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SYMBOLIC POWERS OF RADICAL IDEALS

AIHUA LI AND IRENA SWANSON

ABSTRACT. Hochster proved several criteria for the case
when for a prime ideal P in a commutative Noetherian ring
with identity, P n = P (n) for all n. We generalize the criteria
to radical ideals.

1. Introduction. In [1], Hochster established several criteria for the
case when for a prime ideal P in a Noetherian ring R, the nth power
Pn of P equals the nth symbolic power P (n) of P for every positive
integer n. He used a so-called test sequence of ideals in a polynomial
ring over R to determine whether Pn = P (n) for all n. We extend
Hochster’s criteria to radical ideals.

Here is the set-up: let R be a Noetherian domain and P an ideal
of R. Suppose that {a1, a2, . . . , am} is a generating set for P . Write
the m-tuple as p = (a1, a2, . . . , am). Let S = R[x1, x2, . . . , xm], where
x1, x2, . . . , xm are indeterminates over R.

Definition 1.1. For an ideal P = (a1, . . . , am)R of R, define
recursively ideals of S = R[x1, . . . , xm]:

J0(p) = 0

and

Jn+1(p) =
({

Σm
i=1 sixi

∣∣ si ∈ S and Σm
i=1 siai ∈ Jn(p)

})
S

for n ≥ 0. We write Jn for Jn(p) and denote J = ∪∞
n=1Jn. We call the

sequence of ideals
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PS + J0, PS + J1, . . . , PS + Jn, . . . ,

the test sequence of the m-tuple p.

Note that, for each n, Jn ⊆ Jn+1. Since R is Noetherian, J = Jn for
all large n.

Hochster proved:

Theorem 1.2 [1, Theorem 1]. With the above notation, the following
are equivalent for a prime ideal P in a Noetherian domain R:

A. The associated graded ring of RP is a domain, and for every
positive integer n, the nth symbolic and ordinary powers of P agree.

B. The ideal PS + J is prime.

C. For some integer n, PS + Jn is a prime ideal of height m.

D. There is a height-m prime ideal Q of S such that Q ⊆ PS + J .

E. Let z be an indeterminate over R. Then z is a prime element in
the subring R[z, a1/z, . . . , am/z] of R[z, 1/z].

As a generalization, we analyze the situation in which P is a radical
ideal of a reduced Noetherian ring. We first define generalized symbolic
powers of ideals. We then give some criteria regarding the equality of
Pn and P (n).

2. Some basic results about test sequences. We start with
some useful examples of test sequences:

Lemma 2.1. Let R be a Noetherian ring and P an ideal gen-
erated by a regular sequence a1, a2, . . . , am. For the m-tuple p =
(a1, a2, . . . , am), denote Jk = Jk(p). Then

J1 =
(
xjak − xkaj

∣∣ 1 ≤ j < k ≤ m
)
S = J2 = J3 = · · · = J.

Proof. The generators of J1 are of the form
∑

i sixi such that∑
i siai = 0. As a1, a2, . . . , am is a regular sequence, this means that

the element (s1, . . . , sm) ∈ Sm is in the S-module generated by the
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Koszul relations (0, . . . , aj , . . . ,−ak, . . . , 0), with k < j and at most
the kth and jth entries nonzero. Thus J1 is generated by elements of
the form xjak − xkaj . It remains to prove that J1 = J2.

Let
∑

i sixi ∈ J2 with
∑

i siai ∈ J1. Write
∑

i siai =
∑

j<k ljk(xjak−
xkaj) for some ljk ∈ S. Then

m∑
i=1

(
si −

i−1∑
j=1

ljixj +
m∑

k=i+1

likxk

)
ai = 0,

so that

m∑
i=1

sixi =
m∑

i=1

(
si −

i−1∑
j=1

ljixj +
m∑

k=i+1

likxk

)
xi ∈ J1.

In general, when the generating sequence does not form an R-
sequence, the ideal J2 may be bigger than J1. One such example is
given below:

Example 2.2. Let R = k[y1, y2] be a polynomial in two variables
over a field k. Let P = (a1, a2, a3)R, where a1 = y2

1 , a2 = y1y2, and
a3 = y2

2 . The generating sequence (a1, a2, a3) is not a regular sequence
of R. In addition, J2 �= J1.

