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A QUALITATIVE ANALYSIS ON
NONCONSTANT GRAININESS OF THE
ADAPTIVE GRIDS VIA TIME SCALES

P.W. ELOE, S. HILGER AND Q. SHENG

ABSTRACT. Calculus on time scales plays a crucial role in
unifying the continuous and discrete calculus. In this paper,
we apply the time scales calculus methods to study quali-
tatively properties of the numerical solution of second order
ordinary differential equations via different finite difference
schemes. The properties become particularly interesting in
the case when the computational grids are nonuniform, on
which the finite difference operators do not commute. To in-
vestigate the solution properties, we introduce the graininess
function, and express the numerical solution as functions of
the variable grid steps, that is, functions of the graininess and
its dynamic derivatives implemented by using the time scales
analysis. It is found in the study that a linear combination
of the consecutive numerical solutions following the pattern
of the nonuniform grid used may improve the accuracy of the
numerical solution. We validate our results with several con-
structive computational experiments.

1. Introduction. The study of analysis on time scales was intro-
duced by Hilger in his Ph.D. dissertation [6]. The original motivation
of the study was to unify continuous analysis and discrete analysis.
A significant amount of time scales related publications can be found
nowadays, and some of them had proposed interesting applications of
the theory and methods. Recently Eloe et al. [4, 5] have initiated
the application of the calculus on time scales to questions in adaptive,
or variable step, computations. The premise presented here is that a
collection of calculus rules, valid in both continuous analysis and dis-
crete analysis, will provide new insight into the qualitative properties of
numerical solutions obtained via variable step finite difference schemes.

For the sake of exposition, we address a specific boundary value
problem (BVP) for a second order ordinary differential equation of
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the form,

(1.1) x′′(t) = f(t), t ∈ (a, b),

with homogeneous conjugate or Dirichlet boundary conditions of the
form,

(1.2) x(a) = 0, x(b) = 0.

In [4, 5] the authors essentially studied symmetry and anti-symmetry
properties of solutions of the BVP (1.1), (1.2). The problems become
interesting when one employs what we will tend to call an adaptive
grid in a finite difference numerical method. An adaptive grid is
a grid with nonconstant step size, or in the terminology of time
scale analysis, a grid with nonconstant graininess. So for example in
[5], the authors show using only elementary calculus methods that if
solutions of the BVP (1.1), (1.2) are symmetric about (a + b)/2, the
numerical solutions obtained by finite difference methods, are not. The
numerical solutions do satisfy what the authors call a cross symmetry
property with solutions of a companion problem; symmetric numerical
solutions, maintaining the original accuracy of the numerical solutions,
are constructed as averages of cross-symmetric numerical solutions.

In a completely independent study, Hilger [7] developed Fourier anal-
ysis on four specific time scales with constant step size and obtained
interesting results with respect to symmetry of functions in this envi-
ronment.

In this paper we continue related studies. The primary contribution
of the discussion is that qualitative properties of numerical solutions
are obtained as functions of the graininess of the grid. In conventional
numerical analysis, it is standard to study the error bounds as functions
of the norm of the grid; here the context is different.

We intend that this study be of interest to those working in numerical
analysis and scientific computations as well; hence, we do not assume
the reader is versed in the theory on time scales. Instead, in the next
section, we present a brief introduction to the theory and methods
on time scales so that the paper is self-contained. Some of the results
proposed in the section as they relate to this particular study are new as
well. Section 3 is devoted to the delta and nabla integral relations that
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are needed in our further investigations. Several interesting identities
are given and proved via Riemann sums on time scales. In Section 4
we concentrate on applications of the methods developed for solving
ordinary boundary value problems, which can be viewed as simplified
consequences of semi-discretization of the partial differential equations.
Finally, we provide a few interesting computational experiments that
further illustrate our results.

2. Notes on the numerics. Here we do not assume the reader has
background in the theory and methods of time scales. A reader with
background in the calculus on time scales may find new relations in the
following discussions as well.

A time scale T is any closed subset of R. Define σ, � : T → T by

σ(t) = inf{s ∈ T : s > t}, �(t) = sup{s ∈ T : s < t}.

