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ASYMPTOTIC BEHAVIOR OF
PERIODIC COMPETITION DIFFUSION SYSTEM

YANBIN TANG AND LI ZHOU

ABSTRACT. In this paper, we consider the existence and
attraction of positive periodic solution of a competition dif-
fusion system. We first construct a pair of upper and lower
solutions, then use the periodic comparison existence theorem
to get a pair of T-periodic solutions (u, v) and (u, v). Finally
we give a sufficient condition of (u, v) = (u, v) to answer the
open question described by Ahmad and Lazer.

1. Introduction. The periodic competition diffusion system with
no-flux boundary conditions
(1.1)

ut = Δu+ u[a(x, t) − b(x, t)u− c(x, t)v],

vt = Δv + v[d(x, t) − e(x, t)u− f(x, t)v],
(x, t) ∈ Ω × [0,+∞),

∂u

∂n
=
∂v

∂n
= 0, (x, t) ∈ ∂Ω × [0,+∞),

models the two species competition diffusion phenomena in a periodic
changing environment, the coefficients a(x, t), b(x, t), . . . , f(x, t) are
sufficiently smooth functions defined on a cylinder Ω×[0,+∞), where Ω
is a smooth bounded domain in Rn. We assume that a(x, t), . . . , f(x, t)
are strictly positive and periodic in the time variable t with period
T > 0, and set

aL = min
Ω×[0,T ]

a(x, t), aM = max
Ω×[0,T ]

a(x, t), . . . ,

fL = min
Ω×[0,T ]

f(x, t), fM = max
Ω×[0,T ]

f(x, t).
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Recently there have been investigations [1 8] concerned with the peri-
odic boundary value problem (1.1) with the periodic conditions

(1.2)

u(x, t+ T ) = u(x, t), v(x, t+ T ) = v(x, t), (x, t) ∈ Ω × (0,+∞);

and the initial boundary value problem (1.1) with the initial conditions

(1.3) u(x, 0) = ϕ(x), v(x, 0) = ψ(x), x ∈ Ω.

If the coefficients a, b, . . . , f are independent of the space variable x,
Tineo and Rivero [7] used an iterative monotone scheme to prove
that there exists a spatially homogeneous positive periodic solution
of the problem (1.1) (1.2), and this solution is a global attractor of the
problem (1.1), (1.3) for the nonnegative nontrivial initial data.

Ahmad and Lazer [1] proved that the conditions

(1.4) aL >
cMdM

fL
, dL >

eMaM

bL

imply the existence of the positive periodic solutions (u, v) and (u, v) of
the problem (1.1) (1.2), and the sector [u, u]×[v, v] is a global attractor
of the problem (1.1), (1.3) for any nonnegative nontrivial initial data.

In this paper, using the mixed quasimonotone properties in this
system, we first construct a pair of upper and lower solutions, then
use the periodic comparison existence theorem developed in [1, 6, 8]
to get a pair of T -periodic solutions (u, v) and (u, v). Finally we note
the relation between the stability of equilibrium for a dynamic system
and the criterion of negative definite quadric form to give a sufficient
condition of (u, v) = (u, v) to answer the open question described by
Ahmad and Lazer in [1].

2. Preliminaries. Denote

f(u, v) = u[a(x, t) − b(x, t)u− c(x, t)v],
g(u, v) = v[d(x, t) − e(x, t)u− f(x, t)v].

Assume that (1.4) holds so that f(u, v) and g(u, v) have the rela-
tion shown in Figure 1. In that case it is possible to choose a∗ ∈
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[aL, aM ], b∗ ∈ [bL, bM ], . . . , f∗ ∈ [fL, fM ], so that the following inequal-
ity holds:

(2.1)
c∗

f∗
<
a∗

d∗
<
b∗

e∗
.

Next, (2.1) is considered as the basic assumption in this paper. The
intersection point (u∗, v∗) of the system

(2.2)
f∗(u, v) = u[a∗ − b∗u− c∗v] = 0,
g∗(u, v) = v[d∗ − e∗u− f∗v] = 0,

which has positive components is determined by

(2.3)
u∗ = (a∗f∗ − c∗d∗)/(b∗f∗ − c∗e∗),
v∗ = (b∗d∗ − a∗e∗)/(b∗f∗ − c∗e∗).

Remark. The condition (2.1) implies that (u∗, v∗) is a stable equilib-
rium of the following system

du

dt
= f∗(u, v),

dv

dt
= g∗(u, v).

