
ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 36, Number 2, 2006

PERIODIC SOLUTIONS
AND ASYMPTOTIC BEHAVIOR OF A PDE

WITH HYSTERESIS IN THE SOURCE TERM

JANA KOPFOVÁ

ABSTRACT. A parabolic PDE with hysteresis in the source
term is considered. The existence of periodic solutions for a
general hysteresis operator is proven and an asymptotic result
for solutions of this equation, using ideas due to Krejč́ı, is
obtained.

1. Introduction. Let Ω ⊂ RN , N ≥ 1, be an open bounded
set of Lipschitz class, denote by ∂Ω the boundary of Ω and set Q :=
Ω × (0,∞), Σ := ∂Ω × (0,∞).

In this paper we consider the following model equation

(1)
∂u

∂t
−�u + F(u) = f in Q,

coupled with initial and boundary conditions, where

F : M
(
Ω; C0([0,∞))

) −→ M
(
Ω; C0([0,∞))

)
is a continuous operator with memory, M

(
Ω; C0([0,∞))

)
denotes the

Fréchet space of (strongly) measurable functions Ω → C0([0,∞)) and
f is a given function.

Sufficient conditions for the existence and uniqueness of solutions of
(1) are well known and we present them in the next section.

We study the question of existence of periodic solutions of (1) as
well as asymptotic behavior of solutions as t → ∞. To our knowledge
there are so far only two papers dealing with such problems, [1] and
[5]. In [1] they investigated the asymptotic behavior, as t → ∞, of
both the solution of (1) and the corresponding memory term F(u),
where F(u) is a hysteresis operator. They showed that under some
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assumptions on the hysteresis boundary curves there exists u∞ ∈
H1

0 (Ω) ∩ W 1,p
loc (Ω), for all p ∈ [1,∞), such that u(., t) → u∞ weakly

in H1
0 (Ω), w(x, t) = F(u(x, t)) → −�u∞ strongly in Lp(Ω), for all

p ∈ [1,∞), and almost everywhere in Ω as t → ∞. They assumed F is
a generalized play operator and their proof of asymptotic stability relied
on the specific properties of this operator. The question of existence
of periodic solutions of (1) was considered by Longfeng in [5], but also
only in a very special case, where F is assumed to be a specific type
of hysteresis operator. We prove the existence of a periodic solution
of (1) with a more general hysteresis operator. The proof is based on
a homotopy version of the Leray-Schauder fixed point theorem. The
fourth section contains an asymptotic result for (1), where we assume
F to be any Lipschitz continuous hysteresis operator. This is a much
more general assumption than the one in [1].

2. A parabolic problem. We denote by M
(
Ω; C0([0, T ])

)
the

Fréchet space of (strongly) measurable functions Ω → C0([0, T ]), see
e.g., the Appendix in [7]. Let

(2) F : M
(
Ω; C0([0, T ])

) −→ M
(
Ω; C0([0, T ])

)
be a causal and strongly continuous operator. We fix a relatively open
subset Γ1 of ∂Ω, and set

(3) V := H1
Γ1

(Ω) := {v ∈ H1(Ω) : γ0v = 0 on Γ1}

where γ0 denotes the trace operator. Thus if Γ1 = ∅, then V = H1(Ω);
if Γ1 = ∂Ω, then V = H1

0 (Ω). We identify the space L2(Ω) with its dual
L2(Ω)′. As V is a dense subspace of L2(Ω), L2(Ω)′ can be identified
with a subspace of V ′. So we get

(4) V ⊂ L2(Ω) = L2(Ω)′ ⊂ V ′,

with continuous, dense and compact injections. We define the operator
A : V → V ′, u 	→ Au as follows :

(5) V ′〈Au, v〉V :=
∫

Ω

∇u · ∇v dx ∀ v ∈ V ;
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hence Au = −�u in D′(Ω), where D(Ω) = {φ; φ infinitely differentiable
on Ω and with compact support in Ω} and D′(Ω) = dual of D(Ω) =
space of distributions on Ω. We assume that

(6) u0, w0 ∈ L2(Ω), f ∈ L2(0, T ; V ′).

