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REGULAR COMPONENTS OF MODULI SPACES
OF STABLE MAPS AND K-GONAL CURVES

E. BALLICO

ABSTRACT. Here we prove for certain integers g, rd and
k the existence of a generically smooth irreducible component
of the moduli space of stable maps M−

g (P1 ×Pr , (k, d)) with
the expected dimension. As a byproduct, we obtain the
existence of a generically smooth component of dimension
ρ(g, r, d) := g − (r + 1)(g + r − d) for the Brill-Noether locus
W r

d (C) of a general k-gonal curve C of genus g.

1. The statements. For any complex projective variety Y and
any class β ∈ H2(Y,Z), one considers the moduli space M−

g (Y, β) of
all stable maps f : C → Y , with C a reduced connected nodal curve
of arithmetic genus g and f∗([C]) = β (see [7] for the construction of
these moduli spaces). The expected dimension of the algebraic stack
M−

g (Y, β) is dim(Y )(1 − g) + 3g − 3 − b · ωY . For all integers g, r, d,
set ρ(g, r, d) := g − (r + 1)(g + r − d) = (r + 1)d − rg − r(r + 1) (the
so-called Brill-Noether number). As in [6] we are interested in the case
in which Y = P1 × Pr, and we look for irreducible components, V ,
of M−

g (P1 × Pr, β) which are good, i.e., such that V is generically
smooth and with the expected dimension. When Y = P1 × Pr

the class β is given by a pair (k, d) of non-negative integers and in
this case the dimension of a good component of M−

g (P1 × Pr, β) is
ρ(g, r, d) + 3g− 3 + 2k− g− 2. The main aim of this paper is the proof
of the following result.

Theorem 1.1. Fix positive integers g, r, d and k such that (g+2)/2 ≥
k ≥ r + 3 ≥ 6, ρ(g, r, d) ≥ 0, and g ≤ (r + 1)�d/r� − r − 3. Then there
exists a good component of M−

g (P1 × Pr, (k, d)).
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As in [1, 2, 6], we will use in an essential way the smoothing
results for reducible nodal curves in Pr proved in [8, 11]. The case
ρ(g, r, d) ≥ 0 of Theorem 1.1 is related to [4, Corollary 2.3.2]. To make
explicit this connection, in Section 3 we will prove the following result.

Theorem 1.2. Fix positive integers g, r, d and k with k ≥ 3,
(g + 2)/2 > k ≥ r + 2 ≥ 5, d ≥ r(r + 3) and ρ(g, r, d) ≥ 0. Let C
be the general k-gonal curve of genus g. Let R ∈ Pick(C) be the k-
gonal pencil. Then there exists an irreducible and generically smooth
component, V , of W r

d (C) with dim(V ) = ρ(g, r, d) and such that for a
general L ∈ V , L is very ample, h0(X, L) = r + 1, h0(X, L ⊗ R∗) = 0.

Except for the very ampleness of a general L ∈ V and the generic
smoothness of V Theorem 1.2 is a particular case of [4, Corollary 2.3.2].
Nevertheless, we believe that Theorem 1.2 has some interest because
the methods of [3, 4] seem to be adapted to dimensional computations
but not to tangent space computations, and hence it seems that those
methods cannot be used to check the generic smoothness of some
components of a Brill-Noether scheme W r

d (C).

2. Proof of Theorem 1.1. For any locally complete intersection
subscheme T ⊂ Pr, let NT be its normal bundle. For any locally
complete intersection subscheme T ⊂ P1×Pr, let NT/(1,r) be its normal
bundle. A finite subset S of Pr is said to be in linearly general position
if, for every subset A of S, the linear span, 〈A〉, of A has dimension
min{r, card (A) − 1}. M(g; k) will denote the set of all smooth k-
gonal curves of genus g and M(g; k)− its closure in M−

g . Hence if
2 ≤ k ≤ (g + 2)/2, then M(g; k) and M(g; k)− are irreducible and of
dimension 2g + 2k − 5. We need the following well-known lemma [10].

Lemma 2.1. Let D ⊂ Pr be a rational normal curve. Then ND is
the direct sum of r − 1 line bundles of degree r + 2.

