), r∗(1 − μ)/(1 + ‖F ′
x‖D)) ⊂ B′ ⊂ Φ (D) .

By (3) the mapping Ψ−1 satisfies the Lipschitz condition in Ψ(D) with
a constant

Lip
(
Ψ−1, Ψ(D)

) ≤ 1
1 − μ

.

The mapping Φ(x, y) had been defined such that its inverse map has
the form

(13) x = X, y = Θ(X, Y ).
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Moreover, Φ−1 = Ψ−1Q∗ where Q∗ is the invertible linear transforma-
tion and Ψ−1 is the Lipschitz map. Hence, Φ−1 satisfies the Lipschitz
condition in Φ(D) with a constant

(14) Lip
(
Φ−1, Φ(D)

) ≤ |Q∗|Lip
(
Ψ−1, Ψ(D)

) ≤ L.

Next we observe that

(X, Y ) = Φ(Φ−1(X, Y )) = (X, F (X, Θ(X, Y ))).

From this relation it follows that

(15) F (X, Θ(X, Y )) = Y.

From (11) it follows that B′ lies in Φ(D). The intersection Π of
the ball B′ and the plane Y1 = F1(x0, y0), . . . , Ym = Fm(x0, y0) is a
connected set with the codimension m containing the point (X0, Y0) =
(x0, F (a)). Denote by j the orthogonal projection from Rn ×Rm onto
Rn. For any set A ⊂ Rn × Rm we have

j(A) = ∪y∈Rm{x ∈ Rn : (x, y) ∈ A}.

By the definition of Φ we may write

(16)
j(Φ(A′)) = Φ(j(A′)) ∀ A′ ⊂ D,

j(Φ−1(A′′)) = Φ−1(j(A′′)) ∀ A′ ⊂ Φ(D).

The equation of the connected piece of the surface Φ−1(Π) containing
a = (x0, y0) can be rewritten in the nonparametric form. Namely, let

(X, Y ) = (x, Θ(x, Y0)), x ∈ Φ−1(j(B′)).

We put G(x) = Θ(x, Y0).

By (15) we now find

F (x, G(x)) = Y0 = F (x0, y0),

where
G(x0) = Θ(x0, Y0) = Θ(X0, Y0) = y0.
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Uniqueness of the map G follows from the bijectivity of Φ(x, y). In fact,
if (x, y1), (x, y2) ∈ D and F (x, y1) = F (x, y2) then Φ(x, y1) = Φ(x, y2).
Thus y1 = y2.

The relation (12) states that the ball B′′ is contained in B′ and guar-
antees, together with (16), that the ball Bn(x0, ρ) lies in Φ−1(j(B′)).
This implies the necessary bound for ρ.

Now we estimate the Lipschitz constant of the function Θ. For
arbitrary

(X ′, Y ′), (X ′′, Y ′′) ∈ Bn+m (a, ρ)

from (14) it follows
∣∣Φ−1 (X ′, Y ′) − Φ−1 (X ′′, Y ′′)

∣∣ ≤ L |(X ′′ − X ′, Y ′′ − Y ′)| .
By the relations (13), which describe Φ−1, we may rewrite this inequal-
ity in the following form

|(X ′′ − X ′, Θ (X ′′, Y ′′) − Θ (X ′, Y ′))| ≤ L |(X ′′ − X ′, Y ′′ − Y ′)| .
Further,

|X ′′ − X ′|2 + |Θ (X ′′, Y ′′) − Θ (X ′, Y ′)|2

≤ L2 |X ′′ − X ′|2 + L2 |Y ′′ − Y ′|2 ,

and

|Θ (X ′′, Y ′′) − Θ (X ′, Y ′)|2 ≤ (
L2 − 1

) · |X ′′ − X ′|2 + L2 |Y ′′ − Y ′|2 .

Using the definition of G, we may choose Y ′′ = Y ′ = Y0 and put X = x.
Then we obtain

|G(x′′) − G(x′)|2 ≤ (
L2 − 1

) |x′′ − x′|2 .

That is,
Lip (G, Bn (x0, ρ)) ≤

√
L2 − 1.

The theorem is proved completely.
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