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A NOTE ON RIESZ BASES
OF EIGENVECTORS FOR A CLASS OF

NONANALYTIC OPERATOR FUNCTIONS

M. HASANOV, B. ÜNALMIŞ UZUN AND N. ÇOLAKOĞLU

ABSTRACT. Riesz basis properties for a class of self-
adjoint and continuous operator functions are studied. A new
approach based on the spectral distribution function is pre-
sented.

1. Introduction. There is a hypothesis in the spectral theory of
operator functions in the following form.

If L(α) is an operator function of the class C([a, b], S(H)) such that
L(a) � 0, L(b) � 0, for all x ∈ H \ {0}, the function (L(α)x, x) has
exactly one zero in (a, b) and π(L) = {γ} ∈ (a, b), then the eigenvectors
of L(α), corresponding to eigenvalues in (a, b) form a Riesz basis for
the Hilbert space H or they are complete in H.

Here by C([a, b], S(H)) we denote the class of self-adjoint and contin-
uous operator functions defined on the interval [a, b], and π(L) is the
set of the limit spectrum, i.e.,

π(L) = {λ ∈ (a, b) | ∃xn, ‖xn‖ = 1, xn → 0 (weakly), L(λ)xn → 0}.

The spectrum σ(L), the point spectrum or the set of eigenvalues σe(L)
of L are subsets of [a, b] defined as follows: λ ∈ σ(L) if 0 ∈ σ(L(λ)) and
λ ∈ σe(L) if 0 ∈ σe(L(λ)). A nonzero vector x from the kernel ker L(λ)
for λ ∈ σe(L) is called an eigenvector of L corresponding to λ.

This problem in the finite-dimensional case for the class C1([a, b],
S(H)) the class of self-adjoint and continuously differentiable oper-
ator functions, was solved in [1]. For analytic operator functions the
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result was given in [7, Theorem 30.12], which follows from a represen-
tation of the form

L(α) = B(α)(αI − Z),

where B(α) is invertible on [a, b], σ(Z) ⊂ (a, b) and Z is similar to a self-
adjoint operator. A similar result for a class of nonanalytic operator
functions was obtained by Markus and Matsaev, see [8, 9]. Namely,
they proved the following.

Theorem 1 [9]. Let L ∈ C2([a, b], S(H)) and the conditions:

i) L(a) � 0, L(b) � 0,

ii)
∫ t0
0

w(t, L′′)/t dt < +∞ for sufficiently small t0, where w(t, L′′)
is the modulus of continuity for L′′,

iii) the operator function L satisfies the regularity condition, i.e., there
exist positive numbers δ and ε such that for every α ∈ [a, b] and x ∈ H,
‖x‖ = 1, |(L(α)x, x)| < ε ⇒ (L′(α)x, x) > δ

are satisfied. Then L admits a factorization of the form

L(α) = B(α)(αI − Z), where B(α) is a continuous and invertible
operator function on [a, b], σ(Z) ⊂ (a, b), Z is bounded and is similar
to a self-adjoint operator.

Now it follows from the representation L(α) = B(α)(αI − Z) that
the hypothesis is true for the class given in this theorem. A similar
factorization theorem under weaker conditions was given in the paper
of Azizov, Dijksma and Sukhocheva [2]. This paper also contains some
sufficient conditions on L under which the closed linear span of all
eigenvectors, corresponding to eigenvalues from [a, b], has a Riesz basis
consisting of eigenvectors of L, see also Matsaev and Spigel [10].

In this paper we study this problem and prove that the assertion
holds in a dense subspace of the space C([a, b], S(H)) if the number of
eigenvalues either at the right or at the left of {γ} is finite. We denote
this class by CF

γ ([a, b], S(H)).

2. Main results. In what follows we suppose
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Assumption 1. L(a) � 0, L(b) � 0, for all x ∈ H\{0} the function
(L(α)x, x) has exactly one zero in (a, b) and π(L) = {γ} ∈ (a, b).

Note that all operators in this paper are bounded and we say that
an operator is invertible if it is boundedly invertible. The main result
given in this paper is connected with the notion of approximate Riesz
basis in the following sense.

