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A PEANO-AKÔ TYPE THEOREM
FOR VARIATIONAL INEQUALITIES

VY KHOI LE

ABSTRACT. We consider in this paper a Peano-Akô prop-
erty of solution sets in some quasilinear elliptic variational
inequalities. As consequences, variants of that property and a
partial Hukuhara-Kneser theorem for inequalities are derived.

1. Introduction. This paper is about a property of solution sets in
variational inequalities. We consider here a variational version of the
Peano-Akô property for solutions in inequalities. Roughly speaking,
the property states that under certain conditions, the solutions of
an equation “fill up” the “region” between certain specific solutions
(maximal and minimal solutions in our case).

In classical versions of the Peano-Akô property, cf. e.g. [1, 12], this is
expressed by the fact that the values of u(x0) of the solutions u at any
point x0 in the domain fill up the whole interval [u∗(x0), u∗(x0)] where
u∗ and u∗ are the minimal and the maximal solutions of the equation.

In the case of weak solutions, those functions may not be continuous
and be only defined almost everywhere. This is particularly relevant for
solutions of variational inequalities, as we know, cf. [3, 11, 26], that
those functions are not continuous in general. Hence, the pointwise
interpretation above is no longer valid for such solutions.

Peano-Akô type properties are related to the connectedness of solu-
tion sets (or parts of them), which is also known as a Hukuhara-Kneser
type property, which states that the solution set (of a problem) is a
continuum, i.e., a compact, connected set, in an appropriate function
space. Hukuhara-Kneser type theorems have been derived in [4, 18,
28 30, see also the references therein], for ordinary differential equa-
tions, integral equations and parabolic equations and systems, the so-
lutions of which are smooth in most cases. We are concerned here with
the elliptic variational inequalities with solutions being non-necessarily
smooth.
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In this paper, we present an extension of the above Peano-Akô
property for discontinuous solutions by giving a general interpretation
of the “filling up” concept. As a consequence, we obtain a variational
version of the Peano-Akô property and also the classical one. This
extension is proved for variational inequalities, but it seems to be new
even for equations. Also, we derive a partial Hukuhara-Kneser type
result for variational inequalities.

The paper is organized as follows. In the next section, after an
introduction to variational inequalities, we recall some concepts and
an existence result for extremal solutions of inequalities that is needed
in the sequel. The main result and its corollaries are presented in
Section 3.

2. Settings Preliminary result.

2.1 Background on variational inequalities. Let X be a Banach
space with dual X∗ and dual pairing 〈·, ·〉. Assume that K is a closed,
convex subset of X and G is an operator from X to X∗. The general
stationary variational inequality of finding u ∈ K such that

(2.1) 〈G(u), v − u〉 ≥ 0, ∀ v ∈ K,

can be used to formulate various problems in applied mathematics, me-
chanics, and other sciences. In boundary value problems for differential
equations, the operator G is usually a differential operator and the set
K of admissible functions represents constraints imposed on the prob-
lem. For example, in second-order elliptic problems, G could be given
by
(2.2)

〈G(u), v〉 =
∫

Ω

[ N∑
i=1

Ai(x,∇u(x))∂iv(x) − F (x, u(x),∇u(x))v(x)
]
dx,

where the mapping A given by A(x,w) = (A1(x,w), . . . , AN (x,w)),
x ∈ Ω, w ∈ RN , represents the principal operator in the differential
equation and the function F (x, u, w) represents the lower order term
in the equation. In several obstacle problems, K is defined by the
constraint u≥ψ (where ψ is the obstacle), that is, K={u∈X : u≥ψ}.
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For another example, when X = W 1,2(Ω) (the usual Sobolev space)
and G(u) = −Δu or more generally G(u) = −Δu− F (in the sense of
distributions), the convex set K = {u ∈ X : u ≥ 0 on ∂Ω} corresponds
to the unilateral boundary condition:

u ≥ 0,
∂u

∂n
≥ 0, and u

∂u

∂n
= 0 on ∂Ω,

n denotes here the outward unit normal vector on ∂Ω, cf. e.g. [8] or [10].
As seen from these simple examples, a main difference between vari-
ational inequalities and equations is the association in the latter with
constraints, including nonsmooth or unilateral ones. Such constraints
could not generally be treated in the framework of smooth equations.
Therefore, the study of variational inequalities usually requires different
arguments and calculations from those used for equations.