We recall that for any S ⊂ Pr with card (S) = r+3 and S in linearly
general position there is a unique rational normal curve D ⊂ Pr with
S ⊂ D.
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Lemma 2.2. Fix integers r, t with r ≥ 3 and 1 ≤ t ≤ r + 3.
Let C ⊂ Pr be a locally complete intersection curve and S ⊂ Creg

with card (S) = t. Assume h1(C, NC) = 0, S in linearly general
position and that the general rational normal curve D ⊂ Pr with
S ⊂ D is transversal to C. Set X := C ∪ D. Then pa(X) =
pa(C) + t − 1, deg (X) = deg (C) + r and h1(X, NX) = 0. If C is
smooth and connected and h1(C, NC(−S)) = 0, then the nodal curve
X is smoothable inside Pr. Furthermore, for a general S′ ⊂ Creg with
card (S′) = r + 3, we have h1(X, NX(−S′)) = 0.

Proof. The case t ≤ r+2 was proved in [1, Lemma I.2], for r = 3 and
[2, Lemma 2.3] for t = r + 2 and iteration of Lemma 2.2 for t ≤ r + 1,
for r34. By [8, Corollary 3.2, Theorem 4.1] or [11, pages 30 31], the
restricted normal bundle NX |C (respectively NX |D) is obtained from
NC (respectively ND) making t positive elementary transformations,
one for each point of S; for each P ∈ S the associated positive
elementary transformation is uniquely determined by the tangent line
to D (respectively to C) at P , or, seen NX |C (respectively NX |D)
as a quotient of TPr|C (respectively TPr|D), as the quotient by the
plane spanned by the two tangent lines to C and to D at P . Hence
NC (respectively ND) is a subsheaf of NX |C (respectively NX |C) and
the associated quotient sheaf is a skyscraper sheaf supported by S and
with length card (S). Thus we have h1(C, NX |C) = 0 and NX |D is the
direct sum of line bundles of degree at least r +2 (Lemma 2.1). Hence,
h1(D, NX |D) = 0 and the restriction map H0(D, NX |D) → NX |S
is surjective; here we use t ≤ r + 3. From the Mayer-Vietoris exact
sequence

(1) 0 −→ NX −→ NX |C ⊕ NX |D −→ NX |S −→ 0

we obtain h1(X, NX) = 0. Now we check the last part of Lemma 2.2.
By semi-continuity if h1(C, NC(−S)) = 0, then h1(C, NC(−S′)) = 0
for a general S′. By twisting the Mayer-Vietoris exact sequence (1)
with OX(−S′) we obtain h1(X, NX(−S′)) = 0. The smoothability of
X follows from [8, Theorem 4.1].

The case t = r+3 of Lemma 2.2 could be done for r = 3 using the case
k = 3 of [1, Lemma I.2]. To apply Lemma 2.2 we need to find curves,
C, with h1(C, NC(−S)) = 0. We will use the following observation.
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Remark 2.3. Fix integers r, d with d ≥ r ≥ 3. Let C ⊂ Pr be
the general smooth rational curve of degree d. Since C ∼= P1, NC

is the direct sum of r − 1 line bundles, say of degree a1, . . . , ar−1

with a1 ≥ · · · ≥ ar−1. Since deg (NC) = (r + 1)d − 2, we have
S12i2r−1ai = (r + 1)d − 2. By [10] the vector bundle NC is rigid,
i.e., a1 − a2

r−11. Hence ar−1 = [((r + 1)d− 2)/(r− 1)]3r + 2. Hence for
any integer t with 12t2r + 3 and any subset S ⊂ C with card (S) = t
we have h1(C, NC(−S)) = 0.

The assertion concerning ND/(1,r) in the next lemma is the key tool
for our proof of Theorem 1.1.