In the (u, v)− plane, we consider the following lines

L1 : aM − bLu− cLv = 0; L2 : dL − eMu− fMv = 0;
L3 : aL − bMu− cMv = 0; L4 : dM − eLu− fLv = 0.

R(u∗, v∗) is the intersection point of L1 and L2, and Q(u∗, v∗) is that
of L3 and L4. Denote

A

(
aM

bL
, 0

)
, B

(
dL

eM
, 0

)
, C

(
0,
aL

cM

)
, D

(
0,
dM

fL

)

in Figure 1.
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FIGURE 1. Graph of the functions f(u, v) and g(u, v).

3. Main result.

Theorem 3.1. Suppose that (1.4) holds so that it is possible to
choose a∗, . . . , f∗ satisfying (2.1), and that aM −aL, bM −bL, . . . , fM −
fL are sufficiently small. Then the periodic competition diffusion sys-
tem (1.1) (1.2) has a unique stable positive periodic solution. Moreover,
this positive periodic solution is a global attractor to the problem (1.1),
(1.3) with nonnegative nontrivial initial functions.

Proof. Choose a∗ ∈ [aL, aM ], b∗ ∈ [bL, bM ], . . . , f∗ ∈ [fL, fM ], so
that (2.1) holds. We first construct the upper and lower solutions.
From Figure 1, if (u, v) is in the interior of the triangle ΔRAB,
then f(u, v) < 0, g(u, v) > 0. Similarly, if (u, v) is in the interior
of the triangle ΔQCD, then f(u, v) > 0, g(u, v) < 0. We choose
P1(u1, v1), P2(u2, v2) in ΔRAB such that P1 is close to the point B
and P2 close to R; however, u1 ≥ u2, v1 ≤ v2. Set

ũ(t) = u1 + (u2 − u1)(1 − e−εt), v̂(t) = v1 + (v2 − v1)(1 − e−εt).

It is obvious that (ũ(t), v̂(t)) is on the line P1P2 as t ∈ [0,+∞) and



PERIODIC COMPETITION DIFFUSION SYSTEM 1073

(ũ(0), v̂(0)) = (u1, v1), limt→+∞(ũ(t), v̂(t)) = (u2, v2). Because the line
P1P2 is included strictly in the interior of ΔRAB, there is a constant
δ > 0 such that

(3.1) f(ũ(t), v̂(t)) ≤ −δ < 0, g(ũ(t), v̂(t)) ≥ δ > 0.

Noting that

(3.2)
ũt − Δũ = ε(u2 − u1)e−εt ≥ −ε(u1 − u2),
v̂t − Δv̂ = ε(v2 − v1)e−εt ≤ ε(v2 − v1).

Choosing

ε ≤ min
{

δ

u1 − u2
,

δ

v2 − v1

}
,

then we have

(3.3) ũt − Δũ ≥ f(ũ, v̂), v̂t − Δv̂ ≤ g(ũ, v̂).

Similarly, we set

(3.4)
û(t) = u3 + (u4 − u3)(1 − e−ε1t),
ṽ(t) = v3 + (v4 − v3)(1 − e−ε1t),

where P3(u3, v3), P4(u4, v4) in the interior of ΔQCD and P3, P4 are
close to the points C and Q, respectively. It is obvious that u3 ≥
u4, v3 ≤ v4. Therefore, the differential inequalities

(3.5) ût − Δû ≤ f(û, ṽ), ṽt − Δṽ ≥ g(û, ṽ),

hold for suitable ε1 > 0.

According to the definition in [6], the pair (ũ, ṽ) and (û, v̂) becomes
a suitable T-upper and lower solutions for the periodic boundary
value problem (1.1) (1.2), therefore, there are two periodic solutions
(u(x, t), v(x, t)) and (u(x, t), v(x, t)) to the problem (1.1) (1.2) by the
monotone periodic convergence theorem developed in [1, 6, 8], and

(3.6)

û(t) ≤ u(x, t) ≤ u(x, t) ≤ ũ(t), v̂(t) ≤ v(x, t) ≤ v(x, t) ≤ ṽ(t).
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Using these upper and lower solutions we can control the asymptotic
behavior of periodic solutions. By a simple argument, the expressions
of ũ(t), û(t), ṽ(t), v̂(t) imply that

(3.7) u4 ≤ u(x, t) ≤ u(x, t) ≤ u2, v2 ≤ v(x, t) ≤ v(x, t) ≤ v4.