If T is bounded above, we define inf ∅ := maxT. If T is bounded
below, we define sup ∅ := minT. t ∈ T is called left-dense, left-
scattered, right-dense, right-scattered if �(t) = t, �(t) < t, σ(t) = t,
σ(t) > t, respectively. If T has a maximal element, say b, define
Tκ = T if b is left-dense and Tκ = T \ {b} if b is left-scattered.
Define the graininess of T by μ : Tκ → R+, μ(t) = σ(t) − t. If T
has a minimal element, say a, define Tκ = T if a is right-dense and
Tκ = T \ {a} if a is right-scattered. Define

Tκ
κ = Tκ ∩Tκ.

We say that a function f defined on T is Δ differentiable at t ∈ T if
for all ε > 0 there is a neighborhood U of t such that for some γ the
inequality

|f(σ(t)) − f(s) − γ(σ(t) − s)| < ε|σ(t) − s|

is true for all s ∈ U , and in this case we write fΔ(t) = γ. We say that
a function f defined on T is ∇ differentiable at t ∈ T if for all ε > 0
there is a neighborhood V of t such that for some γ̂ the inequality

|f(�(t)) − f(s) − γ̂(�(t)) − s)| < ε|�(t) − s|
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is true for all s ∈ V , and in this case we write f∇(t) = γ̂. In order
to study second order dynamic equations, define inductively fΔ∇ =(
fΔ

)∇, f∇Δ =
(
f∇

)Δ. For the sake of notation, let fΔ0
= f∇

0
= f

and σ0(t) = �0(t) = t.

Note that, if T = R, we have for t ∈ R

σ(t) = �(t) = t, μ(t) = 0, fΔ(t) = f∇(t) = f ′(t)

if f : R → R is a differentiable function, and hence dynamic equations
on this time scale are ordinary differential equations. If, on the other
hand, T = Z, then for t ∈ Z

σ(t) = t+ 1, �(t) = t− 1, μ(t) = 1, fΔ(t) = Δf(t)

if f : Z → R is a sequence where Δf(t) = f(t+ 1) − f(t) is the usual
forward difference operator; similarly

f∇(t) = f(t) − f(t− 1) = Δf(t− 1) = fΔ(�(t)).

We may state

Lemma 2.1. Let f and g be functions on T, and let t ∈ Tκ. Then:

1. if f is differentiable at t, then f is continuous at t;

2. if t is right-scattered and f is continuous at t, then

fΔ(t) =
f(σ(t)) − f(t)

μ(t)
;

3. if f(t) exists, then f(σ(t)) = f(t) + μ(t)fΔ(t);

4. if fΔ(�(t)) exists and if t is left-scattered, then

fΔ(�(t)) =
f(t) − f(�(t))

μ(�(t))
;

5. if fΔ(t) exists on Tκ and f is invertible on T, then

(
f−1

)Δ
(t) = −(f(σ(t))−1fΔ(t)f−1(t))

on Tκ.
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Lemma 2.2. If f and g are differentiable at t ∈ Tκ, then

(fg)Δ(t) = g(σ(t))fΔ(t) + gΔ(t)f(t);
(f/g)Δ(t) = (g(t)fΔ(t) − gΔ(t)f(t))/[g(σ(t))g(t)],

where the quotient rule is valid provided g(t)g(σ(t)) �= 0.

Similar properties are valid for the ∇ derivative.

If f has an antiderivative F , i.e., FΔ = f , then we define an integral
by

∫ s

r
f(t)Δt = F (s) − F (r). Or if F∇ = f , then

∫ s

r
f(t)∇t =

F (s)−F (r). It is known that any continuous function possesses either
anti-derivative.

We refer the reader to the authoritative account [3] by Bohner and
Peterson for a comprehensive development of time scales calculus;
we refer the reader to [1, 2] for initial developments of the calculus
corresponding to the ∇ derivative.

In this particular study, we consider a bounded discrete time scale

T = {ti}, ti < ti+1,

where
a = minT, b = maxT.