Variational inequalities are also closely related to the calculus of
variations. In fact, if u is a solution of the minimization problem

(2.3) u ∈ K : g(u) = min
v∈K

g(v),

then u satisfies (2.1) where G = g′ (G is the Gâteaux derivative of g) in
the case g is Gâteaux differentiable on X. To check this, assume that
u is a solution of this minimization problem and v is any element of K.
Since u+ t(v − u) ∈ K for all t ∈ (0, 1), we have

(2.4)
1
t

[g(u+ t(v − u)) − g(u)] ≥ 0, ∀ t ∈ (0, 1].

Letting t→ 0+ in this inequality and noting that

〈G(u), w〉 = lim
t→0+

1
t

[g(u+ tv) − g(u)],

we see that u satisfies (2.1). Conversely, assume that g is convex and
Gâteaux differentiable on X. Then, every solution u of (2.1), with
G = g′, is a minimizer of (2.3). In fact, assume u ∈ K satisfies (2.1)
and let v ∈ K. From the convexity of g, one has, for any t ∈ (0, 1),

g(u+ t(v − u)) ≤ (1 − t) g(u) + tg(v),
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and thus
1
t

[g(u+ t(v − u)) − g(u)] ≤ g(v) − g(u).

Letting t→ 0+ in this inequality and using the assumption that u is a
solution of (2.1), we obtain

0 ≤ 〈g′(u), v − u〉 = lim
t→0+

1
t

[g(u+ t(v − u)) − g(u)] ≤ g(v) − g(u),

showing that u is a solution of (2.3). We refer to Theorem 2 of [19]
for similar arguments for minimization problems and mildly nonlinear
elliptic boundary value problems. There were also given in [19] finite
element approximations and error analyses of the problem.

Inequality (2.1) can therefore be seen as the Euler-Lagrange equation
associated with (2.3). In the particular case where K = X then (2.1)
is equivalent to an equation. This equivalence is no longer true in the
general case.

As an example for the above discussions, let us consider an obstacle
problem in classical elasticity. Assume that a homogeneous membrane,
occupying a domain Ω in R2, is loaded by a normally distributed force
H. The boundary points have prescribed displacements, for example
0. The potential energy of the deformation is given by

P (v) =
λ

2

∫
Ω

|∇v|2 dx,

where v(x) is the (vertical) displacement at x = (x1, x2) ∈ Ω and λ > 0
is a constant depending on the elastic properties of the membrane. We
assume λ = 1 for simplicity. The work done by the external force
H during the actual deformation is given by

∫
Ω
Hv dx. Suppose that

H = H(x, v) depends on both the point x and the displacement v and
H is differentiable with respect to v, with some appropriate growth
condition. The total energy is therefore

(2.5) g(v) =
1
2

∫
Ω

|∇v|2 dx−
∫

Ω

H(x, v) v dx.

Assume now that the deformation of the membrane is constrained by a
body represented by {(x1, x2, y) ∈ Ω×R : y ≤ ψ(x1, x2)}. The function
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ψ : Ω → R represents the obstacle and is assumed to satisfy ψ ≤ 0 on
∂Ω. A choice for the set of admissible displacements is therefore

(2.6) K = {v ∈W 1,2
0 (Ω) : v ≥ ψ in Ω}.

At the equilibrium position u, the principle of minimum potential
energy implies that u is a solution of the minimization problem (2.3)
with g andK given by (2.5) and (2.6). Let us denote h(x, v) = H(x, v)v
and F (x, v) = ∂h(x, v)/∂v. Direct calculations show that g is Gâteaux
differentiable and

〈g′(u), v〉 =
∫

Ω

∇u · ∇v dx−
∫

Ω

F (x, u) v dx.

Therefore, we obtain following the variational inequality: Find u ∈ K
such that

(2.7)
∫

Ω

∇u · ∇(v − u) dx−
∫

Ω

F (x, u)(v − u) dx ≥ 0, ∀ v ∈ K.

This inequality is of the form (2.7) with G = g′ given above. This
operator G here is a particular case (2.2) with Ai(x,w) = wi, 1 ≤
i ≤ N . The inequality (2.7) is also an example of (2.9) below with
A(x,w) = w, for x ∈ Ω, w ∈ R2.

As a further (and more general) example, we note that the obstacle
problem in complementary form:

(2.8)

⎧⎪⎨
⎪⎩

−div (A(x,∇u)) − F (x, u,∇u) ≥ 0,
u ≥ ψ,

[div (A(x,∇u)) + F (x, u,∇u)](u− ψ) = 0 in Ω,

(with u = 0 on ∂Ω) has (2.1) as a weak formulation with G given by
(2.2) and K by (2.6), or more generally K = {v ∈ W 1,p

0 (Ω) : v ≥
ψ in Ω} depending on the growth of A. We refer e.g. to [3, 11] for the
derivation, see also [19] and [20].