Problem 1. To find u ∈ M
(
Ω; C0([0, T ])

) ∩ L2(0, T ; V ) such that
F(u) ∈ L2(Q) and

(7)
∫∫

Q

(
−u

∂v

∂t
+ ∇u · ∇v + F(u)v

)
dx dt

=
∫ T

0
V ′〈f, v〉V dt +

∫
Ω

u0(x)v(x, 0) dx

for all v ∈ L2(0, T ; V ) ∩ H1
(
0, T ; L2(Ω)

)
, v(·, T ) = 0, a.e. in Ω.

Interpretation. Equation (7) yields

(8)
∂u

∂t
+ Au + F = f in D′(0, T ; V ′).

By comparing the terms of this equation, we see that ∂u/∂t ∈
L2(0, T ; V ′), thus u ∈ L2(0, T ; V ) ∩ H1(0, T ; V ′) and (8) holds in V ′

almost everywhere in (0, T ). The functions of this space admit time
traces in L2(Ω). Hence, integrating by parts in (7) and using (8), we
get

(9) u(x, 0) = u0(x) in L2(Ω) (in the sense of traces).

Let us now interpret (8) for V = H1
Γ1

(Ω). Let Γ2 := Γ/Γ1, fix any

(10) f1 ∈ L2(Q), f2 ∈ L2(Γ2 × (0, T )),

and define f ∈ L2
(
0, T ; L2(Ω)

)⊕ L2(0, T ; V ′) by

V ′〈f(t), v〉V :=
∫

Ω

f1(x, t)v(x) dx +
∫

Γ2

f2(σ, t)γ0v(σ) dσ

∀ v ∈ V, a.e. in (0, T ).
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Then (7) corresponds to the differential equation

(11)
∂

∂t
u −�u + F(u) = f1 in D′(Ω), a.e. in (0, T ),

coupled with the boundary conditions

γ0u = 0 on Γ1 × (0, T ),(12)
∂u

∂ν
= f2 in D′(Γ2 × (0, T )),(13)

where ∂/∂ν denotes the exterior normal derivative.

The following theorem is proved in [7]:

Theorem 1. Assume that (2) (4) hold. Let F be affinely bounded,
in the sense that

(14)
∃L ∈ R+, ∃g ∈ L2(Ω); ∀ v ∈ M(Ω, C0([0, T ]));

‖[F(v)](x, ·)‖C0([0,T ]) ≤ L‖v(x, ·)‖C0([0,T ]) + g(x) a.e. in Ω.

Moreover, let

(15)
f = f1 + f2, f1 ∈ L2(Ω), f2 ∈ W 1,1(0, T, V ′),

u0 ∈ V, w0 ∈ L2(Ω).

Then Problem 1 has at least one solution such that

u ∈ H1
(
0, T ; L2(Ω)

) ∩ L∞(0, T ; V ),(16)

F(u) ∈ L2
(
Ω; C0([0, T ])

)
.(17)

If F also has the global Lipschitz continuity property

∃K > 0; ∀ t ∈ (0, T ], ∀ v1, v2 ∈ L2
(
Ω; C0([0, t])

)
,(18)

‖F(v1) − F(v2)‖L2(Ω;C0([0,t])) ≤ K‖v1 − v2‖L2(Ω;C0([0,t])),(19)

then Problem 1 has only one solution satisfying (16).
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3. Periodic solutions. We consider the question of existence of
periodic solutions for (1) coupled with suitable boundary conditions.
Here f will be a given function ω−periodic in t.

We will make use of various subsets of the following assumptions:

(A1) Global Lipschitz continuity:

∃K > 0; ∀ t ∈ (0,∞), ∀ v1, v2 ∈ L2
(
Ω; C0([0, t])

)
,

‖F(v1) − F(v2)‖L2(Ω;C0([0,t])) ≤ K‖v1 − v2‖L2(Ω;C0([0,t])).

(A2) Monocyclicity: If u(x, t) is ω−periodic in t, then [F(u)](x,
t + ω) = [F(u)](x, t) for all t ≥ ω, x ∈ Ω.