Proof. The module of relations on a1, a2, a3 in S = R[x1, x2, x3]
is generated by (y2,−y1, 0) and (0, y2,−y1), so that J1 = (y2x1 −
y1x2, y2x2−y1x3)S ⊆ (y1, y2)S. The element x1x3−x2

2 is therefore not
in J1. But x1x3 − x2

2 ∈ J2 as x1y
2
2 − x2y1y2 = y2(x1y2 − y1x2) ∈ J1.

Now let Sr = R[x1, . . . , xr] and consider an r-tuple pr = (a1, . . . , ar),
where a1, . . . , ar ∈ R. Similarly to Definition 1.1, we denote

Jk+1(pr) =
({

Σr
i=1 sixi

∣∣ si ∈ Sr and Σr
i=1 siai ∈ Jk(pr)

})
Sr.
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Lemma 2.3. Let R be a Noetherian ring and S = R[x1, . . . , xm].
Let P = (a1, a2, . . . , am)R be an ideal of R and pm = (a1, a2, . . . , am).
If

∑k
i=r+1 gixi = 0, where gr+1, . . . , gk ∈ S and r + 1 ≤ k ≤ m, then∑k

i=r+1 giai ∈ J1(pm).

Proof. It is trivial when k = r + 1. For k > r + 1,
∑k

i=r+1 gixi = 0
implies gk =

∑k−1
i=r+1 hixi for some hi ∈ S since xk is a regular element

of S. Thus
∑k−1

i=r+1(gi + hixk)xi = 0. By induction hypothesis,∑k−1
i=r+1(gi + hixk)ai ∈ J1(pm). On the other hand,

k−1∑
i=r+1

(gi + hixk)ai

=
k−1∑

i=r+1

giai +
k−1∑

i=r+1

hi(xkai − xiak) +
k−1∑

i=r+1

hixiak

=
k∑

i=r+1

giai +
k−1∑

i=r+1

hi(xkai − xiak) ∈ J1(pm).

Since each xkai − xiak is an element of J1(pm),
∑k

i=r+1 giai ∈
J1(pm).

Lemma 2.4. Let R be a Noetherian ring and P = (a1, a2, . . . , am)R,
an ideal of R. Assume am =

∑m−1
i=1 biai, where each bi ∈ R. For

the m-tuple pm = (a1, a2, . . . , am) and the (m − 1)-tuple pm−1 =
(a1, a2, . . . , am−1),

Jk(pm) =
(
Jk(pm−1) +

(
xm −

m−1∑
i=1

bixi

))
R[x1, . . . , xm]

and

Jk(pm) ∩R[x1, . . . , xm−1] = Jk(pm−1)

for all k ≥ 1.
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Proof. Let
∑m

i=1 sixi ∈ Jk(pm) such that
∑m

i=1 siai ∈ Jk−1(pm).
We want to show that

∑m
i=1 sixi is contained in the ideal generated

by Jk(pm−1) and xm − ∑m−1
i=1 bixi in R[x1, . . . , xm]. We can write∑m

i=1 sixi =
∑m−1

i=1 tixi + (xm − ∑m−1
i=1 bixi) s for some s ∈ S and ti ∈

R[x1, . . . , xm−1]. It suffices to prove that
∑m−1

i=1 tixi is in Jk(pm−1),
or more generally that Jk(pm) ∩R[x1, . . . , xm−1] ⊆ Jk(pm−1).

Let f ∈ Jk(pm) ∩ R[x1, . . . , xm−1]. We may write f =
∑m

i=1 sixi

such that
∑m

i=1 siai ∈ Jk−1(pm). For each i = 1, . . . ,m − 1, we
write si = ti + fixm, where ti ∈ R[x1, . . . , xm−1] and fi ∈ S. Then∑m

i=1 sixi =
∑m−1

i=1 tixi + xm(sm +
∑m−1

i=1 fixi) ∈ R[x1, . . . , xm−1]

implies that sm +
∑m−1

i=1 fixi = 0 and
∑m

i=1 siai =
∑m−1

i=1 tiai ∈
Jk−1(pm) ∩R[x1, . . . , xm−1]. If k = 1, this says that

∑m−1
i=1 tiai = 0 ∈

Jk−1(pm−1), and if k > 1, then by induction
∑m−1

i=1 tiai ∈ Jk−1(pm−1).
Thus for all k ≥ 1,

∑m
i=1 sixi =

∑m−1
i=1 tixi ∈ Jk(pm−1).

As a generalization of Lemma 2.1, we have

Theorem 2.5. Let R be a Noetherian ring and P = (a1, . . . , am)R
an ideal of R which is also generated by a1, . . . , ar, where 0 < r < m.
Let pm and pr be as before. If a1, a2, . . . , ar forms a regular R-
sequence, then

Jk(pm) = J1(pm)

for all k ≥ 1.