More detailed introductions to variational inequalities together with
their existence theories and other issues, are given, for example, in [3,
11] or [16], and in [21, 22] for multi-valued variational inequalities.
Several applications of variational inequalities are given, besides the
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cited references, in [8, 9] or [26]. Numerical methods for variational
inequalities together with various applications are discussed e.g. in [7,
19] and in recent works [23, 24] and the references therein.

Abstract and general existence results were established for (2.1) in
the case G satisfies certain coercivity and monotonicity assumptions,
cf. [16, Theorem 8.2] or [11, Theorem 1.7], see also [17, 27]. The
uniqueness of solutions usually holds when G has a strict monotonicity
property, cf. e.g. [16, Theorem 8.3]. When G is given by (2.2), these
existence and uniqueness results generally hold if A(x,∇v) corresponds
to a typical elliptic operator and F = F (x) depends only on x.
However, when F also depends on v or ∇v, then the coercivity and
strict monotonicity of G may fail. The existence and uniqueness of
solutions of (2.1) (2.2), or (2.9) below, in this more general case have
been subjects of continuing research. Some classical uniqueness (and in
several cases also existence) conditions for (2.1) (2.2) are, for example,
that the operator associated with F (x, u,∇u) is anti-monotone or
Lipschitz continuous, with certain conditions on the Lipschitz and
coercivity coefficients, cf. [19, 20] or [27].

Various approaches have been used to study noncoercive variational
inequalities such as topological, bifurcation, variational methods, etc.
As a motivation of this paper, it is a continuation of the previous
works [13, 14], where a sub- supersolution method was proposed
for noncoercive variational inequalities. In those papers, by using
sub- and supersolutions for inequalities, we investigated the existence
of solutions (in many cases, positive solutions) and also of maximal
and minimal solutions of (2.9). We are interested here not in the
existence of solutions of variational inequalities or their numerical
approximations but instead in the structure of their solution sets. The
class of inequalities that we study here will be described in more details
in the next section, together with necessary assumptions and some
preparatory results.

2.2 Sub- supersolutions in variational inequalities. We are
concerned here with the following quasilinear elliptic variational in-
equality: Find u ∈ K such that

(2.9)
∫

Ω

A(x,∇u) ·∇(v−u) dx ≥
∫

Ω

F (x, u,∇u)(v−u) dx, ∀ v ∈ K.
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Here, Ω is an open bounded subset of RN with sufficiently smooth
boundary, X = W 1,p(Ω), X0 = W 1,p

0 (Ω) are the usual Sobolev spaces
equipped with the usual norms and K is a closed, convex subset of X0.
Also, A : Ω × RN → RN is a Carathéodory function satisfying the
following conditions:

(2.10)
|A(x,w)| ≤ ν|w|p−1 + γ(x),

A(x,w) · w ≥ α|w|p, a.e. x ∈ Ω, all w ∈ RN ,

where α, ν > 0 and γ ∈ Lp′
(Ω) (p′ is the Hölder conjugate of p), and

(2.11)
[A(x,w1) −A(x,w2)] · (w1 − w2) > 0, a.e. x ∈ Ω,

all w1, w2 ∈ RN , w1 
= w2.

For an example of mappings A satisfying the above conditions, let us
consider the p-Laplacian (p ≥ 2), that is, A is given by

A(x,w) = |w|p−2w,

for x ∈ Ω, w ∈ RN . In this case (2.10) is satisfied with ν = α = 1 and
γ(x) = 0. Also, (2.11) holds because

(|w1|p−2w1 − |w2|p−2w2) · (w1 − w2) ≥ 0, ∀w1, w2 ∈ RN ,

and the equality occurs only when w1 = w2. In the particular case
where p = 2, i.e., A(x,w) = w, we have the classical case of the
Laplacian (in the distributional sense of Sobolev space framework).

Assume that F : Ω × R × RN → R is a Carathéodory function with
certain growth conditions to be specified later. We denote by L the
functional defined by

〈L(u), v〉 =
∫

Ω

A(x,∇u) · ∇v dx, ∀u, v ∈ X.

