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BOUNDED SOLUTIONS OF THIRD ORDER
NONLINEAR DIFFERENCE EQUATIONS

ANNA ANDRUCH-SOBI�LO AND MA�LGORZATA MIGDA

ABSTRACT. We consider the nonlinear difference equation

Δ
(
anΔ(bnΔxn)

)
= qnf(xn+2), n ∈ N,

where {an}, {bn}, {qn} are positive real sequences, f is a real
function with xf(x) > 0 for all x �= 0. We obtain sufficient
conditions for the boundedness of all nonoscillatory solutions
of the above equation. Some examples are also given.

1. Introduction. Consider the third order difference equation

(E) Δ
(
anΔ(bnΔxn)

)
= qnf(xn+2), n = 1, 2, . . .

where Δ is the forward difference operator defined by Δxn = xn+1−xn,
{an}, {bn}, {qn} are sequences of positive real numbers, f : R → R is
a real function with xf(x) > 0 for x �= 0.

The following convention is used:

k−t∑
i=k

ai := 0 for any k, t ∈ N.

By a solution of equation (E) we mean a real sequence {xn}, which
satisfies equation (E) for all sufficiently large n and is not eventually
identically zero. A solution of equation (E) is called nonoscillatory, if
it is eventually positive or eventually negative. Otherwise it is called
oscillatory. A sequence {xn} is called quickly oscillatory if and only
if xn = (−1)nzn for all n ∈ N , where {zn} is a sequence of positive
numbers or a sequence of negative numbers.

In recent years there has been an increasing interest in the study
of the qualitative behavior of solutions of difference equations. In
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comparison with second order difference equations, the study of higher
order equations and in particular third order equations, has received
considerably less attention. For example, the linear difference equation

Δ3xn = pnxn+2

has been investigated in [5]. The third order neutral difference equation
of the form

Δ
(
cnΔ(dnΔ(yn + pnyn−k))

)
+ qnf(yn−m) = en

has been considered in [7]. See also [3, 4, 6] and the references cited
therein.

The purpose of this paper is to establish some sufficient conditions for
the boundedness of all nonoscillatory solutions of equation (E). Cheng
and Li in [1] had been concerned with boundedness of solutions of the
equation

(e) Δ
(
pn−1Δ(xn−1)

)
= qnf(xn).

The results obtained in the above paper motivated the studies on
equation (E). We illustrate our results with examples.

2. Main results. There are known sufficient conditions for equation
(E) to have nonoscillatory bounded solution in the case the function
f is continuous, see [2]. It is however not known what conditions are
sufficient for all nonoscillatory solutions of equation (E) to be bounded.
Some of these conditions will be given below. We began with the
following lemma, which will be useful in the proofs of the main results.

Lemma 1. Any eventually positive solution {xn} of equation (E)
belongs to one of the following four classes:

(M1) xn > 0, Δxn > 0, Δ(bnΔxn) > 0;

(M2) xn > 0, Δxn > 0, Δ(bnΔxn) < 0;

(M3) xn > 0, Δxn < 0, Δ(bnΔxn) > 0;

(M4) xn > 0, Δxn < 0, Δ(bnΔxn) < 0

for all sufficiently large n.
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Proof. Let {xn} be an eventually positive solution of equation (E).
Then from (E) we have Δ

(
anΔ(bnΔxn)

)
> 0 for large n. Hence it is

easy to see that {Δ(bnΔxn)}, {Δxn} and {xn} are eventually of one
sign. Thus, we have proved our lemma.

Note that if we assume

∞∑
n=1

1
an

=
∞∑

n=1

1
bn

= ∞,

then, by Kirguadze’s lemma, any eventually positive solution of equa-
tion (E) must be of M1-type or M2-type.

Theorem 1. Assume f is a nondecreasing function, f(x)/x is
nonincreasing for x > 0 and

(1)
∞∑

k=1

1
bk

k−1∑
j=1

1
aj

j−1∑
i=1

qi < ∞.

Then every M1-type solution of equation (E) is bounded.

Proof. Let {xn} be an unbounded solution of equation (E) of M1-
type. By Lemma 1, we have xn > 0, Δxn > 0 and Δ(bnΔxn) > 0 for
n ≥ N . From (E) we get

(2)

qn =
Δ

(
anΔ(bnΔxn)

)
f(xn+2)

=
an+1Δ(bn+1Δxn+1)

f(xn+2)
− anΔ(bnΔxn)

f(xn+2)

≥ an+1Δ(bn+1Δxn+1)
f(xn+2)

− anΔ(bnΔxn)
f(xn+1)

= Δ
[
anΔ(bnΔxn)

f(xn+1)

]
for n ≥ N.

