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MIXED ORDER SYSTEMS OF
ORDINARY LINEAR DIFFERENTIAL EQUATIONS

SIAKA KONÉ AND MANFRED MÖLLER

ABSTRACT. Expansions into eigenfunctions and associ-
ated functions of nth order ordinary scalar differential equa-
tions and first order systems of ordinary linear differential
equations have been extensively investigated. Here we con-
sider systems of higher order differential equations. In this
case, it is not always possible to obtain an associated first or-
der systems. Two mixed order systems which are equivalent
to first order systems are considered. Results on eigenfunction
expansion are established for each of them.

1. Introduction. Expansions into eigenfunctions and associated
functions of nth order ordinary scalar differential equations and first
order systems of ordinary linear differential equations have been ex-
tensively investigated. However, it seems that there are no such re-
sults for mixed order systems of differential equations. When dealing
with nth order differential equations or systems of first order equations
on a bounded interval, the assumption of suitably regular coefficients
guarantees that the spectrum is either all of C or consists of isolated
eigenvalues. One obstacle to eigenfunction expansion for mixed order
systems is that this alternative need not be true for mixed order sys-
tems, see e.g., [3]. The problem here is that a mixed order system of
differential equations cannot always be transformed into a first order
system of differential equations. We will henceforth focus our attention
on the case that the mixed order system has constant coefficients and
is equivalent to a first order system

(1.1) y′ = A(λ)y,

where λ is the eigenvalue parameter.

We are going to use estimates of the resolvent of the operator
associated with (1.1) and suitable boundary conditions as obtained
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in [6, 7]. For this a transformation λ = ρα, α > 0, is needed
such that (1.1) is equivalent to an asymptotically ρ-linear system
with a diagonalizable leading coefficient. Looking at the zeros μ of
det(A(ρα) − μ), it is clear that a necessary condition for such an
equivalence is that μ = O(ρ) as ρ → ∞. So one should take α to
be the largest number such that μ = O(ρ). Otherwise, μ = o(ρ), and
the coefficient of ρ would be the zero matrix, in which case there is
no suitable estimate of the resolvent. In general, the different zeros
of det(A(ρα) − μ) have different ρ-asymptotics, so that the leading
coefficient of the ρ-linear system is a non-invertible matrix. This will
result in restrictions on the functions which can be expanded. As for
nth order differential equations in [7], these estimates of the resolvent
of the first order system are used to obtain expansion theorems.

This paper aims to give first results and to show the possibilities
and limitations of this approach. Therefore, in Section 3 we start
with a very simple example, which nevertheless will give some insight
into the problem and which justifies the consideration of mixed order
systems in their own right. The example in Section 4 comes from a
concrete problem in mathematical physics; however, we modified it
slightly in order to stay within the framework of Birkhoff regularity,
in accordance with our intention to give an introductory account on
mixed order systems. The original problem requires the consideration
of Stone regularity and will be dealt with in another paper.

This paper is organized as follows. In Section 2 we recall some basic
definitions and facts on bounded operator functions. In Section 3 we
consider systems of a second order and a first order differential equation.
In this case it turns out that the best choice for α is the non-integer 3/2.
In Theorem 3.8 it is shown that any vector function in (L2(0, 1))2 has
an expansion in terms of eigenfunctions and associated functions of the
given problem. In Section 4 we deal with a problem in mathematical
physics which arises in elasticity theory when considering the equations
of motion for a coil spring, see [2]. This is technically much more
complicated than the problem considered in Section 3. These are
systems of a second order, a fourth order and a sixth order differential
equation. Here the leading coefficient after the transformation λ = ρ2

is a 12×12 matrix of rank 6. This has the consequence that we cannot
prove that the vector functions in (L2(0, 1))3 are expandable in terms
of eigenfunctions and associated functions of the given problem; for the
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second and third components, we have to take certain derivatives, see
Theorem 4.8.

2. Preliminaries. Throughout this paper let 1 < p < ∞. For
k ∈ N, W k

p (0, 1) denotes the Sobolev space of order k on the interval
(0, 1),

W k
p (0, 1) = {f ∈ Lp(0, 1) : f (j) ∈ Lp(0, 1) for j = 1, . . . , k},

see, e.g., [1, Chapter III]. For a multi-index k = (k1, . . . , kn) ∈ Nn, we
denote

Wk
p (0, 1) = W k1

p (0, 1) × · · · × W kn
p (0, 1).