It follows from (2.10) (2.11) that L is coercive and strictly monotone
on X. The concepts of sub- and supersolutions for the inequality
(2.9) are defined in [14]. We recall the definitions here for the sake
of completeness.
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Definition 1. A function u ∈ W 1,p(Ω) is called a W -subsolution of
(2.9) if

(i) u ≤ 0 on ∂Ω,

(ii) F (·, u,∇u) ∈ Lq′
(Ω), and

(iii) 〈L(u), w − u〉 ≥ ∫
Ω
F (·, u)(w − u) dx, for all w ∈ u ∧K,

where u ∧ v = min{u, v}, u ∧ K = {u ∧ v : v ∈ K}, also, u ∨ v =
max{u, v}, u ∧K = {u ∨ v : v ∈ K}, and 1 < q < p∗, p∗ is the Sobolev
conjugate of p.

We have a similar definition of W -supersolutions by reversing the in-
equality in (i) and replacing ∧ by ∨ in (iii) in the above definition. A
subsolution, respectively supersolution, of (2.9) is a maximum, respec-
tively minimum, of any finite number of W -subsolutions, respectively
W -supersolutions. The following result is proved in [14], see also [13],
and will be used in Section 3.

Theorem 2.1. Assume (2.9) has a subsolution

u = max {u1, . . . , uk},
and a supersolution

u = min {u1, . . . , um},

where u1, . . . , uk are W -subsolutions and u1, . . . , um are W -super-
solutions of (2.9). Suppose that K satisfies the following lattice con-
ditions :
(2.12)

uj ∨K ⊂ K, ui ∧K ⊂ K, ∀ i ∈ {1, . . . ,m}, ∀ j ∈ {1, . . . , k},

and

(2.13) u, v ∈ K, d ∈ R+ =⇒ u ∧ (v + d), u ∨ (v − d) ∈ K,

and F has the growth condition

(2.14) |F (x, u, ξ)| ≤ a(x) + b|ξ|p/q′
,
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for almost every x∈Ω, all u ∈ [min{u1(x), . . . , uk(x)},max{u1(x), . . . ,
umx)}], where a ∈ Lq′

(Ω), b ∈ [0,∞), q ∈ (1, p∗).

Then, there exist a minimal solution u∗ and a maximal solution u∗

of (2.9) in W 1,p
0 (Ω) in the sense that u∗, u∗ are solutions of (2.9),

(2.15) u ≤ u∗ ≤ u∗ ≤ u,

and if u ∈W 1,p
0 (Ω) is a solution of (2.9) such that u ≤ u ≤ u, then

(2.16) u∗ ≤ u ≤ u∗.

3. Main results. In this section, we assume that the assumptions
in Theorem 2.1 are satisfied and show that under certain conditions,
the solution set

S = {u ∈W 1,p
0 (Ω) : u is a solution of (2.9) and u ≤ u ≤ u}

fills up the “interval” [u∗, u∗] in a certain sense. In what follows, we
assume that

(3.1) u, u ∈ L∞(Ω),

and for almost every x ∈ Ω and all ξ ∈ RN ,

(3.2) F (x, u, ξ) is nonincreasing with respect to u ∈ [u(x), u(x)].

As a consequence of the above assumptions,

u∗, u∗ ∈W 1,p
0 (Ω) ∩ L∞(Ω).

Let us consider the vector space

H = W 1,p
0 (Ω) ∩ L∞(Ω)

with the usual intersection topology generated by the norm

‖u‖H = ‖u‖W 1,p
0 (Ω) + ‖u‖L∞(Ω).
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H is therefore a Banach space. From the above assumptions, S ⊂ H.
Let G be any (generally nonlinear) functional from S to R, which is
continuous with respect to ‖ · ‖H . We have the following result about
the “filling up” property of S stated above.

Theorem 3.1. Under the assumptions in Theorem 2.1 and
(3.1) (3.2), we have

[min{G(u∗), G(u∗)}, max{G(u∗), G(u∗)}] ⊂ G(S),

that is, for all s such that

min{G(u∗), G(u∗)} ≤ s ≤ max{G(u∗), G(u∗)},

there exists a solution u ∈ S such that G(u) = s.

Proof. Without loss of generality, we can assume that

min{G(u∗), G(u∗)} = G(u∗) ≤ G(u∗) = max{G(u∗), G(u∗)}.

Assume by contradiction that there exists s0 ∈ R such that

(3.3) G(u∗) < s0 < G(u∗),

but

(3.4) G(u) 
= s0, ∀u ∈ S.