(A3) Affine boundedness:

∃K1 ∈ R+, ∃g ∈ L2(Ω); ∀ v ∈ M(Ω, C0([0,∞)));
‖[F(v)](x, ·)‖C0([0,∞)) ≤ K1‖v(x, ·)‖C0([0,∞)) + g(x) a.e. in Ω.

(A4) Saturation:

|F(u)(x, t)| ≤ C, for all x ∈ Ω, t ∈ [0,∞),

where C is some positive constant.

Remark 1. The term monocyclicity was introduced in [2] by
M.A.Krasnosel’skii and A.V.Pokrovskii. For a periodic input u(.), the
least δ > 0 such that the identity

[F(u)](x, t + ω) = [F(u)](x, t), t ≥ δ

holds is called a periodicity stabilization time of the output. If, for any
periodic input, this time does not exceed the value of one period, then
the operator is monocyclic. More details as well as the proof of the fact
that the generalized play operator, and therefore also the generalized
Prandtl-Ishlinskii operator of play type, is monocyclic can be found in
[2]. The property (A4) is physically sensible for many problems.

Let ω > 0, and let B be a Banach space. A measurable function
u : R+ → B is called ω−periodic if u(t + ω) = u(t) for almost all
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t ∈ R+. By L2
ω (0,∞; B) we denote the Banach space of all (classes of)

ω−periodic functions u : (0,∞) → B for which u|(0,ω) ∈ L2 (0, ω; B).
The norm is given by

‖u|(0,ω)‖L2((0,ω);B) =
(∫ ω

0

‖u(x, t)‖2
B dt

)1/2

.

We can similarly define other spaces of functions, ω-periodic in t, for
more details see, e.g., [6].

Define D = H1,2
ω (Q) ∩ G, where

G = {u ∈ C∞
ω (Q), u = 0 on ∂Ω, t ∈ R+} in H1

ω(Q).

We will prove the following theorem:

Theorem 2. If f ∈ L2
ω

(
0,∞, L2(Ω)

)
is given and F satisfies

the assumptions (A1), (A2), and at least one of (A4) or (A3) with
K1 < K = (ωn/|Ω|)2n, where |Ω| denotes the volume of Ω and ωn

is the volume of the n-dimensional unit ball, then there exists u ∈ D,
which is periodic and satisfies the equation (1) almost everywhere in Q,
for t ≥ ω.

Remark 2. The operator −� in the equation (1) can be replaced by
any symmetric uniformly elliptic operator.

Proof. To prove the theorem we will need the following lemma, for
the proof see [6, Theorem III. 1.3.1].

Lemma 3. Suppose that f ∈ L2
ω

(
0,∞; L2(Ω)

)
. Then there exists a

unique periodic solution of the equation

(20)
∂u

∂t
−�u = f in Q,

which satisfies the Dirichlet boundary condition

u = 0 on Σ,
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such that u ∈ D. Moreover, there exists a positive constant K2 such
that

|u|D ≤ K2|f |L2
ω(0,∞;L2(Ω)).

The main tool in our proof will be the homotopy version of the Leray-
Schauder fixed point theorem:

Theorem 4. Let B be a Banach space, T : B× [0, 1] → B a compact
mapping such that

(i) T (x, 0) = 0 for all x ∈ B,

(ii) there exists a constant M such that |x|B ≤ M for all (x, σ) ∈
B × [0, 1] satisfying x = T (x, σ).

Then the mapping T1 of B into itself given by T1x = T (x, 1) has a
fixed point.

We introduce the Banach space B = L2
(
Ω, C0[0,∞)

)
. It can be

easily seen from property (A3) or (A4) and property (A2) that, for all
v ∈ B,

F(v) ∈ L2
(
Ω, C0([0,∞)

) ∩ L2
(
Ω, C0

ω([ω,∞))
)
.

For any σ ∈ [0, 1] and t ≥ ω we consider the equation

∂u

∂t
−�u = −σF(v) + σf, v ∈ B.