Definition 1. Let L ∈ C([a, b], S(H)). We say that the eigenvectors
of the operator function L form an approximate Riesz basis if there is
a sequence {Ln}∞n=1 ∈ C([a, b], S(H)) of operator functions such that
Ln ⇒ L(uniformly) as n → ∞, and the eigenvectors of Ln for all n
form a Riesz basis for H.

Recall that a collection {fα}, α ∈ I, of elements of H is called a
Riesz basis of H if there is an invertible, bounded operator G such that
{Gfα}, α ∈ I, is an orthonormal basis of H, see [4, 7].

Denote by PW ([a, b], S(H)) the class of piece-wise linear and continu-
ous operator functions [5, 6] and define the subspace PWF

γ ([a, b], S(H))
by the same way as the subspace CF

γ ([a, b], S(H)). We use mainly an
approximation method given in [5, 6]. According to this method a
continuous operator function, satisfying the Rayleigh system axioms,
see [1, 6], can be approximated by piece-wise linear ones from the same
class. Note that operator functions studied in this note form a subclass
of Rayleigh systems. For this reason we consider first the basis problem
for the piece-wise linear operator functions.

Theorem 2. Let L be an operator function from PW ([a, b], S(H))
satisfying Assumption 1. If L is differentiable at the point γ or L ∈
PWF

γ ([a, b], S(H)), then the eigenvectors corresponding to eigenvalues
in [a, b] form a Riesz basis for H.

Proof. By the conditions of the theorem L ∈ PW ([a, b], S(H)).
Consequently, there are a finite number (denoted by k) of points of
discontinuities of derivative L′(α). We use the principle of induction
and therefore at the beginning we prove this theorem for k = 1, i.e.,
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for operator-valued functions of the form

L(α) =
{

αB+ − A α ≥ 0,
αB− − A α ≤ 0

α ∈ [a, b].

Here by shifting the argument we assume that the point of discon-
tinuity of L′(α) is 0. The proof is completely based on a variational
approach. Namely, we use variational principles for the spectral dis-
tribution function N(λ, L) to prove this theorem. N(λ, L) is the num-
ber of eigenvalues of L strictly larger than λ. For pencils of the form
L(α) = αB − A, where B > 0 or B < 0 (the definite case) we use
the classical variational principles for N(λ, L). If neither B > 0 nor
B < 0 is satisfied, then it is an indefinite case and we use a variational
principle for pencils in the indefinite case.

Let us first prove the theorem under the definiteness conditions
B± � 0. Since π(L) = {γ} the spectrum σ(L) \ {γ} is discrete, see
[6]. We consider two cases: γ = 0 and γ = 0. Now suppose γ = 0 and
L ∈ PWF

γ ([a, b], S(H)). Then either N(0, L) < +∞ or there is a finite
number of negative eigenvalues. We suppose N(0, L) = n < +∞. Let
us construct a self-adjoint operator function of the form

F (α) =

{
αI − B

−1/2
+ AB

−1/2
+ α ≥ 0,

αI − B
−1/2
− AB

−1/2
− α ≤ 0.

We denote by M+(L) (M−(L)) the closed linear span of eigenvectors,
corresponding to positive (nonpositive) eigenvalues of the operator
function L(α). Let H+(U) (H−(U)) be the closed linear span of the
eigenvectors, corresponding to positive (nonpositive) eigenvalues of an
operator U . We have

σ(F ) = σ(L), σe(F ) = σe(L),

and

(1) B
1/2
+ : M+(L) −→ H+(T ); B

1/2
− : M−(L) −→ H−(S),

where T = B
−1/2
+ AB

−1/2
+ and S = B

−1/2
− AB

−1/2
− . Denoting by

L±(α) = αB± − A we obtain, see [1, 5], the following equality for the
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spectral distribution function of the operator functions L±(α) which
plays the key role in the proof of this case.

(2)

dim H+(B−1
− A) = N(0, L−)

= maxdim
{

E

∣∣∣∣ (Au, u)
(B−u, u)

> 0, u ∈ E \ {0}
}

= maxdim {E | (Au, u) > 0}
= maxdim

{
E

∣∣∣∣ (Au, u)
(B+u, u)

> 0, u ∈ E \ {0}
}

= N(0, L+) = n.