Proof. Since {a1, a2, . . . , ar} is a generating set of P , for each
i = r + 1, . . . ,m, we can write ai =

∑r
j=1 bjiaj for some bji ∈ R.

Let S = R[x1, . . . , xm]. Set ci = xi −
∑r

j=1 bjixj ∈ J1(pm) for each
i = r+ 1, . . . ,m. By repeated application of Lemma 2.4, for all k ≥ 1,

Jk(pm) =
(
Jk(pr) + (cr+1, . . . , cm)

)
S.

By Lemma 2.1, Jk(pr) = J1(pr) for all k ≥ 1, which finishes the proof.

This gives some information on the test sequence of prime ideals in a
regular ring:
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Theorem 2.6. Let R be a regular ring and P a prime ideal in R.
Then there exists a generating set {a1, . . . , am} of P such that with
p = (a1, . . . , am), for all integers k ≥ 1, Jk(p)RP = J1(p)RP .

More generally, whenever P is an ideal and U a multiplicatively closed
subset such that U−1P is generated by a regular sequence, there exists
a generating set {a1, . . . , am} of P such that with p = (a1, . . . , am),
for all integers k ≥ 1, U−1Jk(p) = U−1J1(p).

Proof. As U−1P is generated by a regular sequence, there exists a
generating set such that the first r generators form a maximal regular
sequence after localization at U . Let Jk(p) be the corresponding kth

test ideal of U−1R for p. Clearly U−1Jk(p) = Jk(p). By Theorem 2.5,
Jk(p) = J1(p). Thus U−1Jk(p) = U−1J1(p).

The first part follows as in a regular ring, PRP is generated by a
regular sequence.

3. Criteria for radical ideals. In this section we generalize
Hochster’s criterion to radical ideals, see Theorem 3.6.

Recall that S = R[x1, . . . , xm] and that Jk = Jk(p) refers to the kth
test ideal with respect to the m-tuple p = (a1, . . . , am). Clearly if U
is a multiplicatively closed subset of R, then U−1Jk(p) = Jk(U−1(p)).

Definition 3.1. Let R be a reduced Noetherian ring, P an ideal
of R and U a multiplicatively closed subset of R. We define the nth
generalized symbolic power of P with respect to U to be

P (n) = PnU−1R ∩R.

If P is a radical ideal with the minimal primes p1, p2, . . . , pt, then the
nth generalized symbolic power of P with respect to U = R\ (p1∪· · ·∪
pt) is called the nth symbolic power of P .

In the proofs we will use the extended Rees algebra of P :

R′ = R

[
z,
P

z

]
= R

[
z,
a1

z
,
a2

z
, . . . ,

am

z

]
,
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where z is an indeterminate over R. Note that

R′

zR′
∼= R

P
⊕ P

P 2
⊕ P 2

P 3
⊕ · · · ,

the associated graded ring of P .

For a ring A, we denote by Z(A) the set of all zero divisors of A. The
following is well known:

Remark 3.2. Let R be a reduced Noetherian ring, P an ideal of R,
and R′ as above. Let U be a multiplicatively closed set of R. Then

(1) Z(A) is the union of all associated prime ideals of A.

(2) For each n ≥ 0, Pn = znR′∩R, and PnU−1R∩R = znU−1R′∩R.

(3) For a fixed n > 0, Pn = PnU−1R∩R if and only if (Pn:R u) = Pn

for all u ∈ U . In particular, P = PU−1R ∩R if U ∩ Z(R/P ) = ∅.

(4) If U∩Z(R′/zR′) = ∅, then zU−1R′∩R′ = zR′ and Rad (zU−1R′)
∩R′ = Rad (zR′).

Our goal is to give similar criteria as those in [1] for radical ideals.
First we establish some lemmas.

Lemma 3.3. Let R be a Noetherian ring and P = (a1, a2, . . . , am)R
an ideal. Let R′, S and J be as above. Then R′/zR′ is isomorphic to
S/(J + PS).

In particular, PS + J is a radical ideal if and only if zR′ is a radical
ideal.

Proof. Consider the surjective R-homomorphism φ from S to R′/zR′,
shown as composition below:

φ : S
φ′
−→ R′ −→ R′

zR′
∼= R

P
⊕ P

P 2
⊕ P 2

P 3
⊕ · · ·

xi �−→ ai

z
�−→ ai + P 2

P 2
.