In this setting, there is the property that, on Tκ
κ,

(2.1) σ ◦ � = id and � ◦ σ = id.

For general time scales, the property (2.1) is equivalent to

t ∈ T left-dense ⇐⇒ t right-dense.

Definition 2.1. Let T be a bounded discrete time scale. If

1. the sign of μΔ(s), s ∈ T, is fixed, then T is called a monotone
time scale, or a monotone adaptive grid in computations;

2. T can be split into sub-time scale T1, T2, . . . ,Tm such that
T1 ∪ T2 ∪ · · · ∪ Tm = T, and the sign of μΔ(s) is fixed as s ∈ Tl,
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l = 1, 2, . . . ,m, then T is called a piecewise monotone time scale, or a
piecewise monotone adaptive grid in computations.

Remark 2.1. The graininess is not differentiable in general. To see
this, we consider the bounded time scale

T =
{±2−n

∣∣ n ∈ Z
} ∪ {0}.

We only need to consider the case with Δ derivative since discussions
with ∇ derivative are similar.

Case I. Let sn = −2−n, n ≥ 0. We have σ(sn) = −2−n−1, σ2(sn) =
−2−n−2 and μ(sn) = 2−n−1, n ≥ 0. Therefore

μΔ(sn) =
μ(sn) − μ(σ(sn))

sn − σ(sn)

=

(−2−n−2 + 2−n−1
) − (−2−n−1 + 2−n

)
−2−n−1 + 2−n

= −1
2
, n ≥ 0.

Case II. Let tn = 2−n, n ≥ 0. We have σ(tn) = 2−n+1, σ2(tn) =
2−n+2 and μ(tn) = 2−n, n ≥ 2. Therefore

μΔ(tn) =
μ(tn) − μ(σ(tn))

tn − σ(tn)

=

(
2−n+2 − 2−n+1

) − (
2−n+1 − 2−n

)
2−n+1 − 2−n

= 1, n ≥ 2.

Case III. Let t = 0. We may let n→ ∞ in previous cases and consider
the limits. However, on the other hand, it is not difficult to see that
the point is right-dense and left-dense. Thus, for s ∈ T, s �= t we have

μ(t) − μ(σ(s))
t− σ(s)

=
0 − [σ(σ(s)) − σ(s)]

0 − σ(s)
=
σ(σ(s))
σ(s)

− 1.

The sequence sn = −2−n is increasing convergent to 0, and

lim
n→∞

σ(σ(sn))
σ(sn)

= lim
n→∞

−2−(n+2)

−2−(n+1)
=

1
2
.
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FIGURE 2.1. The graininess function μ(s), s ∈ T \ {0}. Forty-one points are
used.

on the other hand, the sequence tn = 2−n is decreasing convergent to
0, and

lim
n→∞

σ(σ(tn))
σ(tn)

= lim
n→∞

2−(n−2)

2−(n−1)
= 2.

So the righthanded and lefthanded limits in the definition of μΔ do
not coincide. This is consistent with our results by taking the limits
in cases 1 and 2. Therefore μ is not differentiable at 0. In fact, for
s < 0, the graininess μ(s) decreases at a constant rate -1/2, while for
s > 0, the graininess μ(s) increases at a different constant rate 1. These
imply that μΔΔ(s) = 0 for s �= 0 which indicates a piecewise monotone
adaptive grid satisfying ideal smoothness constraints

min{μ(sn−1), μ(sn+1)} ≥ 1
2
μ(sn), max{μ(sn−1), μ(sn+1)} ≤ 2μ(sn).

The time scale involved is also symmetric with respect to 0, To see
more precisely the structure of the graininess function μ(s), we plot it
over T \ {0} in Figure 2.1. A logarithmic scale is used to show more
clearly the details.

In our particular setting, we consider operators

fΔ(t) =
f(σ(t)) − f(t)

μ(t)

and

(2.2) f∇(t) =
f(t) − f(�(t))

�(t)
= fΔ�(t).
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The adjoint operator of Δ is −∇; this means that
∫ b

a

fΔ(t) · g(t)Δ t =
∫ b

a

f(t) · [−g∇(t)
]
Δ t

for the Dirichlet or conjugate boundary conditions we consider. To see
this, integrate the product rule formula given in Lemma 2.2 and apply
(2.2).