Put u1 = u∗, w1 = u∗ and d1 = ‖w1 − u1‖L∞(Ω) (< ∞). For u ∈ R,
x ∈ Ω, let T denote the following truncating function:

T (x, u) =

⎧⎪⎨
⎪⎩
u(x) if u < u(x)
u(x) if u(x) ≤ u ≤ u(x)
u(x) if u > u(x)

,

It is clear that T (·, u) ∈ W 1,p
0 (Ω), respectively T (·, u) ∈ H, whenever

u ∈W 1,p
0 (Ω), respectively u ∈ H. Also, T is increasing with respect to

the second variable, that is

(3.5) T (x, u1) ≤ T (x, u2) if u1 ≤ u2 (u1, u2 ∈ R).



A PEANO-AKÔ TYPE THEOREM 603

We define

F0(x, u, ξ) = F (x, T (x, u), ξ) for x ∈ Ω, u ∈ R, ξ ∈ RN .

Then, F0 is a Carathéodory function that also satisfies the growth
condition (2.14). Let us consider the variational inequality: Find u ∈ K
such that

(3.6)
∫

Ω

A(x,∇u) ·∇(v−u) dx ≥
∫

Ω

F0(x, u,∇u)(v−u) dx, ∀ v ∈ K

We check that u1 + (d1/2) is a W -supersolution of (3.6). In fact,

u1 +
d1

2
=
d1

2
≥ 0 on ∂Ω,

and since u ≤ u1 ≤ u,

(3.7) F0(·, u1,∇u1) = F (·, u1,∇u1) = F (·, u∗,∇u∗) ∈ Lq′
(Ω).

Let w ∈ K. For

v =
(
u1 +

d1

2

)
∨ w ∈

(
u1 +

d1

2

)
∨K,

we have

(3.8)
∫

Ω

A

[
x,∇

(
u1 +

d1

2

)]
· ∇

[
v −

(
u1 +

d1

2

)]
dx

≥
∫

Ω

F0

[
x, u1 +

d1

2
,∇

(
u1 +

d1

2

)] [
v −

(
u1 +

d1

2

)]
dx.

To prove this inequality, we first note that it is equivalent to the
inequality
∫

Ω

A (x,∇u1) · ∇
[(
v − d1

2

)
− u1

]
dx

≥
∫

Ω

[
F0

(
x, u1 +

d1

2
,∇u1

)
− F0(x, u1,∇u1)

] [
v −

(
u1 +

d1

2

)]
dx

+
∫

Ω

F0(x, u1,∇u1)
[(
v − d1

2

)
− u1

]
dx.
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Now, because

u(x) ≤ T (x, u1(x)) ≤ T

(
x, u1(x) +

d1

2

)
≤ u(x),

and F (x, u, ξ) is decreasing in u on the interval [u(x), u(x)], we have

F0(x, u1(x),∇u1(x)) = F (x, T (x, u1(x)),∇u1(x))

≥ F

(
x, T

(
x, u1(x) +

d1

2

)
,∇u1(x)

)

= F0

(
x, u1 +

d1

2
,∇u1

)
,

for almost every x ∈ Ω. On the other hand, since v ≥ u1 + (d1/2), we
have v − (u1 + (d1/2)) ≥ 0 almost everywhere on Ω and thus

(3.10)∫
Ω

[
F0

(
x, u1 +

d1

2
,∇u1

)
− F0(x, u1,∇u1)

] [
v −

(
u1 +

d1

2

)]
dx ≤ 0.

Since u1, w ∈ K, we have

v − d1

2
= u1 ∨

(
w − d1

2

)
∈ K.

Using (3.7) and the fact that u1 is a solution of (2.9), one gets

(3.11)

∫
Ω

A(x,∇u1) · ∇
[(
v − d1

2

)
− u1

]
dx

≥
∫

Ω

F (x, u1,∇u1)
[(
v − d1

2

)
− u1

]
dx

=
∫

Ω

F0 (x, u1,∇u1)
[(
v − d1

2

)
− u1

]
dx.

Combining (3.10) and (3.11), we get (3.9) and thus (3.8). This shows
that u1 + (d1/2) is a W -supersolution of (3.6). By a similar proof, one
can show that w1 − (d1/2) is a W -subsolution of (3.6).

Now, since w1 = u∗ is between u and u, we have F0(·, w1,∇w1) =
F (·, w1,∇w1). This implies that w1 is also a solution, and thus a W -
supersolution of (3.6). Hence,

p1 =
(
u1 +

d1

2

)
∧ w1
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is a supersolution of (3.6). Using similar arguments, one can show that

p1 =
(
w1 − d1

2

)
∨ u1

is a subsolution of (3.6).