Lemma 2.4. Fix integers t and r with r ≥ 3 and 1 ≤ t ≤ r + 3.
Fix P ∈ P1 and set M := {P} × Pr. Let Y ⊂ P1 × Pr be a nodal
curve intersecting transversally M and S ⊆ Y ∩ M with card (S) = t
and such that S is in linearly general position as a subset of M ∼= Pr.
Assume that the general rational normal curve D ⊂ M with S ⊆ D has
Y ∩ D = S. Fix any such D, and set X = Y ∪ D. Hence X is a nodal
curve, pa(X) = pa(Y ) + t− 1 and if Y has type (k, d), then X has type
(k, d+r). Assume the existence of S′⊆ S with card (S′) = min{t, r+2}
and such that for the datum (S′, D) the tangent directions to Y at the
points of S are general (as lines through the origin in the corresponding
tangent spaces to P1 ×Pr). Then NX/(1,r)|D is the direct sum of r− 1
line bundles of degree r + 2 and one line bundle of degree t.

Proof. X has type (k, d + r) because D has type (0, r). Since Y is
transversal to M , S ⊂ Yreg and X is nodal. Hence pa(X) = pa(Y )+t−1.
By Lemma 2.1 ND/(1,r) is the direct sum of r−1 line bundles of degree
r+2 and a trivial line bundle. By [8, Corollary 3.2] or [11, pages 30 31],
NX/(1,r)|D is obtained from ND/(1,r) making t positive elementary
transformations. At each P ∈ S the corresponding positive elementary
transformation is uniquely determined by the tangent direction to Y at
P and if this tangent direction (for fixed S and D) is general, then the
positive elementary transformation is general and hence it increases
by one the lower degree rank one factor of ND/(1,r). If t ≤ r + 2,
then by assumption all the positive elementary transformations are
independently general and hence we conclude. If t = r + 3, at least
this is true for a subset S′ of S with card (S′) = r + 2. Call N the
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subsheaf of NX/(1,r)|D obtained making only the positive elementary
transformations associated to S′. By the first part N is the direct sum
of r line bundles of degree r + 2. Since NX/(1,r)|D is obtained from N
making one positive elementary transformation, we conclude.

Remark 2.5. For fixed D, S and S′ the assumption on the tan-
gent directions to Y at the points of S′ given in Lemma 2.4 is sat-
isfied by a sufficiently near curve Y ′ ⊂ P1 × Pr with S ⊆ Y ′ if
h1(Y, NY/(1,r)(−2S′)) = 0 (see [9, 1.5], for a similar situation).

Remark 2.6. Fix P ∈ P1 and set M := {P}′Pr. Fix S ⊂ M with
card (S) = r + 3 and S in linearly general position. Fix S′ ⊂ S with
card (S′) = r + 2. Let D ⊂ M be the unique rational normal curve
containing S. Let Y = Y1 ∪ · · · ∪Yr+2 ⊂ P1 ×Pr be the nodal curve of
type (r+1, r(r+2)) obtained in the following way. Order the points Pi,
1 ≤ i ≤ r +3, of S with Pr+3 /∈ S′. Let Y1 be the general curve of type
(1, r) containing P1 and Pr+3. For 2 ≤ i ≤ r + 1, let Yi be the general
curve of type (1, r) containing Pi and intersecting Yi−1. Thus Yi

∼= P 1

for every i, Y is nodal and connected, pa(Y ) = 0, deg (Y ) = r(r + 2),
Y is transversal to M and S ⊂ Y . For the fixed set S′ and the fixed
curve D it is easy to check that the tangent directions to Y along the
points of S′ are general; indeed, given r + 2 general tangent directions
Li, 1 ≤ i ≤ r + 2, in the tangent space of P1 × Pr at Pi we may find
Y with that tangent directions. It is also easy to check the condition
h1(Y, NY/(1,r)(−2S′)) = 0 considered in Remark 2.5.