We can write

(3) H+(S) = B
1/2
− H+(B−1

− A).

It follows from (2) and (3) that dimH+(S) = n. Consequently, S
is a compact and self-adjoint operator. Thus H = H−(S) ⊕ H+(S)
and dim H⊥

− (S) = dimH+(S) = n. Because of the invertibility of the
operator B

−1/2
− we have

(4) dim
[
B

−1/2
− [H−(S)]

]⊥
= dim[H−(S)]⊥ = n.

Now, writing the formula H = M−(L) ⊕ M−(L)⊥ in the form

H =
[
B

−1/2
− [H−(S)]

]
⊕

[
B

−1/2
− [H−(S)]

]⊥
we obtain by (4) dim M−(L)⊥ = n. On the other hand, using
the condition N(0, L) = n < +∞, we have dim M+(L) = n and
M−(L) ∩ M+(L) = {0}, see [7, Theorem 32.8]. Therefore,

(5) H = M−(L)+̇M+(L).

Now it follows from (1) and (5), see [4], that the eigenvectors of the
operator-valued function L(α) form a Riesz basis of H.

If L is differentiable at the point γ, then γ = 0 and, under the
conditions of the theorem, the spectrum of operator-valued function
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L(α) in (a, b) consists of the point γ and at most countable number of
eigenvalues of finite multiplicity, see [6]. If the set is infinite, then it
converges to γ. Thus, here we have the same situation as in the case
γ = 0 and the Riesz basis property in the case follows from the above
proved case.

Now let us consider the indefinite case. It means that we do not
suppose that the conditions B± � 0 are satisfied. We have

L(α) =
{

αB+ − A α ≥ 0,
αB− − A α ≤ 0

α ∈ [a, b].

Here a < 0, b > 0 and, by Assumption 1, L(a) � 0, L(b) � 0. Recall
that we have assumed that N(0, L) < ∞.

i) if A ≤ 0, then σ+
e (L) := σe(L)∩(0, +∞) = ∅. Therefore, σe(L) =

σe(L−) and the pencil L−(α) = αB− − A satisfies Assumption 1 on
[a, b]. Thus the eigenvectors of L−(α) and consequently the eigenvectors
of L(α) form a Riesz basis of H.

ii) if A ≥ 0, then σ−
e (L) := (−∞, 0) ∩ σe(L) = ∅, σe(L) = σe(L+),

and we have the same situation as in the case i) if we consider L+

instead of L−. In this case, since eigenvectors of L (or L+) form a
basis of H, it follows from the condition N(0, L) < +∞ that γ = 0 is
an eigenvalue of infinite multiplicity.

iii) Let A be a self-adjoint operator. Define the cones

CA
− = {x | (Ax, x) < 0} and CA

+ = {x | (Ax, x) > 0}.

It remains to consider the case CA
± = ∅. Now using variational

principles in the indefinite case, we have

N(0, L) = max dim
{
E | E ⊂ CA

+

}
and

N(0, L−) = max dim
{
E | E ⊂ CA

+ ∩ C
B−
+

}
.

It follows from these formulae that

(6) N(0, L−) ≤ N(0, L) = n.
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Hence the spectrum of the linear pencil L−(α) = αB− − A is discrete
and eigenvectors form a Riesz basis of H. We can write

(7) H = M−(L−)+̇M+(L−).

On the other hand,

(8) M+(L) ∩ M−(L−) = {0}.

Now we obtain from (6), (7) and (8) that

N(0, L−) = N(0, L) = n

and
H = M−(L−)+̇M+(L) = M−(L)+̇M+(L).