By Lemma 3, the above equation has for any σ ∈ [0, 1] and any v ∈ B
a unique solution ũ ∈ D, defined and periodic for t ≥ 0. Let u ∈ D be
the periodic extension of ũ to [0,∞).

By interpolation, see e.g. [4], we have

(21) D ⊂ H1
ω(Q) ⊂ L2

(
Ω; C0

ω[0,∞)
)

with continuous injections and the last one is also compact. If we denote
by T : T (v, σ) = u, it follows from above that T : B × [0, 1] → B. We
shall show that all the assumptions of the Leray-Schauder theorem are
satisfied for the mapping T. Obviously, for all v ∈ B, T (v, 0) = 0, so
assumption (i) is satisfied.



546 J. KOPFOVÁ

To show that T is a compact mapping: For all σ ∈ [0, 1], v1, v2 ∈ B,
letting T (v1, σ) = u1, T (v2, σ) = u2, we get

(22)
∂

∂t
(u1− u2) −�(u1− u2) = −σ[F(v1) −F(v2)], ∀ t ≥ ω.

Multiplying the last equation by u1−u2 and integrating over Ω, we get
after integration by parts

1
2

∂

∂t
‖u1 − u2‖2

L2(Ω) +
∫

Ω

[∇(u1 − u2)]2 dx

= −σ

∫
Ω

(u1 − u2)[F(v1) −F(v2)] dx

After integrating this in t over [ω, 2ω], we have

(23)
1
2

{
‖u1(2ω) − u2(2ω)‖2

L2(Ω) − ‖u1(ω) − u2(ω)‖2
L2(Ω)

}
+
∫ 2ω

ω

∫
Ω

[∇(u1 − u2)]2 dx dt

≤ |σ|
∫ 2ω

ω

∫
Ω

|u1 − u2| |F(v1) −F(v2)| dx dt

≤ ‖u1 − u2‖L2(Ω;L2(ω,2ω))ω
1/2

×
{∫

Ω

sup
t

[F(v1) −F(v2)]2 dx

}1/2

≤ Lω1/2 ‖v1 − v2‖B‖u1 − u2‖L2(Ω,L2(ω,2ω)).

Because ui, i = 1, 2, are periodic in t with period ω, the difference of
the first two terms on the left-hand side of (23) is zero. Moreover, using
the Poincaré inequality to estimate the last term on the left-hand side
we get

μ1‖u1− u2‖2
L2(Ω,L2(ω,2ω)) ≤ ω1/2 L‖u1− u2‖L2(Ω,L2(ω,2ω))‖v1− v2‖B .

Thus

(24) ‖u1 − u2‖L2(Ω,L2(ω,2ω)) ≤ Lω1/2

μ1
‖v1 − v2‖B.
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We also get from (23), using equivalent norms on the space H1
0 (Ω),

that

(25) ‖u1 − u2‖L2(ω,2ω;H1(Ω)) ≤ LRω1/2 ‖v1 − v2‖B.

If we now multiply (22) by ∂/∂t(u1 − u2) and integrate over Ω, we get∫
Ω

[
∂(u1 − u2)

∂t

]2
d − ∂

∂t

∫
Ω

[∇(u1 − u2)]2 dx

≤ |σ|
∫

Ω

|F(v1) −F(v2)|
∣∣∣∣∂(u1 − u2)

∂t

∣∣∣∣ dx.

After integrating in t over [ω, 2ω], using estimates similar to those
used above, we get

(26)
∥∥∥∥ ∂

∂t
(u1 − u2)

∥∥∥∥
L2(Ω,L2(ω,2ω))

≤ Lω1/2 ‖v1 − v2‖B.

It follows from (24), (25) and (26) that

(27) ‖u1 − u2‖H1(Q) ≤ R1‖v1 − v2‖B

and that T is compact with respect to v because of the compact
imbedding (21).

Now, for all fixed v ∈ B, σ1, σ2 ∈ [0, 1], let

T (v, σ1) = u1

T (v, σ2) = u2.