Lemma 2.3. The following identities hold:

(2.3)

μΔ� =
μ

μ�
− 1;

μ�Δ = 1 − μ�

μ
;

μ� · μΔ� = μ · μ�Δ;[
1+μΔ�

] · [1−μ�Δ
]

= 1.

Proof. The proof consists of thoroughly expressing the expressions
for μΔ� and μ�Δ

μΔ�(t) =
[
μ(σ(t)) − μ(t)

σ(t) − t

]�

=
μ(t) − μ�(t)

μ�(t)
=

μ(t)
μ�(t)

− 1,

μ�Δ(t) =
μ�(σ(t)) − μ�(t)

σ(t) − t
=
μ(t) − μ�(t)

μ(t)
= 1 − μ�(t)

μ(t)
.

Lemma 2.4. We further have the following identities:

fΔ� =
μ

μ�
· f�Δ =

[
1 + μΔ�

] · f�Δ =
[
1 − μ�Δ

]−1 · f�Δ;
(2.4)

fΔ∇ =
μ

μ�
· f∇Δ =

[
1 + μΔ�

] · f∇Δ =
[
1 − μ�Δ

]−1 · f∇Δ;
(2.5)

μ�fΔ� + μf�Δ = 2 · (f − f�) ;
(2.6)

μ�fΔ∇ + μf∇Δ = 2 · (fΔ − f∇
)
.

(2.7)
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Proof. In order to see (2.4) or (2.6), express the relevant expressions
again

fΔ�(t) =
[
f(σ(t)) − f(t)

σ(t) − t

]�

=
f(t) − f�(t)

μ�(t)
,

f�Δ(t) =
f�(σ(t)) − f�(t)

σ(t) − t
=
f(t) − f�(t)

μ(t)
.

In order to check the equations in (2.5) or (2.7), insert fΔ for f , and
observe

fΔ∇(t) =
(
fΔ

)Δ�
(t) and f∇Δ(t) =

(
fΔ

)�Δ
(t).

Remark 2.2. Let T be monotone and μ(t) �= 0, t ∈ T. Then the
following relations hold:

μ

μ�

⎧⎨
⎩
> 1 if T is monotonically increasing,
< 1 if T is monotonically decreasing,
= 1 if T has a constant graininess.

In practical computations, μ� � μ may cause a substantial increase
of the numerical error. Therefore the situation must be avoided. This
leads to the basic smoothness constraint for adaptive computations:

mμ� ≤ μ ≤Mμσ,

where m and M are positive constants.

3. Delta and nabla integral relations. We develop briefly some
new integral relations for the delta and nabla integrals. The concepts
are elementary; it is the calculus notation that makes observations so
apparent. T = ∪n

i=0ti where

a = t0 < t1 < · · · · · · tn−1 < tn = b.
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Definition 3.1. The corresponding integrals for the delta and the
nabla derivative are [3]:

∫ b

a

f(t)Δ t =
n−1∑
i=0

μ(ti)f(ti) =
n∑

i=1

μ�(ti)f�(ti);

∫ b

a

f(t)∇t =
n−1∑
i=0

μ(ti)fσ(ti) =
n∑

i=1

μ�(ti)f(ti).

Remark 3.1. In this setting each integral represents a Riemann sum;
the delta integral is the Riemann sum in which the intermediate point
is always chosen as the left end point of the appropriate subinterval;
the nabla integral is the Riemann sum in which the intermediate point
is always chosen as the right end point of the appropriate subinterval.

We compare the two integrals

∫ b

a

f(t)∇t−
∫ b

a

f(t)Δ t =
n−1∑
i=0

μ(ti) · (fσ(ti) − f(ti))

=
n−1∑
i=0

μ(ti) ·
(
μ(ti) · fΔ(ti)

)
=

∫ b

a

μ(t) · fΔ(t)Δ t

=
∫ b

a

μσ�(t) · fΔ(t)Δ t

(partial integration left)

= μ(b) · f(b) − μ(a) · f(a) −
∫ b

a

μΔ(t) · fσ(t)Δ t

(partial integration right)

= μ�(b) · f(b) − μ�(a) · f(a) −
∫ b

a

μ�Δ(t) · f(t)Δ t.