It is easy to check from the definition of d1 that

w1 − d1

2
≤ u1 +

d1

2

and thus p1 ≤ p1. Note that (2.12) is satisfied in this case since, for
every v ∈ K, we always have

(
u1 +

d1

2

)
∧ v,

(
w1 − d1

2

)
∨ v, u1 ∨ v, w1 ∧ v ∈ K.

It follows from the above discussion that all assumptions of Theorem 2.1
are satisfied for the inequality (3.6) and the pair of sub- supersolutions
p1 and p1. According to this theorem, there exists a solution u of (3.6)
such that

u1 ≤ p1 ≤ u ≤ p1 ≤ w1.

Because u ≤ u ≤ u, we have F (·, u,∇u) = F0(·, u,∇u) and thus u is
also a solution of (2.9), i.e. u ∈ S. From our assumptions, G(u) 
= s0.
If G(u) > s0, we choose

u2 = u1 and w2 = u.

Otherwise, we choose

u2 = u and w2 = w1.

In both cases, u2 and w2 are solutions of (2.9) and

u1 ≤ u2 ≤ w2 ≤ w1,

i.e., u2, w2 ∈ S and
G(u2) < s0 < G(w2).
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Moreover, it is easy to check that

d2 = ‖w2 − u2‖L∞(Ω) ≤ d1

2
.

Using mathematical induction, one can construct sequences {un} and
{wn} in S such that

u∗ ≤ un ≤ un+1 ≤ wn+1 ≤ wn ≤ u∗,(3.12)
G(un) < s0 < G(wn),(3.13)

and

(3.14) dn = ‖wn − un‖L∞(Ω) ≤ 21−nd1.

Equation (3.12) implies that {un}, {wn} ⊂ H and {un} is an increasing
sequence, while {wn} is a decreasing one. Thus, it follows from (3.14)
that

sup
n∈N

un(x) = u(x) = inf
n∈N

wn(x),

and
lim

n→∞ un(x) = lim
n→∞wn(x) = u(x),

for almost every x ∈ Ω. Also, from (3.14), those convergences are
uniform, that is,

(3.15) un, wn → u in L∞(Ω).

Let us show that u ∈W 1
0 (Ω) and

(3.16) un, wn → u in W 1
0 (Ω).

Let ‖ · ‖0 denote the usual norm in W 1
0 (Ω): ‖u‖0 = (

∫
Ω
|∇u|p dx)1/p.

Since un ∈ S, by fixing φ ∈ K, we have from (2.9) and (2.14) that∫
Ω

A(x,∇un) · ∇un dx

≤
∫

Ω

A(x,∇un) · ∇φ dx+
∫

Ω

F (x, un,∇un)(φ− un) dx

≤ ν

∫
Ω

|∇un|p−1|∇φ| dx+ ‖γ‖Lp′ (Ω) +
∫

Ω

[a+ b|∇un|p/q′
](|un| + |φ|) dx

≤ C
[
‖un‖p−1

0 ‖φ‖0 + ‖a‖Lq′ (Ω)(‖un‖L∞(Ω) + ‖φ‖L∞(Ω))

+ b ‖un‖p/q′
0 (‖un‖L∞(Ω) + ‖φ‖L∞(Ω))

]
+ ‖γ‖Lp′ (Ω)

≤ C
[
‖un‖p−1

0 + ‖un‖p/q′

0 + 1
]
,
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where C is a generic constant that does not depend on n. On the other
hand, it follows from (2.10) that

∫
Ω

A(x,∇un) · ∇un dx ≥ α

∫
Ω

|∇un|p−1 dx.

Thus,
α‖un‖p

0 ≤ C
[
‖un‖p−1

0 + ‖un‖p/q′

0 + 1
]
,

Because p/q′ < p, the above estimate implies that {un} is a bounded
sequence in W 1,p

0 (Ω). Therefore, there exists a subsequence {unk
} ⊂

{un} such that
unk

⇀ũ in W 1,p
0 (Ω),

and thus
unk

→ ũ in Lp(Ω).

By (3.15), ũ = u and unk
⇀u in W 1,p

0 (Ω). This holds for all weakly
converging subsequences {unk

} of {un}, implying that

(3.17) un⇀u in W 1,p
0 (Ω).