We have

∂

∂t
(u1 − u2) −�(u1 − u2) = (σ1 − σ2)[f −F(v)], ∀ t ≥ ω.

By Lemma 3 and the compact imbedding (21), we get the estimate

‖u1− u2‖B ≤ |σ1− σ2| K̃
[‖f‖L2(Ω,L2(ω,2ω)) + ‖F(v)‖L2(Ω,L2(ω,2ω))

]
.

Hence, T is uniformly continuous with respect to σ for any fixed
v ∈ B. Now, T is compact with respect to v for fixed σ and uniformly
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continuous with respect to σ for fixed v ∈ B, and thus T is a compact
mapping of B × [0, 1] → B.

To show (ii): For all σ ∈ [0, 1], let T (u, σ) = u, i.e.,

∂u

∂t
−�u = −σF(u) + σf, ∀ t ≥ ω.

Multiplying by u and integrating over Ω, we get

1
2

∂

∂t
‖u‖2

L2(Ω) +
∫

Ω

(∇u)2 dx ≤
∫

Ω

F(u)u dx +
∫

Ω

fu dx.

After integrating the last inequality in t over [ω, 2ω], and using the
periodicity of u in t and the Poincaré inequality, we get
(28)(

ωn

|Ω|
)2n

‖u‖2
L2(Ω,L2(ω,2ω)) ≤ ‖f‖L2(Ω,L2(ω,2ω))‖u‖L2(Ω,L2(ω,2ω))

+ ‖u‖L2(Ω,L2(ω,2ω))‖F(u)‖L2(Ω,L2(ω,2ω)).

The last term in (28) can now be estimated by assumption (A4) as
follows

‖u‖L2(Ω,L2(ω,2ω))‖F(u)‖L2(Ω,L2(ω,2ω)) ≤ C1‖u‖L2(Ω,L2(ω,2ω)).

Then we have altogether that

‖u‖L2(Ω,L2(ω,2ω)) ≤ C̃ = constant,

so by Lemma 3 and by the compact imbedding (21) also ‖u‖B ≤ C2. So
all assumptions of the Leray-Schauder fixed point theorem are satisfied,
thus there exists u ∈ D, such that T (u, 1) = u. This is the ω-periodic
solution of (20).

If instead of (A4) we assume (A3), as was done by Longfeng in
[5], then we get the same result, estimating the last term in (28) by
assumption (A3), but we need to assume also that the constant K1 < K
in (A3). This was done in [5] for a special kind of hysteresis operator.

Remark 3. Existence of a periodic solution of (1) can be proved
alternatively under slightly different assumptions on the hysteresis
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operator, using a variation of an approach used by Krejč́ı in [3], based
on the classical Galerkin method.

4. An asymptotic result. We consider the model equation (1)
coupled with initial and boundary conditions, where F is a continuous
operator with memory, and f is a given function. Here we do not
require F to be rate independent, but applications to hysteresis are our
main concern. We suppose, however, that the operator F is piecewise
monotone. This is a property often satisfied by hysteresis operators.

Definition 1. Piecewise monotonicity preservation property (or
more briefly, piecewise monotonicity):

(29)

⎧⎨⎩
∀ (u, w0) ∈ Dom (F), ∀ [t1, t2] ⊂ [0, T ],
if u is nondecreasing (resp. nonincreasing) in [t1, t2],
then so is F(u, w0).

If u,F(u, w0) ∈ W 1,1(0, T ), then this can be described by a simple
inequality:

(30)
du

dt

[
d

dt
F(u, w0)

]
≥ 0, a.e. in (0, T ).

Theorem 5. Let all the assumptions of Theorem 1 including the
global Lipschitz continuity property be satisfied for any T ∈ (0,∞) and
f ≡ constant in R+ × Ω. Suppose also that

w0, �u0 ∈ L2(Ω),

and F is piecewise monotonicity preserving (or, more briefly, piecewise
monotone).