A simple consequence of this identity is the following

Lemma 3.1. Let a function f : T → R be given on a time scale T,
such that on [a, b] ⊆ T

f(a) = f(b) = 0 and f(t) ≥ 0 for t ∈ [a, b].
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Then

μ increasing =⇒
∫ b

a

f(t)Δ t ≥
∫ b

a

f(t)∇t

μ decreasing =⇒
∫ b

a

f(t)∇t ≥
∫ b

a

f(t)Δ t.

Lemma 3.2. We have the following identity:

(3.1)
∫ �(b)

a

μΔ�(t)f(t)∇t =
∫ b

σ(a)

μ�Δ(t)f(t)Δ t

Proof. Straightforward computations yield

∫ �(b)

a

μΔ�(t)f(t)∇t =
n−1∑
i=1

μ�(ti)μΔ�(ti)f(ti)

∫ b

σ(a)

μ�Δ(t)f(t)Δ t =
n−1∑
i=1

μ(ti)μ�Δ(ti)f(ti)

Now compare with identity (2.3).

4. Numerical solutions of BVPs. We now consider the numerical
solution of BVP (1.1), (1.2). Our intention here is to show that the
time scale calculus formulas derived above or elsewhere give new and
useful insight to qualitative features of numerical solutions. A standard
method to construct a numerical solution of the BVP (1.1), (1.2) is to
solve the BVP

w∇Δ(t) = f(t), t ∈ Tκ
κ, w(a) = 0, w(b) = 0,

or to solve the BVP

vΔ∇(t) = f(t), t ∈ Tκ
κ, v(a) = 0, v(b) = 0.

Is there a tendency to take care which BVP one chooses to solve?
What insight may time scales analysis provide into the choice of a
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numerical method? Note that
(4.1)

(w − v)Δ∇(t) = wΔ∇(t) − vΔ∇(t) = [1 + μΔ�] · w∇Δ(t) − vΔ∇(t)
= [1 + μΔ�] · f(t) − f(t) = μΔ�f(t).

This implies [3, 5]

(w − v)(t) =
∫ �(b)

a

H(t, s) · (μΔ�f
)
(s)∇s,

where the Green’s function is defined as

H(t, s) =
{

(t− a) · (s− b)/(b− a) if t < s,
(s− a) · (t− b)/(b− a) if t ≥ s.

On the other hand we have
(4.2)

(w − v)∇Δ(t) = w∇Δ(t) − v∇Δ(t) = w∇Δ(t) − [1 − μ�Δ] · vΔ∇(t)
= f(t) − [1 − μ�Δ] · f(t) = μ�Δf(t).

Now this implies [3, 5]

(w − v)(t) =
∫ b

σ(a)

H(t, s) · (μ�Δf
)
(s)Δ s.

We did not state such properties with respect to integration in
Section 3, but properties we expect, such as

g ≥ 0 =⇒
∫
T

gΔs ≥ 0

are valid. Note that H(t, s) ≤ 0 on T2. We have the following simple
consequence.
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Lemma 4.1. Let T be monotone.

1. If f ∈ C[a, b] is nonpositive (so that the solution, x of (1.1), (1.2)
is concave). Then

μ increasing =⇒ w ≥ v,

μ decreasing =⇒ w ≤ v.

2. If f ∈ C[a, b] is nonnegative. Then

μ increasing =⇒ w ≤ v,

μ decreasing =⇒ w ≥ v.

We close this investigation by considering linear combinations of v
and w as a natural numerical approximation to the solution of the
BVP, (1.1), (1.2). In [4] and [5] the authors appealed to shape features,
symmetry or anti-symmetry about (a+ b)/2 to support the claim that
the average (w + v)/2 is the natural numerical solution of the BVP,
(1.1), (1.2). Here, with the help of the calculus rules developed above,
we appeal to more Taylor series expansions related to truncation error.