In particular, u ∈W 1,p
0 (Ω) and

(3.18) un −→ u in Lp(Ω).

As K is weakly closed in W 1,p
0 (Ω), it follows from (3.17) that u ∈ K.

Now, we prove that the convergence in (3.17) is in fact a strong
convergence. Since un ∈ S, by replacing u by un and v by u in (2.9),
we get

(3.19)
∫

Ω

A(x,∇un) · (∇u−∇un) dx ≥
∫

Ω

F (x, un,∇un)(u− un) dx.

Using the compact embedding W 1,p(Ω)↪→Lq(Ω), one also has un−u→
0 in Lq(Ω). Because the sequence {|∇un|} is bounded in Lp(Ω), the
growth condition (2.14) implies that the sequence {F (·, un,∇un)} is
bounded in Lq′

(Ω). Since
∣∣∣∣
∫

Ω

F (x, un,∇un)(u− un) dx
∣∣∣∣ ≤ ‖F (·, un,∇un)‖Lq′(Ω)‖u− un‖Lq(Ω),
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we have ∫
Ω

F (x, un,∇un)(u− un) dx −→ 0.

From (3.19),

(3.20) lim inf
∫

Ω

A(x,∇un) · (∇u−∇un) dx ≥ 0.

Now, since ∇un⇀∇u in [Lp(Ω)]N ,

lim
∫

Ω

A(x,∇u) · (∇u−∇un) dx = 0.

Thus,

lim inf
∫

Ω

[A(x,∇un) −A(x,∇u)] · (∇u−∇un) dx ≥ 0.

Because A is monotone, we must have

lim
∫

Ω

[A(x,∇un) −A(x,∇u)] · (∇u−∇un) dx = 0.

This limit, together with (3.17), (3.18) and Lemma 3 of [5], implies
that un → u in W 1,p

0 (Ω). Similar arguments show that wn to u in
W 1,p

0 (Ω). Equation (3.16) is proved.

Equations (3.15) and (3.16) means that un, wn → u in H, that is,

‖un − u‖L∞(Ω) + ‖un − u‖0 → 0, ‖wn − u‖L∞(Ω) + ‖wn − u‖0 → 0.

By the continuity of G, we have that both G(un) and G(wn) converge
to G(u) as n→ ∞. Equation (3.13) implies that

(3.21) s0 = G(u) = limG(un) = limG(wn).

Now, let us verify that u is a solution of (2.9). As noted before, u ∈ K.
For v ∈ K, we have
(3.22)∫

Ω

A(x,∇un) · (∇v −∇un) dx ≥
∫

Ω

F (x, un,∇un)(v − un) dx, ∀n.
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By passing to a subsequence if necessary, we obtain from (3.16) that

un → u,∇un −→ ∇u a.e. in Ω,

and
|un|, |∇un| ≤ g a.e. in Ω, ∀n,

for some g ∈ Lp(Ω). Hence, A(x,∇un(x)) → A(x,∇u(x)) for almost
every x ∈ Ω and |A(·,∇un)| ≤ νgp−1 + γ almost every in Ω, all n ∈ N.
The dominated convergence theorem thus implies that A(·,∇un) →
A(·,∇u) in [Lp′

(Ω)]N and thus

(3.23)
∫

Ω

A(x,∇un) · (∇v−∇un) dx −→
∫

Ω

A(x,∇u) · (∇v−∇u) dx.

Similarly, we have F (·, un,∇un) → F (·, u,∇u) in Lq′
(Ω) and

(3.24)
∫

Ω

F (·, un,∇un)(v − un) dx→
∫

Ω

F (·, u,∇u)(v − u) dx.

Letting n → ∞ in (3.22) and using (3.23) and (3.24), we see that u
is a solution of (2.9), that is u ∈ S. This fact, together with (3.21),
contradicts (3.4) and proves our theorem.

Now, let us derive some corollaries of the above theorem. We consider
on H the usual partial ordering:

u ≤ v ⇐⇒ u(x) ≤ v(x) for a.e. x ∈ Ω.

Corollary 3.2. Assume that (3.1) (3.2) are satisfied and that G is
increasing on S, that is,

(3.25) u, v ∈ S and u ≤ v ⇒ G(u) ≤ G(v).

Then, G(S) = [G(u∗), G(u∗)].

Proof. That G(S) ⊂ [G(u∗), G(u∗)] follows from (3.25). The other
inclusion follows from Theorem 3.
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With particular choices of G, we have different variants of the Peano-
Akô property. For example, we have the following result.