Summing both sides of (2) from i = N to i = j − 1 we obtain

j−1∑
i=N

qi +
aNΔ(bNΔxN )

f(xN+1)
≥ ajΔ(bjΔxj)

f(xj+1)
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and therefore

1
aj

j−1∑
i=N

qi +
aNΔ(bNΔxN )

ajf(xN+1)
≥ Δ(bjΔxj)

f(xj+1)
≥ bj+1Δxj+1

f(xj+1)
− bjΔxj

f(xj)

= Δ
[
bjΔxj

f(xj)

]
.

Summing once again, from j = N to j = k − 1, we obtain

k−1∑
j=N

1
aj

j−1∑
i=N

qi +
k−1∑
j=N

aNΔ(bNΔxN )
ajf(xN+1)

≥ bkΔxk

f(xk)
− bNΔxN

f(xN )
.

Hence
(3)

Δxk

f(xk)
≤ 1

bk

k−1∑
j=N

1
aj

j−1∑
i=N

qi +
1
bk

aNΔ(bNΔxN )
f(xN+1)

k−1∑
j=N

1
aj

+
bNΔxN

bkf(xN )
.

Since f(x)/x is nonincreasing for x > 0, from (3) we have

(4)

Δxk

xk
≤ f(xN )

xN

Δxk

f(xk)
≤ f(xN )

xN

1
bk

k−1∑
j=N

1
aj

j−1∑
i=N

qi

+
f(xN )

xN

aNΔ(bNΔxN )
f(xN+1)

1
bk

k−1∑
j=N

1
aj

+
bNΔxN

xNbk
.

Let g(t) = xk + (t − k)Δxk for k ≤ t ≤ k + 1. Then g′(t) = Δxk and
g(t) ≥ xk for k ≤ t ≤ k + 1. Hence

(5)
Δxk

xk
=

k+1∫
k

g′(t)
xk

dt ≥
k+1∫
k

g′(t)
g(t)

dt = ln[xk + Δxk] − ln[xk]

= ln[xk+1] − ln[xk].

Now, summing both sides of (5) from k = N to k = n − 1 we obtain

n−1∑
k=N

Δxk

xk
≥

n−1∑
k=N

(lnxk+1 − ln xk) = lnxn − ln xN .
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Hence, by (4) we get

ln(xn) − ln(xN ) ≤ f(xN )
xN

n−1∑
k=N

1
bk

k−1∑
j=N

1
aj

j−1∑
i=N

qi

+
f(xN )

xN

aNΔ(bNΔxN )
f(xN+1)

n−1∑
k=N

1
bk

k−1∑
j=N

1
aj

+
bNΔxN

xN

n−1∑
k=N

1
bk

.

From (1) there follows the convergence of the series

∞∑
k=1

1
bk

k−1∑
j=1

1
aj

and
∞∑

k=1

1
bk

,

therefore {ln(xn)} is bounded. This contradiction completes our proof.

Theorem 2. Assume the condition (1) holds. Then every M2-type
solution of equation (E) is bounded.

Proof. If {xn} is a solution of the equation (E) of M2-type then there
exists such an N that xn > 0, Δxn > 0 and Δ(bnΔxn) < 0 for all
n ≥ N . Summing both sides of the inequality Δ(bnΔxn) < 0 from
n = N to n = i − 1 we obtain

Δxi <
bNΔxN

bi
for i ≥ N.

Summing once again the last inequality from i = N to i = n−1 we get

xn < bNΔxN

n−1∑
i=N

1
bi

+ xN .
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Because the condition (1) implies

∞∑
k=N

1
bk

< ∞ and bNΔxN > 0

so the solution {xn} must be bounded. This completes our proof.

Consequently by Lemma 1, Theorem 1 and Theorem 2 the following
theorem is obtained.

Theorem 3. Assume f is a nondecreasing function, f(x)/x is
nonincreasing for x > 0 and

∞∑
k=1

1
bk

k−1∑
j=1

1
aj

j−1∑
i=1

qi < ∞.

Then every eventually positive solution of equation (E) is bounded.