It suffices to prove that ker(φ) = PS+J . Note that each ai maps to 0 in
R/P , so that PS ⊆ ker(φ). Clearly φ′(J1) = 0. Suppose that φ′(Jn) =
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0. Let
∑
sixi ∈ Jn+1 be such that

∑
siai ∈ Jn. As zφ′(

∑
sixi) =

φ′(
∑
siai) = 0, it follows that φ′(

∑
sixi) = 0. Thus by induction,

J ⊆ ker(φ′) ⊆ ker(φ). This proves that PS + J ⊆ ker(φ). To prove
the opposite inclusion, let f ∈ ker(φ). As φ is a graded homomorphism
and PS + J is a homogeneous ideal, it suffices to assume that f is a
homogeneous element of S of degree d. Write f =

∑
|ν|=d fνx

ν for some
fν ∈ R. As f ∈ ker(φ), this means that

∑
|ν|=d fνa

ν ∈ P d+1. Write∑
|ν|=d fνa

ν =
∑m

i=1

∑
|μ|=d riμa

μai for some riμ ∈ R. By definition of
test sequences then

∑
|ν|=d fνx

ν − ∑m
i=1

∑
|μ|=d riμx

μai ∈ Jd, whence

f =
∑
|ν|=d

fνx
ν −

m∑
i=1

∑
|μ|=d

riμx
μai +

m∑
i=1

∑
|μ|=d

riμx
μai ∈ Jd + PS

⊆ PS + J.

Lemma 3.4. Let R be a Noetherian ring and P an ideal. Let U be
an arbitrary multiplicatively closed subset of R. Then the following are
equivalent:

(1) PnU−1R∩R = Pn for every positive integer n, and the associated
graded ring grU−1P (U−1R) is reduced.

(2) zR′ is a radical ideal and U ∩ Z(R′/zR′) = ∅.

Proof. Assume the first statement. We first show that U ∩
Z(R′/zR′) = ∅. Let u ∈ U and b ∈ R′ such that ub ∈ zR′. Without
loss of generality b is a homogeneous element of R′ under the grad-
ing determined by the variable z. Thus we may write b = b0z

−n for
some integer n and some b0 ∈ Pn. If n is negative, this means that
b0 ∈ R, ub0 ∈ P , so that by assumption, b0 ∈ P , whence b = zR′.
Now let n ≥ 0. Then ub0 ∈ zn+1R′ ∩ R = Pn+1 by Remark 3.2 (2).
This implies that b0 ∈ Pn+1U−1R ∩R = Pn+1 = zn+1R′ ∩R′, so that
b0 ∈ zn+1R′ and thus b ∈ zR′. Hence U ∩ Z(R′/zR′) = ∅.

By the assumption that the associated graded ring of U−1P is reduced
and as grP (R) = R′/zR′, it follows that zU−1R′ is a radical ideal.
Thus by Remark 3.2 (4), zR′ = zU−1R′ ∩ R′ = Rad (zU−1R′) ∩ R′ =
Rad (zR′), so zR′ is a radical ideal of R′.
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Next assume that the second statement holds. As zR′ is a radical
ideal, grP (R) is reduced, and so trivially grU−1P (U−1R) is reduced.

Let b ∈ PnU−1R ∩R = znU−1R′ ∩R. There exists u ∈ U such that
ub ∈ znR′. We have to prove that b ∈ Pn. If not, then there exists an
integer k < n such that b ∈ P k and b �∈ P k+1. Then b/zk ∈ R′ and
u·(b/zk) = (ub/zn)·zn−k ∈ zR′. Since u is not a zero divisor of R′/zR′,
then b/zk ∈ zR′, so that b ∈ zk+1R′∩R = P k+1, a contradiction. Thus
necessarily k ≥ n and b ∈ P k ⊆ Pn.

Lemma 3.5. Let P, S, J be as in the set-up, with P presented with
m generators. Then all of the minimal primes of PS + J are of height
m. In particular, ht (PS + J) = m.

Proof. Let ψ be the R[z]-homomorphism of S[z] onto R′ = R[z, P/z]
which takes xi to ai/z for each i. Let I = ker(ψ) and I0 = (a1 −
x1z, a2 − x2z, . . . , am − xmz)S[z], both ideals of S[z]. Obviously,
I0 ⊆ I. After inverting z, both I and I0 are generated by the regular
sequence a1 − x1z, . . . , am − xmz, so that I = ∪n≥0(I0 : zn). This
implies that z is not a zero divisor on S[z]/I. It is easy to check that
PS + J = (I + zS[z]) ∩ S.