Remark 4.1. Let x denote the solution of the BVP, (1.1), (1.2).
According to the definition of the dynamic derivatives, we have

x∇Δ(t) =
x(σ(t)) − x(t)

μ2(t)
− x(t) − x(�(t))

μ(t)μ(�(t))
.

Assume for convenience that x is three times differentiable and expand
x◦σ, x◦� about t. Note that the time scale T can be viewed as a set
superimposed on an interval. A straightforward calculation gives

(4.3)

x∇Δ(t) =
1
2

(
1 +

μ(�(t))
μ(t)

)
x′′(t) +

μ(t)
3!

x′′′(t) − μ2(�(t))
3!μ(t)

x′′′(t)

+ O(μ2(t)) + O
(
μ3(�(t))
μ(t)

)

=
1
2

(
1 +

μ(�(t))
μ(t)

)
f(t) +

1
3!

[
μ(t) − μ2(�(t))

μ(t)
R

]
x′′′(t)

+ O(μ2(t)R) + O
(
μ3(�(t))
μ(t)

)
.
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Similarly,

(4.4)

xΔ∇(t) =
1
2

(
1 +

μ(t)
μ(�(t))

)
x′′(t) − μ(�(t))

3!
x′′′(t) +

μ2(t)
3!μ(�(t))

x′′′(t)

+ O(μ2(�(t))) + O
(
μ3(t)
μ(�(t))

)

=
1
2

(
1 +

μ(t)
μ(�(t))

)
f(t) − 1

3!

[
μ(�(t)) − μ2(t)

μ(�(t))

]
x′′′(t)

+ O(μ2(�(t))) + O
(
μ3(t)
μ(�(t))

)
.

We may notice that when T is uniform, (4.3), (4.4) reduce to the
following:

x∇Δ(t) = f(t) + O(μ2(t))

which is consistent with the central difference scheme [8].

Formulae (4.3), (4.4) further suggest the following new schemes for
approximating (1.1), (1.2):

w̃Δ∇(t) =
1
2

(
1 +

μ(t)
μ(�(t))

)
f(t), t ∈ Tκ

κ,(4.5)

ṽ∇Δ(t) =
1
2

(
1 +

μ(�(t))
μ(t)

)
f(t), t ∈ Tκ

κ,(4.6)

together with the homogeneous conjugate or Dirichlet boundary con-
ditions. The method (4.5) may offer a better accuracy on any mono-
tonically decreasing T, while (4.6) should give a better result if T is
monotonically increasing due to expansions in (4.3), (4.4).

Remark 4.2. Set

η(t) =
v(t) + w(t)

2
, φ(t) =

v(t) + w̃(t)
2

, ψ(t) =
ṽ(t) + w(t)

2
, t ∈ Tκ

κ.
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Recall (4.1), (4.2). We obtain from (4.5), (4.6) and the above equations
the combined consecutive algorithms via graininess functions:

η∇Δ(t) =
1
2

(2 − μ�Δ)f(t),(4.7)

ηΔ∇(t) =
1
2

(2 + μΔ�)f(t),(4.8)

φ∇Δ(t) =
1
4

(
3 +

μ(�(t))
μ(t)

)
f(t),(4.9)

ψΔ∇(t) =
1
4

(
3 +

μ(t)
μ(�(t))

)
f(t)(4.10)

for t ∈ Tκ
κ.

Numerical experiments. Let

T= {0, 7/50, 13/50, 9/25, 11/25, 1/2, 14/25, 16/25, 37/50, 43/50, 1}

be the time scale considered. Therefore T is a superimposed grid on
[0, 1]. It is easy to see that T is piecewise monotone, and is symmetric
with respect to the centerpoint t = 1/2. Consider the following dynamic
BVPs on the time scale T:

vΔ∇ = − sin t− cos t, v(0) = v(1) = 0,
w∇Δ = − sin t− cos t, w(0) = w(1) = 0,

w̃Δ∇ = −1
2

(
1 +

μ(t)
μ(�(t))

)
(sin t+ cos t), ṽ(0) = ṽ(1) = 0,

ṽ∇Δ = −1
2

(
1 +

μ(�(t))
μ(t)

)
(sin t+ cos t), w̃(0) = w̃(1) = 0.