Then there exist positive constants C1, C2, K1 such that, for any
solution u of (1) with zero Dirichlet boundary data, we have

(31)
∫

Ω

{(
∂u

∂t

)2

+
[
∇
(

∂u

∂t

)]2}
(x, t) dx ≤ C1 e−C2t.
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This then implies that

(32) u∞ = lim
t→∞ u(., t)

exists and that the following estimate holds:

(33) ‖u∞ − u(., t)‖L1 ≤ K1

C2
e−C2t.

Moreover,

(34) w∞ = lim
t→∞w(x, t)

also exists weakly in L2(Ω) and w∞ is the solution of the equation

(35) −�u∞ + w∞ = f weakly in W 1,2(Ω).

Proof. By Theorem 1 we know that there exists a unique solution of
(1) coupled with zero Dirichlet boundary data and an initial condition
u(x, 0) = u0(x) such that

u ∈ H1
(
0, T ; L2(Ω)

) ∩ L∞(0, T ; V ),

F(u) ∈ L2
(
Ω; C0([0, T ])

)
,

for any T ∈ [0,∞). Combining results of Proposition X.1.4 and
Proposition IX.1.2 in [7], we have the following regularity of the
solution:

u ∈ H2
(
0, T ; L2(Ω)

) ∩ W 1,∞ (0, T ; H1
0 (Ω)

)
,(36)

F(u) ∈ H1
(
0, T ; L2(Ω)

)
,(37)

for any T ∈ (0,∞).

We can now differentiate the equation (1) with respect to t (necessary
regularity follows from (36) and from the fact that u is a solution) and
get

(38)
∂2u

∂t2
−�

(
∂u

∂t

)
+

∂

∂t
(F(u)) = 0.
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Now we do the following things: We multiply (38) by ∂u/∂t and get
after integration over Ω:

(39)
1
2

∂

∂t

[∫
Ω

(
∂u

∂t

)2

dx

]
+
∫

Ω

[
∇
(

∂u

∂t

)]2
dx ≤ 0,

where we used the piecewise monotonicity property of the operator F .
Let L be the Lipschitz constant for F , and let K denote a constant
which will be specified later. Choose α > L2K/4, multiply (39) by α
and get

(40)
1
2

∂

∂t

[∫
Ω

α

(
∂u

∂t

)2

dx

]
+
∫

Ω

α

[
∇
(

∂u

∂t

)]2
dx ≤ 0.

We now multiply (38) by ∂2u/∂t2 and again integrate over Ω:∫
Ω

(
∂2u

∂t2

)2

dx +
1
2

∂

∂t

∫
Ω

[
∇
(

∂u

∂t

)]2
dx ≤

∫
Ω

∣∣∣∣ ∂

∂t
F(u)

∣∣∣∣ ∣∣∣∣∂2u

∂t2

∣∣∣∣ dx

≤ L

∫
Ω

∣∣∣∣∂u

∂t

∣∣∣∣ ∣∣∣∣∂2u

∂t2

∣∣∣∣ dx

≤
∫

Ω

(
∂2u

∂t2

)2

dx

+
L2

4

∫
Ω

∣∣∣∣∂u

∂t

∣∣∣∣2 dx,

where we used the piecewise Lipschitz continuity of the operator F
with Lipschitz constant L. The last inequality gives us:

(41)
1
2

∂

∂t

∫
Ω

[
∇
(

∂u

∂t

)]2
dx ≤ L2

4

∫
Ω

∣∣∣∣∂u

∂t

∣∣∣∣2 dx.

Adding (40) and (41) results in:

1
2

∂

∂t

[∫
Ω

(
α

(
∂u

∂t

)2

+
[
∇
(

∂u

∂t

)]2)
dx

]

≤ −
∫

Ω

(
α

[
∇
(

∂u

∂t

)]2
− L2

4

∣∣∣∣∂u

∂t

∣∣∣∣2
)

dx.
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Using the equivalent norm in H1
0 (Ω), we have the following estimate

for some constant K:

−α

∥∥∥∥∇(∂u

∂t

)∥∥∥∥2

L2(Ω)

≤ − α

K

∥∥∥∥∇(∂u

∂t

)∥∥∥∥2

L2(Ω)

− α

K

∥∥∥∥∂u

∂t

∥∥∥∥2

L2(Ω)

.