We claim that every minimal prime of I is of height m. When going
up to the localization S[z, 1/z] of S[z] localized at z, the minimal
primes of I in S[z] correspond to the minimal primes of IS[z, 1/z] in
S[z, 1/z] and the heights do not change since z is not a zero divisor of
S[z]/I. But IS[z, 1/z] = I0S[z, 1/z] = (x1−a1/z, x2−a2/z, . . . , xm−
am/z)S[z, 1/z], and obviously all of the minimal primes of I0S[z, 1/z]
are of height m. Thus all the minimal primes of I in S[z] are of height
m. In addition, all minimal primes of (I + zS[z])S[z] are of height
m+ 1, again because z is not a zero divisor of S[z]/I.

Let q be a minimal prime of PS + J in S. In the polynomial ring
S[z] over S, qS[z]+zS[z] is a minimal prime of (PS+J +zS[z])S[z] =
(I + zS[z])S[z], and so m+ 1 = ht (qS[z] + zS[z]) = ht (qS)+ 1. Hence
ht (qS) = m.

Now we give similar criteria as those in [1] for radical ideals:
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Theorem 3.6. Let R be a reduced Noetherian ring and P =
(a1, . . . , am), a radical ideal of R. Let U = R \ (p1 ∪ · · · ∪ pt) and S, z
be as above. Recall that R′ = R[z, Pz−1]. The following statements are
equivalent:

A′. For every integer n > 0, Pn = P (n), and the associated graded
ring grU−1P (U−1R) is reduced.

B′. The ideal PS + J is a radical ideal of S and U ∩Z(S/(PS + J))
= ∅.

C′. For some positive integer n, PS + Jn is a radical ideal of height
m which has the same number of minimal primes as PS + J has, and
U ∩ Z(S/(PS + Jn)) = ∅. In this case, PS + Jn = PS + J .

D′. The ideal PS + J contains a height-m radical ideal Q which has
the same number of minimal primes as PS + J has, and U ∩ Z(S/Q)
= ∅. In this case, Q = PS + J .

E′. The ideal zR′ is a radical ideal of R′ and U ∩ Z(R′/zR′) = ∅.

Proof. Lemma 3.3 gives the equivalence of A′ and E′ by setting
U = R \ (p1 ∪ · · · ∪ pt). By the isomorphism in Lemma 3.3, B′ and E′

are equivalent.

By Lemma 3.5, all the minimal primes of PS + J are of height m. If
an ideal Q of height m is contained in PS+J and has the same number
of minimal primes as PS+J does, then the minimal primes of PS+J
are exactly the minimal primes of Q. Thus Rad (Q) = Rad (PS + J).
Furthermore, if Q is radical, then Q = Rad (PS + J) ⊇ PS + J , so
that Q = PS + J . Whence the equivalences of B′, C′, and D′ follow
trivially.

Now it is clear that the statements A′, B′, C′, D′, and E′ are all
equivalent.

Remark 3.7. Let R be an integral domain, P a prime ideal, and
U = R \ P . The statements A′ E′ are equivalent to the statements
A E in Theorem 1.2, respectively.

Proof. It is enough to show that the condition U ∩ Z(R′/zR′) = ∅

in E′ can be dropped with this special setting. From the isomorphism
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R′/zR′ ∼= R/P ⊕ P/P 2 ⊕ P 2/P 3 ⊕ · · · = grPR, it is sufficient to show
that U ∩ Z(grPR) = ∅. Let b ∈ grP (R) be a nonzero homogeneous
element of degree n, and let ub = 0 in grP (R) for some u ∈ U .
By assumption zR′ is an integral domain, i.e., grP (R) is an integral
domain. Since b is nonzero, necessarily u must be zero, i.e., u ∈ P ,
which contradicts its choice.

We give two applications of Theorem 3.6.

Corollary 3.8. Let R be a reduced Noetherian ring and P a radical
ideal generated by an R-sequence. Then Pn = P (n) for every positive
integer n.

Proof. Assume that P = (a1, a2, . . . , am)R, where a1, a2, . . . , am is
an R-sequence. As in Theorem 3.6, we set S = R[x1, x2, . . . , xm] and
U = R \ (p1 ∪ · · · ∪ pt), where p1, p2, . . . , pt are the minimal primes of
P in R.