If the assumption, that f(x) is nondecreasing and f(x)/x is nonin-
creasing for x > 0, is replaced by the assumption that f(x) is nonin-
creasing and f(x)/x is nondecreasing for x < 0, then we may conclude
that every eventually negative solution of equation (E) is bounded.

Example 1. Consider the equation

(E1)
Δ

(
(n + 1)2Δ(n2Δxn)

)
=

1
(n + 1)1/3(n + 2)2/3(n + 3)

x
1/3
n+2,

n ≥ 2.

All conditions of Theorem 3 are satisfied. Hence every eventually
positive solution of (E1) is bounded. One such solution is {xn} =
{1 − (1/n)}.

Theorem 4. Suppose f is nonincreasing for x > 0 and (1) holds.
Then every M1-type solution of equation (E) is bounded.
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Proof. Let {xn} be a solution of M1-type of equation (E). Then there
exists such an N that xn > 0, Δxn > 0 and Δ(bnΔxn) > 0 for n ≥ N .
Since f(xn+1) ≤ f(xn) for n ≥ N , we have

Δ
(
anΔ(bnΔxn)

)
= qnf(xn+2) ≤ qnf(xN ) for n ≥ N.

Summing both sides of the above inequality from i = N to i = j − 1
we get

ajΔ(bjΔxj) − aNΔ(bNΔxN ) ≤ f(xN )
j−1∑
i=N

qi.

Hence

(6) Δ(bjΔxj) ≤ 1
aj

aNΔ(bNΔxN ) +
1
aj

f(xN )
j−1∑
i=N

qi.

Summing (6) from j = N to j = k − 1 we obtain

Δxk ≤ bN

bk
ΔxN +

1
bk

aNΔ(bNΔxN )
k−1∑
j=N

1
aj

+
f(xN )

bk

k−1∑
j=N

1
aj

j−1∑
i=N

qi.

A final summation gets

xk ≤ xN + bNΔxN

n−1∑
k=N

1
bk

+ aNΔ(bNΔxN )
n−1∑
k=N

1
bk

k−1∑
j=N

1
aj

+ f(xN )
n−1∑
k=N

1
bk

k−1∑
j=N

1
aj

j−1∑
i=N

qi.

Since (1) implies

∞∑
k=1

1
bk

k−1∑
j=1

1
aj

< ∞ and
∞∑

k=1

1
bk

< ∞,

thus {xn} is bounded.

Consequently by Lemma 1, Theorem 2 and Theorem 4 we get the
following theorem.
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Theorem 5. Suppose f is nonincreasing for x > 0 and

∞∑
k=1

1
bk

k−1∑
j=1

1
aj

j−1∑
i=1

qi < ∞.

Then every eventually positive solution of equation (E) is bounded.

Example 2. Consider the equation

(E2) Δ
(
(n + 2)2Δ(n2Δxn)

)
=

1
(n + 1)(n + 2)2

1
xn+2

, n ≥ 1.

All conditions of Theorem 5 are satisfied. Hence every eventually
positive solution of (E2) is bounded. One such solution is {xn} =
{1/n}.

We remark that, if the assumption that f(x) is nonincreasing for
x > 0 is replaced by the assumption that f(x) is nondecreasing for
x < 0, then we may conclude that every eventually negative solution
of (E) is bounded.

Now, we turn our attention to unbounded solutions.

Theorem 6. Suppose f is nondecreasing and

(7)
∞∑

k=1

1
bk

k−1∑
j=1

1
aj

j−1∑
i=1

qi = ∞.

Then every M1-type solution of equation (E) is unbounded.

Proof. Let {xn} be a M1-type solution of equation (E). Then there
exists an integer N ≥ 1 such that xn > 0, Δxn > 0 and Δ(bnΔxn) > 0
for all n ≥ N . Then, from (E), we have

(8) Δ
(
anΔ(bnΔxn)

)
= qnf(xn+2) ≥ qnf(xN ), n ≥ N.
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Similarly as in the proof of Theorem 4 summing three times both sides
of (8) we obtain

xn ≥ xN + bNΔxN

n−1∑
k=N

1
bk

+ aNΔ(bNΔxN )
n−1∑
k=N

1
bk

k−1∑
j=N

1
aj

+ f(xN )
n−1∑
k=N

1
bk

k−1∑
j=N

1
aj

j−1∑
i=N

qi,

and it, in view of (7), implies xn → ∞ as n → ∞.