Corollary 3.3. Assume that (3.1) and (3.2) hold and that S ⊂ C(Ω).
Then, for all x0 ∈ Ω, all s ∈ [u∗(x0), u∗(x0)], there exists u ∈ S such
that u(x0) = s.

Proof. Let G : S → R, G(u) = u(x0). G is well defined and
continuous with respect to the topology of uniform convergence on Ω.
Since S ⊂ C(Ω)∩L∞(Ω), this topology is the same as that generated by
‖·‖L∞(Ω) on S. It follows that G is continuous on S with respect to the
topology generated by ‖·‖H . Our result now follows from Corollary 3.2.

Corollary 3.4. Assume conditions (3.1) and (3.2) are satisfied.
Then, for all φ ∈ C∞

0 (Ω), φ ≥ 0, all

s ∈
[ ∫

Ω

u∗φ dx,
∫

Ω

u∗φ dx
]
,

there exists a solution u ∈ S such that
∫

Ω

uφ dx = s.

Consequently,
{∫

Ω

uφ dx : u ∈ S
}

=
[ ∫

Ω

u∗φ dx,
∫

Ω

u∗φ dx
]
.

Proof. Consider G : H → R, G(u) =
∫
Ω
uφ dx. It is easy to see

that G is continuous and increasing, in the sense of (3.25), on H, since
φ ≥ 0. Our claim follows from Corollary 3.2.

Remark 3.5. (a) Corollary 3.3 is a classical Peano-Akô property. It is
extended in that corollary to variational inequalities with continuous
solutions.



A PEANO-AKÔ TYPE THEOREM 611

(b) Corollary 3.4 could be seen as a variational version of the Peano-
Akô property, where the pointwise property is replaced by the action
of the solutions on test functions. It means that S fills out the interval
between u∗ and u∗ in the distributional sense.

(c) Some other choices of G are, for example,

G(u) =
∫

Ω

N∑
j=1

∂juφj dx (φj ∈ C∞
0 (Ω), 1 ≤ j ≤ N),

and

G(u) =
∫

Ω

∇u · ∇φ dx (φ ∈ C∞
0 (Ω)).

Corollary 3.2, with these functionals G, shows, in the first case, that
{∇u : u ∈ S} fills up the interval [∇u∗,∇u∗] and, in the second case,
{Δu : u ∈ S} fills up [Δu∗,Δu∗] in the distributional sense.

As another consequence of the above discussion, we have the following
property of S:

Corollary 3.6. S is a connected subset of H.

Proof. Assume otherwise that there exist open sets A and B in H
such that A ∩ B = ∅, S ⊂ A ∪ B, and A ∩ S 
= ∅, B ∩ S 
= ∅. Let
G : S → R be defined by

(3.26) G(u) =
{

0 if u ∈ S ∩A
1 if u ∈ S ∩B.

Then G is continuous on S. If G(u∗) 
= G(u∗), then by choosing
s = 1/2, we see from Theorem 3.1 that there exists u ∈ S such
that G(u) = 1/2. This contradicts the definition of G in (3.26).
Hence, G(u∗) = G(u∗). We can assume without loss of generality
that G(u∗) = G(u∗) = 0, i.e., u∗, u∗ are both in A. Choose u1 ∈ B ∩ S
and consider the set

(∅ 
=)S1 = {u ∈ S : u∗ ≤ u ≤ u1}(⊂ S).
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Applying Theorem 3.1 to S1, u∗, u1 instead of S, u∗, u∗, and noting
that G(u∗) = 0, G(u1) = 1, we see that there exists u ∈ S1 such that
G(u) = 1/2. Again, we obtain a contradiction.

Note that S is a closed and bounded subset of H. Hence, Corol-
lary 3.6 gives us a partial Hukuhara-Kneser property of the section S
of solutions of (2.9) between sub- and supersolutions. We refer to [4,
18, 28 30] for detailed discussions of this property for other kinds of
problems. We conclude this section by noting that many convex sets
K in applications satisfy the conditions in Theorem 2.1, for example,

K = {u ∈W 1,p
0 (Ω) : u ≥ (≤)ψ a.e. in Ω}

in obstacle problems, or

K = {u ∈W 1,p
0 (Ω) : Φ(∇u) ≤ C(x) a.e. in Ω}

in elastic-plastic torsion and sand pile problems (Φ is a convex function,
and C(x) is given), cf. e.g., [2, 3, 6, 9, 25].
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