Proof of Theorem 1.1. Set c := [g/(r+1)] and b := g−c(r+1). Hence
0 ≤ b ≤ r. Set m := d − cr − b. First assume b > 0. Let C0 ⊂ Pr be
a general smooth rational curve of degree μ. Take a smooth rational
curve D ⊂ Pr with deg (C) = b and intersecting quasi-transversally
C0 at exactly b + 1 points spanning a b-dimensional linear space. By
Remark 2.3 we may apply Lemma 2.2 to the pair (C0, D). Let Y be
a sufficiently general smoothing of C0 ∪ D. Take a smooth rational
normal curve D′ ⊂ Pr intersecting Y at exactly r + 2 general points
and quasi-transversally. We may apply Lemma 2.2 to the pair (Y, D′).
If c = 1, we stop. If c > 1 we continue c − 1 times, each time adding a
rational normal curve D′′ intersecting the previous curve Y ′′ at exactly
r + 2 general points and then smoothing Y ′′ ∪ D′′. By Lemma 2.2 we
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conclude. If b = 0 we omit the first step; we start with C0 and just
add c rational normal curves, each of them intersecting the previous
curve exactly at r + 2 points and quasi-transversally. In this way we
cover exactly the set of triples (g, r, d) considered in the statement of
Theorem 1.1. Now we work with a smooth curve W ⊂ P1 × Pr and
we fix r + 2 points of W which are in the same fiber of the degree k
pencil. We assume that the projection of P1 × Pr onto the second
factor maps W isomorphically onto a curve Y . We fix a general subset,
S, of W with card (S) = r + 2 and call S′ its image in Pr. We may
assume that S′ is in linearly general position. Let D ⊂ Pr be the
unique rational normal curve containing S′. Hence S′ is a degree r + 2
effective divisor on D ∼= P1. We see D as a curve, A, of type (0, r) in
P1 × Pr. We apply Lemma 2.4 to A. For general W and S′ we may
assume that D intersects quasi-transversally Y and that Y ∩ D = S′.
Set X := W ∪ A. By construction X is a nodal curve. Now we repeat
the proof of Lemma 2.2 using P1 × Pr as the ambient variety instead
of Pr and using Lemma 2.4 instead of Lemma 2.2. We use Remark 2.6
and (if necessary) the union of a curve given by Remark 2.6 of at
most r − 1 lines to start the inductive construction. As in the first
part of the proof, in each inductive step we preserve the condition
h1(Y, NY/(1,r)(−2S′)) = 0.

It is the use of Remark 2.6 to start the inductive proof of Theorem 1.1
which gave the restriction g ≤ (r + 1)�d/r� − r − 3 instead of, say,
g ≤ (r + 1)�d/r� − 1.

Remark 2.7. We claim that at least for g � r we may assume that the
line bundle M ∈ Picd(X) corresponding to the general element of the
good component, V , of M−

g (P1×Pr, (k, d)) constructed in the proof of
Theorem 1.1 has h0(X, M) = r +1 if d2g + r and h0(X, M) = d+1− g
(i.e., h1(X, M) = 0) if d3g+r. We shall use the following observation to
check the claim when at the last step we added a rational normal curve
intersecting the previous curve at t2r points or when d is not divisible by
r. Our component V has in the boundary a reducible element in which
after the first r + 2 rational normal curves we insert another rational
normal curve, E, intersecting the previous curve at b+1 points. We add
also d−[d/r]r lines, say Di, 1 ≤ i ≤ d−�d/r�r. Then we add [d/r]−r−3
rational normal curves intersecting the previous configuration at r + 3
points in such a way that at least r − b of them intersects E and every
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Di intersects one of these curves. The reducible nodal curve T obtained
in this way has h0(T,OT (1)) = r + 1. Hence, by semi-continuity, we
have the claim for the general X ∈ V with V with the numerical
invariants of T . For g � r this condition will not introduce any further
restriction on the numerical invariants covered by Theorem 1.1. The
line bundle R ∈ Pick(X) corresponding to the general element of the
good component of M−

g (P1 × Pr, (k, d)) constructed in the proof of
Theorem 1.1 has h0(X, R) = 2. The case b = 0 is similar and hence
omitted.

3. The general k-gonal curve: Proof of Theorem 1.2. In this
section we consider the scheme-theoretic structure of the irreducible
components of the Brill-Noether locus W r

d (C), where C is a general
k-gonal curve of genus g. The aim is the proof of Theorem 1.2.