Example 3. The difference equation

(E3) Δ
(
2nΔ(2nΔxn)

)
=

10
3

4nxn+2, n ≥ 1.

satisfies conditions of Theorem 6 and hence any M1-type solution of
equation (E3) is unbounded. One such solution is {xn} = {(3/2)n}.

For M2-type solution we need a stronger condition than (7).

Theorem 7. Suppose f is nondecreasing,

(7)
∞∑

k=1

1
bk

k−1∑
j=1

1
aj

j−1∑
i=1

qi = ∞

and

(9)
∞∑

k=1

1
bk

k−1∑
j=1

1
aj

< ∞.

Then every M2-type solution of equation (E) is unbounded.

The proof is similar to the proof of Theorem 6, thus we omit it.

If the condition (9) is not satisfied, then the above result may fail. It
is shown in Example 4.
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Example 4. Consider the difference equation

(E4) Δ
(
(n + 1)Δ((n + 1)Δxn)

)
=

n + 2
n(n + 1)

xn+2, n ≥ 1.

All conditions of Theorem 7 are satisfied except condition (9), namely

∞∑
k=1

1
bk

k−1∑
j=1

1
aj

=
∞∑

k=1

1
k + 1

k−1∑
j=1

1
j + 1

= ∞.

So we cannot say that every M2-type solution is unbounded. In fact,
equation (E4) got the bounded solution

{xn} =
{

1 − 1
n

}
.

From Theorem 1 in [2] we have the following result.

Theorem 8. Suppose f is nondecreasing and

∞∑
n=1

1
an

=
∞∑

n=1

1
bn

= ∞,

∞∑
k=1

qk

k∑
j=1

1
aj

j∑
i=1

1
bi

= ∞.

Then every nonoscillatory solution of equation (E) is unbounded.

Example 5. Consider the equation

(E5) Δ
(

1
6n

Δ
( 1

3n
Δxn

))
=

17 × 2−n × 3−2n−3

n + 5
xn+2, n ≥ 1.

All conditions of Theorem 8 are satisfied. Hence every nonoscillatory
solution of (E5) is unbounded. One such solution is {xn} = {n + 3}.
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It is known that all solutions of equation (e) are nonoscillatory, see
Theorem 1 in [1]. For the equation (E) this property does not hold (for
some sequences {qn}). It is shown in the following example.

Example 6. Consider the equation

(E6) Δ3xn =
1
4

xn+2, n ≥ 1.

The general solution of equation (E6) is in the form

xn = c12n + c2

{(√
2

2

)n

sin
(
n arc tg

√
7

5

)}

+ c3

{(√
2

2

)n

cos
(
n arc tg

√
7

5

)}

for ci ∈ C, i = 1, 2, 3. Hence the equation (E6) has oscillatory solutions.

Now we show

Theorem 9. Equation (E) cannot have a quickly oscillatory solution.

Proof. Let zn > 0 for all n ∈ N and suppose that xn = (−1)nzn is a
solution of equation (E). Then

Δ
(
anΔ(bnΔxn)

)
= (−1)n+1

[
an+1bn+2zn+3 + (an+1bn+2 + an+1bn+1)zn+2

+ (an+1bn+1 + anbn+1 + anbn)zn+1 + anbnzn

]
.

Therefore equation (E) can be written in the form

(−1)n+1
[
an+1bn+2zn+3 + (an+1bn+2 + an+1bn+1)zn+2

+ (an+1bn+1 + anbn+1 + anbn)zn+1 + anbnzn

]
= qnf

(
(−1)n+2zn+2

)
.

Hence for n even we have

− [an+1bn+2zn+3 + (an+1bn+2 + an+1bn+1)zn+2

+ (an+1bn+1 + anbn+1 + anbn)zn+1 + anbnzn]
= qnf

(
(−1)n+2zn+2

)
.
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where

− [
an+1bn+2zn+3 + (an+1bn+2 + an+1bn+1)zn+2

+ (an+1bn+1 + anbn+1 + anbn)zn+1 + anbnzn

]
< 0

and, by the assumption xf(x) > 0, qnf(zn+2) > 0. On the other hand,
for n odd

[
an+1bn+2zn+3 + (an+1bn+2 + an+1bn+1)zn+2

+ (an+1bn+1 + anbn+1 + anbn)zn+1 + anbnzn

]
= qnf(−zn+2).

The left side of the above equation is always positive, and the right side
is always negative. This contradiction proves our theorem.
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