In scientific computations, the above equations can be viewed as
different finite difference approximations to the differential equation
boundary value problem, x′′ = − sin t− cos t, 0 < t < 1; x(0) = x(1) =
0, which possesses the exact solution

x(t) = −1 + (1 − sin 1 − cos 1) t+ sin t+ cos t, 0 ≤ t ≤ 1.
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FIGURE 4.1. Solutions of the dynamic equation BVPs and the solution of the
corresponding differential equation problem. LEFT: Circled curve is for v, and
triangulated curve is for w. RIGHT: Circled curve is for η. Dotted curves are
for the true solution x.

In Figure 4.1, we show the numerical solutions v, w and η along with
the exact solution x. It is interesting to observe that v and w switch
their positions as upper and lower solutions at approximately t = 0.5,
and the combined solution η indicates a much better approximation to
x. The latter will be verified by the relative error analysis in Figure 4.3.
Figure 4.2 is for the numerical solutions ṽ, w̃ and η̃ = l(ṽ+w̃R)/2. The
numerical solutions ṽ, w̃ and η̃ again demonstrate similar properties
as that in Figure 4.1. In Figure 4.3, we plot out relative error profiles
of the numerical solutions v, w, η, ṽ, w̃ and η̃, respectively. It is found
that the combined solutions η, η̃ perform much better than any of the
ancestor solutions constructed. In particular in the case for η, the
maximal relative error appears at t = 0.14 is only 0.003 = 0.03% even
when large step sizes such as h = maxμ = 0.14 are employed.

We display the numerical solutions φ and ψ in Figure 4.4. Their
relative errors are also given in the figure. It is noticed that the
functions behave similar to the pair of single numerical solutions but
provide much sharper approximations to the true solution x. We
finally compare relative errors of η and η̃ generated via the combined
consecutive schemes (4.7) (4.10) in Figures 4.5, respectively. In this
particular experiment, the solution η performs better than η̃, possibly
due to its relatively simple algorithm, and for less truncation error
involved while approximating the differential equation (1.1). However,
in the consideration of relatively large step sizes such as h = maxμ =
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FIGURE 4.2. Solutions of the dynamic equation BVPs and the solution of the
corresponding differential equation problem. LEFT: Circled curve is for ṽ, and
triangulated curve is for w̃. RIGHT: Circled curve is for η. Dotted curves are
for the true solution x.

0.14 are used, both η and η̃ provide satisfactory results for achieving less
than 0.025 = 2.5% of the relative error. The consecutively combined
numerical solution demonstrate a superior quality in approximations.

Trigonometric types function f used in the experiments have a general
meaning in applications where periodic forcing terms are significant.
Readers are referred to our previous publications [4, 5] for detailed
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FIGURE 4.3. Relative error of the numerical solutions. LEFT: Circled curve is
for v, and triangulated curve is for w. The solid curve is for η. RIGHT: Circled
curve is for ṽ. and triangulated curve is for w̃. The solid curve is for η̃. Note
that the error for η or η̃ is significantly less than that of their counterparts.
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FIGURE 4.4. LEFT: Numerical solution: circled curve is for φ, triangulated
curve is for ψ. Dotted curve is for the true solution x. RIGHT: Relative error:
circled curve is for φ, triangulated curve is for ψ, and the solid curve is for
η̃. The magnitudes of the latter is less than the formers though they are at
approximately the same level.

discussions and numerical examples in which polynomials functions
are used as the right-hand side functions of the two-point dynamic
boundary value problems.
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FIGURE 4.5. Comparisons of the combined numerical solutions. LEFT:
Numerical solutions: circled curve is for η, triangulated curve is for η̃. Dotted
curve is for the true solution x. RIGHT: Relative error: circled curve is for η,
triangulated curve is for η̃.
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