The general case. We turn now to the inductive step from n − 1 to
n, so for k = n− 1 we assume that all eigenvectors of L, corresponding
to eigenvalues from [a, b], form a Riesz basis of H. Let {tk}n

1 be points
of discontinuity of the derivative of L. Setting t0 = a and tn+1 = b the
piece-wise linear pencil L (it is denoted here by Ln to indicate that L′

has n points of discontinuity) can be written in the form

Ln(α) =
n∑

k=0

[
α − tk

tk+1 − tk
(Ak+1 − Ak) + Ak

]
× χ[tk,tk+1),

where χ[tk,tk+1) is the characteristic function of the interval [tk, tk+1)
and {Ak}n+1

0 are bounded operators. By shifting the argument we may
assume that tn = 0. Despite the fact that the operator function Ln(α)
satisfies Assumption 1, in general the function Ln−1(α) (it is linearly
extended on [tn, b]) does not satisfy it. But it can be extended to [a, b],
satisfying the main assumption and having the same number of points
of discontinuities of the derivative and such that

(9) σ−
e (Ln) = σ−

e (L̃n−1), N(0, L̃n−1) = N(0, Ln).

Now we have
M−(L̃n−1) = M−(Ln)
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and by the assumption for k = n − 1

(10) H = M−(L̃n−1)+̇M+(L̃n−1).

We obtain from (9) that

dim M+(L̃n−1) = N(0, L̃n−1) = N(0, Ln) = dim M+(Ln) = n.

The needed result follows by taking into account (10) and the fact that
M−(Ln) ∩ M+(Ln) = {0}.

Now we are ready to prove an approximate basis property in the class
CF

γ ([a, b], S(H)).

Theorem 3. If an operator-valued function L satisfies Assumption 1
and L ∈ CF

γ ([a, b], S(H)), then the eigenvectors of L form an approxi-
mate Riesz basis.

Proof. Since L ∈ C([a, b], S(H)) and π(L) = {γ}, there exists a
sequence {Ln}∞n=1 such that:

a) Ln ⇒ L and Pn ⇒ P (uniformly). Here by Pn(x) and P (x) are
denoted roots of the equations (Ln(α)x, x) = 0 and (L(α)x, x) = 0,
respectively.

b) Ln ∈ PW ([a, b], S(H)), having the properties given in Assump-
tion 1, see [5, Theorem 2.2 and Lemma 3.2].

Moreover, it follows from the condition L ∈ CF
γ ([a, b], S(H)) that

Ln ∈ PWF
γ ([a, b], S(H)), i.e., N(γ, Ln) < ∞. Indeed, N(γ, L) < ∞

and ‖Pn −P‖ < ε for all ε > 0 and sufficiently large n. Then, denoting

λ1 := min
σe(L)∩[γ,b]

λ,

we have λ1 > γ and

(11) N(θ, L) = N(θ − 2ε, L),

for θ ∈ (γ, λ1) and sufficiently small ε. On the other hand, using the
following formula for the spectral distribution function, see [1],

N(θ, L) = max dim
{

E | P (x) > θ, x ∈ E \ {0}
}



A NOTE ON RIESZ BASES OF EIGENVECTORS 495

and choosing ε from the inequality ‖Pn − P‖ < ε, we obtain from (11)
that

N(θ − ε, Ln) = N(θ, L) = N(γ, L) < +∞.

It means that N(γ, Ln) < ∞. Consequently, the sequence {Ln}∞n=1 (we
can choose n sufficiently large) satisfies the conditions of Theorem 2 and
the needed results follow immediately from Theorem 2.

Remark. The completeness of the eigenvectors in Theorem 2 in the
definite case can be proved by using an indefinite scalar product [3].
Here we illustrate it for a model problem of the form

L(α) =
{

αB+ − A α ≥ 0,
αB− − A α ≤ 0,

α ∈ [a, b].

0 = f ⊥ M := span {M±(L)} ⇔ f ⊥ M+(L) and f ⊥ M−(L). It is
clear that 0 = f ⊥ M−(L) implies B

−1/2
− f ∈ H+(S) and f ∈ R(A).

Define [x, y] := (A−1x, y), kerA = 0. We obtain

(12) [f, f ] > 0.

On the other hand, using the condition 0 = f ⊥ M+(L), we have
B

−1/2
+ f ∈ H⊥

+ (T ) = H−(T ). Finally, since f ∈ R(A) it is easy to check
that

(13) [f, f ] = (A−1f, f) < 0.

The inequality (13) contradicts the inequality (12). Consequently,
f = 0.
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