So we get altogether:

1
2

∂

∂t

{∫
Ω

{
α

(
∂u

∂t

)2

+
[
∇
(

∂u

∂t

)]2}
dx

}

≤ −
∫

Ω

{
α

K

[
∇
(

∂u

∂t

)]2
+
(

α

K
− L2

4

) ∣∣∣∣∂u

∂t

∣∣∣∣2
}

dx

≤ −min

{
α

K
,

(
(α/K) − (L2/4)

)
α

}

×
∫

Ω

{
α

(
∂u

∂t

)2

+
[
∇
(

∂u

∂t

)]2}
dx.

Note that α/K −L2/4 > 0, because of our condition on α. Therefore
Gronwall’s lemma implies that:∫

Ω

{
α

(
∂u

∂t

)2

+
[
∇
(

∂u

∂t

)]2}
(x, t) dx

≤ e−2Ct

∫
Ω

{
α

(
∂u

∂t

)2

+
[
∇
(

∂u

∂t

)]2}
(x, 0) dx.

The estimate (31) now follows.

To show (32), note first that (31) implies∫
Ω

(
∂u

∂t

)2

dx ≤ C1e
−C2t

and using Hölder’s inequality we also have, since Ω is bounded,

(42)
∫

Ω

∣∣∣∣∂u

∂t

∣∣∣∣ dx ≤ K1e
−C2t.
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Equation (42) implies that∣∣∣∣∂u

∂t

∣∣∣∣ ∈ L1
(
0,∞; L1(Ω)

)
,

and also ∣∣∣∣ ∂

∂t

(∫
Ω

u(x, t) dx

)∣∣∣∣ ∈ L1(0,∞).

Therefore, limt→∞
∫
Ω

u(x, t) dx exists.

It also follows from (42) that for t < s

(43)
∫

Ω

|u(x, s) − u(x, t)| dx ≤ K1

C2

(
e−C2t − e−C2s

)
.

Hence the system {u(., t)}t>0 is fundamental in L1(Ω), which is a
complete space. Therefore we can conclude that u∞ = limt→∞ u(., t)
exists and it also follows from (43) that

(44) ‖u∞ − u(., t)‖L1 ≤ K1

C2
e−C2t.

In the same way we can get from the inequality (31) that

(45) p∞ = lim
t→∞∇u(., t)

exists in L1(Ω) and a similar estimate to (44) holds, namely

(46) ‖p∞ −∇u(., t)‖L1 ≤ K1

C2
e−C2t.

We want to show next that p∞ = ∇u∞. This can be done in the
following way: It follows from Theorem 1 that

(47) u(x, t) is bounded in the space L∞(0, T ; W 1,2(Ω)).

Therefore it follows that there exists a sequence sn ↑ ∞ such that

(48) u(x, sn) −→ ũ(x) weakly in W 1,2(Ω).



554 J. KOPFOVÁ

But then it follows that ũ(x) = u∞ and ∇ũ(x) = p∞ and this is
precisely what we wanted. In equation (1), taking the limit as t → ∞,
we get from the combination of previous results that the weak limit
w∞ = limt→∞ w(x, t) exists in L2(Ω) and that w∞ satisfies the equation

(49) −�u∞ + w∞ = f

weakly in W 1,2(Ω).
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3. P. Krejč́ı, Hysteresis and periodic solutions of semi-linear and quasi-linear
wave equations, Math. Z. 193 (1986), 247 264.

4. J.L. Lions and E. Magenes, Non-homogeneous boundary value problems and
applications, Vol. 1, Springer, Berlin, 1972.

5. Xu Longfeng, Two parabolic equations with hysteresis, J. Partial Differential
Equations 4 (1991), 51 65.

6. O. Vejvoda, Partial differential equations: Time-periodic solutions, Martinus
Nijhoff Publ., The Hague, 1982.

7. A. Visintin, Differential models of hysteresis, Springer-Verlag, Berlin, 1994.

E-mail address: Jana.Kopfova@math.slu.cz