Proof of Theorem 1.2. Notice that ρ(g+r+1, r, d+r) = ρ(g, r, d). We
make the inductive construction made in the proof of Theorem 1.1 with
respect to the integer t = r + 2, say starting with a smooth curve Y ′′

and adding a smooth rational normal curve D′′ intersecting Y ′′ quasi-
transversally and at exactly r + 2 points. We assume that the unique
irreducible component, A, of Hilb (Pr) containing Y ′′ contains curves
with general moduli. By [2, first part of the proof of 3.1], the unique
irreducible component, B, of Hilb (Pr) containing Y ′′ ∪ D′′ contains
curves with general moduli. Set q := pa(Y ) and y := deg (Y ′′). We
assume that Y ′′ is a general k-gonal curve of genus q. Hence, as
in the proof of Theorem 1.1, i.e., as in [6, proof of 3.1], Y ′′ ∪ D′′

is a generalized covering of degree k and in particular it is a flat
limit of a family of smooth k-gonal curves. The proof of the first
part of [2, 3.1], gives that the two rational maps α : A → M−

q and
β : Y → M−

q+r, defined respectively in a neighborhood of Y ′′ and in
a neighborhood of Y ′′ ∪ D′′, have the same dimension near Y ′′ and
near Y ′′ ∪ D′′; by the inductive assumption on Y ′′ this dimension is
ρ(q, y, r) + r2 + 2r = ρ(q + r + 1, y + r, r) + r2 + 2r. Since Hilb (Pr)
is smooth (and hence locally Cohen-Macaulay) at Y ′′ ∪ D′′, then β is
flat (and in particular open) near Y ′′ ∪ D′′. If Aut (Y ′′) is trivial, it
is easy to obtain D′′ and Y ′′ ∩ D′′ ⊂ D′′ such that Aut (Y ′′ ∪ D′′) is
trivial. Thus Y ′′∪D′′ is a smooth point of M−

q+r+1. Call B′ the unique
irreducible component containing Y ′′ ∪ D′′, when we see Y ′′ ∪ D′′ as
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a point of M−
q+r+1(P

1 × Pr, (k, y + r)) using the construction of the
proof of 1.1, i.e., the construction in [6], i.e., taking D′′ ∩ Y ′′ in the
same fiber of the degree k pencil Y ′′ → P1 and D′′ of type (0, r),
i.e., D′′ contained in a slice M = {P} × Pr of P1 × Pr. We could
easily obtain Aut (Y ′′) trivial for q ≥ 3; if q ≤ 2 we use Y ′′ ∩ D′′ to
obtain the triviality of Aut (Y ′′ ∪ D′′); alternatively, if Aut (Y ′′ ∪ D′′)
is not trivial, we use a finite covering of M−

q+r+1 which is smooth near
the counter images of the point representing Y ′′ ∪ D′′. Hence, by the
openness of β near Y ′′ ∪ D′′, B contains the general k-gonal curve,
i.e., the induced rational map γ : B′ → M(q + r + 1; k)− is dominant.
Hence, for a general C ∈ M(q + r + 1; k) the fiber γ−1(C) is not
empty and of dimension ρ(q + r + 1, r, y + r) = ρ(q + r + 1, r, y + 1)
and it is an irreducible component of Gr

q+r+1(C). In characteristic
zero γ−1(C) is generically smooth because B′ is generically smooth
[5, Corollary 16.23]. Hence we obtain Theorem 1.2 for the invariants
g′ := q + r + 1 and d′ := y + r having it for the invariants q and
y. We may obtain the same for q + t − 1 with 1 ≤ t ≤ r + 1,
taking card (Y ′′ ∩ D′′) = t. In the cases t = r + 1 and t = r + 2 if
h0(Y ′′,OY ′′(1)) = r+1 we obtain h0(Y ′′∪D′′,OY ′′∪D′′(1)) = r+1 and
then by semi-continuity h0(Y,OY (1)) = r + 1 for a general smoothing,
Y , of Y ′′ ∪ D′′. If t ≤ r even if h0(Y,OY (1)) = r + 1 we could have
h0(Y ′′∪D′′,OY ′′∪D′′(1)) > r+1. This gives no problem for Gr

q+r+1(C)
but does not give (a priori) a result for W r

q+r+1(C). However, we are
forced at the final step to be in this situation only if d > g + r and in
this case the result is obvious taking non-special divisors. We have to
start this inductive procedure. Using Remark 2.6 for doing that we are
forced to assume d ≥ r(r + 3) (or a similar very unpleasant bound).