Next we may choose u2 to be close to the u coordinate of R as we want;
then we can prove that u(x, t)=u(x, t), v(x, t)=v(x, t). By the direct
calculations and the mean-value theorem, we get

(3.8)
(u− u)t − Δ(u− u) = f(u, v) − f(u, v)

= fu(ξ, v)(u− u) − fv(u, η)(v − v),

(3.9)
(v − v)t − Δ(v − v) = g(u, v) − g(u, v)

= −gu(ξ1, v)(u− u) + gv(u, η1)(v − v),

where

(3.10) u < ξ, ξ1 < u, v < η, η1 < v.

From the periodicity of (u(x, t), v(x, t)) and (u(x, t), v(x, t)) in t, we
have
(3.11)∫ T

0

∫
Ω

[|∇(u− u)|2 + |∇(v − v)|2] dx dt

=
∫ T

0

∫
Ω

[fu(ξ, v)(u− u)2 − (fv(u, η) + gu(ξ1, v))(u− u)(v − v)

+ gv(u, η1)(v − v)2] dx dt.

Note that the integrand of the right-hand side is a quadratic form whose
corresponding matrix is[

fu −(fv + gu)/2
−(fv + gu)/2 gv

]
.

If this matrix is evaluated at (u, v) = (u∗, v∗), it follows this matrix is
negative definite. In fact

f∗u(u∗, v∗) = −b∗u∗, f∗v (u∗, v∗) = −c∗u∗, g∗u(u∗, v∗) = −e∗v∗,
g∗v(u∗, v∗) = −f∗v∗,

(f∗ug
∗
v − f∗v g

∗
u) |(u∗,v∗) = (b∗f∗ − c∗e∗)u∗v∗,
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the condition (2.1) implies that

f∗u(u∗, v∗) = −b∗u∗ < 0, g∗v(u∗, v∗) = −f∗v∗ < 0,
(f∗ug

∗
v − f∗v g

∗
u) |(u∗,v∗) = (b∗f∗− c∗e∗)u∗v∗ > 0.

By means of the continuity of the function fu(u, v), fv(u, v), gu(u, v),
gv(u, v) and the Jacobian determinant J(u, v) = fugv − fvgu , there
certainly exists a sufficient small neighborhood K of the point (u∗, v∗)
such that for any

(u, v) and (ui, vi) ∈ K for i = 1, 2, 3,
fu(u, v) < 0, gv(u, v) < 0,

fu(u, v)gv(u1, v1) − fv(u2, v2)gu(u3, v3) > 0.

Now, according to the conditions that aM −aL, bM −bL, . . . , fM −fL

are sufficiently small, we have (u2, v2) ≈ (u∗, v∗) and (u4, v4) ≈ (u∗, v∗);
then (3.7) and (3.10) imply that

(ξ, v), (u, η), (ξ1, v), (u, η1) ∈ K,

so we have

fu(ξ, v) < 0, gv(u, η1) < 0,
fu(ξ, v)gv(u, η1) − fv(u, η) + gu(ξ1, v) > 0.

Therefore, the integrand in the right-hand side of (3.11) is a negative
quadratic form by the Hurwitz criterion. We know that the left-
hand side of (3.11) is nonnegative, so we have, u(x, t) = u(x, t),
v(x, t) = v(x, t). That is, (u, v) = (u, v) is the unique positive periodic
solution of the problem (1.1) (1.2).

Finally, we discuss the attraction of the periodic solution in relation
to the nonnegative solutions of (1.1), (1.3). By the same argument
as that in [1, Theorem 4.1, p. 279], details are omitted. If (u, v) is a
solution of the initial boundary value problem (1.1), (1.3), then given
ε > 0 there exists t1 = t1(ε) > 0 such that if t ≥ t1,

u(x, t) − ε < u(x, t) < u(x, t) + ε; v(x, t) − ε < v(x, t) < v(x, t) + ε
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for all x ∈ Ω, where ϕ, ψ ∈ C1(Ω), ϕ(x) ≥ 0, ψ(x) ≥ 0, ϕ(x) �≡ 0,
ψ(x) �≡ 0 and

∂ϕ

∂n
|∂Ω =

∂ψ

∂n
|∂Ω = 0.

According to the previous step, we have

u(x, t)− ε < u(x, t) < u(x, t) + ε; v(x, t)− ε < v(x, t) < v(x, t) + ε.

This means that (u, v) = (u, v) is a global attractor of the problem (1.1),
(1.3) for the nonnegative nontrivial initial functions. This completes
the proof.
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