Then PS = (a1, a2, . . . , am)S is a radical ideal of S with the minimal
primes p1S, p2S, . . . , ptS in S. Furthermore, (a1, a2, . . . , am) is an S-
sequence. For each i, piS is of height m because it is minimal over an
ideal generated by an S-sequence of m elements.

By Lemma 2.1, J ⊆ PS. So PS + J = PS. Furthermore,
the isomorphism S/PS ∼= (R/P )[x1, x2, . . . , xm] implies that U ∩
Z(S/PS) = ∅. So the condition B′ in Theorem 3.6 is satisfied.
Therefore Pn = P (n) for every positive integer n.

Proposition 3.9. Let Y = (yij) be a (2 × r) matrix of indetermi-
nates, r > 1, and R = k[{yij}] be the polynomial ring over a field k.
Let P be the ideal generated by the 2 × 2 permanents of Y, i.e., P is
generated by elements of form y1iy2j + y2iy1j , i �= j. Then

(1) If r = 2 or 3, Pn = P (n) for all n ∈ N;

(2) If r > 3, there exists a positive integer n such that Pn �= P (n).

Proof. It is shown in [2, Theorem 4.1] that P is a radical ideal with
ht (P ) = min{r, 2r−3} for r ≥ 3, so that clearly ht (P ) = min{r, 2r−3}
for r ≥ 2. For case r = 2 and r = 3, the number of generators of P
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is equal to the height of P , so that the genenerating set of permanents
forms a regular sequence. It follows from Corollary 3.8 that Pn = P (n)

for all n.

For (2), suppose that P = (a1, a2, . . . , an(n−1)/2), where a1, a2, . . . ,
an(n−1)/2 are the generating permanents and a1 = y11y22 + y21y12. In
[2] it is shown that P contains all products of three indeterminates
chosen from three different columns but not from the same row. For
example, both y11y22y23 and y21y13y24 are elements of P . Let

α = y13y23y24a1 = y13y23y24(y11y22 + y21y12).

Then α ∈ P . In addition, α /∈ P 2. This can be easily checked by
Macaulay2.

However, α2 ∈ P 3. This is because

α2 = y23(y11y22y13)(y11y24y23)(y13y24y22)
+ 2y13(y13y22y21)(y23y24y12)(y11y24y23)
+ y13(y13y21y24)(y23y12y21)(y24y12y23)

and by above each of the nine elements in parentheses is in P . So
we can represent α2 as α2 =

∑
i1i2i3

li1i2i3ai1ai2ai3 with li1i2i3 ∈
R. Let β = [(y13y23y24)2x1]x1−

∑
i1i2i3

(li1i2i3ai1xi2)xi3 ∈ S. Note
that [(y13y23y24)2a1]a1 − ∑

i1i2i3
(li1i2i3ai1ai2)ai3 = α2 − α2 = 0, so

[(y13y23y24)2a1]x1 − ∑
i1i2i3

(li1i2i3ai1ai2)xi3 ∈ J1, which implies that
β = [(y13y23y24)2x1]x1 − ∑

i1i2i3
(li1i2i3ai1xi2)xi3 ∈ J2 ⊆ J . This

implies that (y13y23y24x1)2= β +
∑

i1i2i3
(li1i2i3ai1xi2)xi3 ∈ J + PS,

i.e., y13y23y24x1 ∈ √
J + PS.

However, under the homomorphism from Lemma 3.3, y13y23y24x1 is
sent to the element (y13y23y24a1 + P 2)/P 2 in the graded ring grPR,
which is nonzero. So y13y23y24x1 is not in the kernel J+PS. Therefore,
J + PS is not a radical ideal of S. By Theorem 3.6, Pn �= P (n) for
some positive integer n.

Example 3.10. Let k be a field and R = k[x, y, z], where x, y, z are
indeterminates over k. Let P = (x, y)∩ (x−1, z)∩ (y, 1−zx), a radical
ideal. Then Pn = P (n) for all positive integers n.
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Proof. Obviously, the three prime ideals p1 = (x, y), p2 = (x− 1, z),
and p3 = (y, 1 − zx) are comaximal and each of them is generated by
an R-sequence. By Corollary 3.8, pn

i = p
(n)
i for all positive integers n

and for i = 1, 2, 3. Thus Pn = P (n) for all n.

An application of Corollary 3.8 shows also the following:

Example 3.11. Let k be a field and R = k[x, y, z, u, v]/(xv − uy),
where x, y, z, u, v are indeterminates over k, and let P = (xy − u, yz).
Then Pn = P (n) for all positive integers n.
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