We will outline another proof of Theorem 1.2 which uses heavily [6].
The following result was proved in the case ρ(g, r, d) < 0 in [6] (see
[6, Proposition 3.1]); the same proof works in the case ρ(g, r, d) ≥ 0;
just note that we use the word “injective” instead of “surjective” for
the Petri maps because in [11, 3.3], it is assumed for C and proved
for Y that the Petri map has maximal rank and for ρ30 (respectively
r < 0) the Petri map has maximal rank if and only if it is injective
(respectively surjective).
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Lemma 3.1. Fix non-negative integers g, r, d and k with d ≥
r ≥ 3, k ≥ r + 2 and ρ(g, r, d) ≥ 0. Assume the existence of a
smooth non-degenerate curve C ⊂ Pr with deg (C) = d, pa(C) = g,
h1(C, NC) = 0, h0(C,OC(1)) = r + 1 and such that the Petri map
H0(C,OC(1)) ⊗ H0(C, KC(−1)) → H0(C, KC) is injective. Assume
the existence of a base-point free and simple R ∈ Pick(C) such that
h0(C,OC(1)⊗R∗) = 0 and R satisfies condition (5) of [6]. Then there
exists a smooth non-degenerate curve Y ⊂ Pr with deg (Y ) = d + r,
pa(Y ) = g + r + 1, h1(Y, NY ) = 0, h0(Y,OY (1)) = r + 1 and such
that the Petri map H0(Y,OY (1)) ⊗ H0(Y, KY (−1)) → H0(C, KC)
is injective and a base-point free and simple A ∈ Pick(Y ) such that
h0(Y,OY (1) ⊗ A∗) = 0 and A satisfies condition (5) of [6].

In a very similar way (it corresponds to the case 1 ≤ t ≤ r + 1 of
Lemma 2.2, while Lemma 3.1 corresponds to the case t = r + 2) we
have the following lemma.

Lemma 3.2. Fix non-negative integers g, r, d, t and k with 1 ≤ t ≤
r + 1, d ≥ r ≥ 3, k ≥ r + 2 and ρ(g, r, d) ≥ 0. Assume the existence of
a smooth non-degenerate curve C ⊂ Pr with deg (C) = d, pa(C) = g,
h1(C, NC) = 0, h0(C,OC(1)) = r + 1 and such that the Petri map
H0(C,OC(1)) ⊗ H0(C, KC(−1)) → H0(C, KC) is injective. Assume
the existence of a base-point free and simple R ∈ Pick(C) such that
h0(C,OC(1)⊗R∗) = 0 and R satisfies condition (5) of [6]. Then there
exists a smooth non-degenerate curve Y ⊂ Pr with deg (Y ) = d + r,
pa(Y ) = g + t − 1, h1(Y, NY ) = 0 and such that the Petri map
H0(Y,OY (1))⊗H0(Y, KY (−1)) → H0(C, KC) is injective and a base-
point free and simple A ∈ Pick(Y ) such that h0(Y,OY (1) ⊗ A∗) = 0
and A satisfies condition (5) of [6]. If t = r + 1, we may find Y with
h0(Y,OY (1)) = r + 1.

We stress that to apply Proposition 3.3 of [11] on the Petri map we
need complete linear systems. Hence to apply Lemmas 3.1 and 3.2 and
copy the proof of [6, Theorem 2], we need to start the induction with
several linearly normal curves in Pr. To apply Remark 2.5 we need to
take an integer q0 � r and for each integer q with 0 ≤ q ≤ q0 take
the general linearly normal non-special curve of genus q and degree q+r
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in Pr. It seems that this stupid problem gives an awful bound for
Theorem 1.2, say g � r.

Acknowledgments. We want to thank the referee for several
important remarks.
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