Clearly, Wk
p (0, 1) is a Banach space, and even a Hilbert space in case

p = 2.

Throughout this paper, operator stands for bounded linear operator
in Banach spaces. For an operator function S(λ), λ ∈ C, the resolvent
set ρ(S) denotes those λ ∈ C such that S(λ) is invertible, and
σ(S) = C \ ρ(S) is its spectrum. S(λ) is called a Fredholm operator
with index zero if codimR(S(λ)) = dim N(S(λ)) < ∞, where R and
N denote range and null space.

For the convenience of the reader, we recall the definition of biorthog-
onal canonical systems of eigenvectors and associated vectors (CSEAVs),
see e.g., [7, Corollary 1.6.6].

Let S(λ) : E → F be an operator function in Banach spaces E and F
which depends analytically on λ ∈ C and such that S(λ) is Fredholm
valued for all λ ∈ C. We will also assume that ρ(S) �= ∅. Indeed, in
all our applications S will depend linearly on λ, i.e., S(λ) = S0 + λS1.
Then S has discrete spectrum and each μ ∈ σ(S) is an eigenvalue of
finite multiplicity, see e.g., [7, Theorem 1.3.1].

Definition 2.1. Let μ ∈ σ(S). i) An ordered set {y0, y1, . . . , yh} in
E is called a chain of an eigenvector and associated vectors (CEAV) of
S at μ if y0 �= 0 and

y(λ) :=
h∑

l=0

(λ − μ)lyl
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satisfies S(λ)y(λ) = O((λ − μ)h+1) at μ.

ii) Let y0 ∈ N(S(μ)) \ {0}. Then ν(y0) denotes the maximum of all
h such that there is a CEAV {y0, y1, . . . , yh} of S at μ.

iii) A system {y(j)
l : 1 ≤ j ≤ r, 0 ≤ l ≤ mj − 1} is called a canonical

system of eigenvectors and associated vectors (CSEAV) of S at μ if

{y(1)
0 , . . . , y

(r)
0 } is a basis of N(S(μ)),

{y(j)
0 , y

(j)
1 , . . . , y

(j)
mj−1} is a CEAV of S at μ, j = 1, . . . , r,

mj = max{ν(y) : y ∈ N(S(μ)) \ span{y(k)
0 : k < j}}, j = 1, . . . , r.

The numbers mj in Definition 2.1 iii) are independent of the CSEAV
and are called the partial multiplicities of S at μ.

Note that the adjoint operator function S(λ)∗ : F ′ → E′ satisfies the
same properties as S(λ). Then we have, see [7, Corollary 1.6.6],

Proposition 2.2. Let μ ∈ σ(S), r = dim N(S(μ)), and mj,
j = 1, . . . , r, be the partial multiplicities of S at μ. Then there are
CEAVs y

(j)
0 , . . . , y

(j)
mj−1, j = 1, . . . , r, of S at μ and v

(j)
0 , . . . , v

(j)
mj−1,

j = 1, . . . , r, of S∗ at μ such that the following properties hold:

ν(y(j)
0 ) = ν(v(j)

0 ) = mj , j = 1, . . . , r,

(2.1)

l∑
k=0

mi∑
q=1

1
(k + q)!

〈
dk+qS

dλk+q
(μ)y(i)

mi−q, v
(j)
l−k

〉
= δijδ0l

1 ≤ i ≤ r, 1 ≤ j ≤ r, 0 ≤ l ≤ mj − 1,

and the operator function

(2.2) D̃ := S−1 −
r∑

j=1

mj∑
l=1

(· − μ)−l

mj−l∑
h=0

y
(j)
h ⊗ v

(j)
mj−l−h

is holomorphic at μ. We call the systems {y(j)
l : 1 ≤ j ≤ r, 0 ≤ l ≤

mj − 1} and {v(j)
l : 1 ≤ j ≤ r, 0 ≤ l ≤ mj − 1} biorthogonal CSEAVs

of S and S∗ at μ.
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3. A mixed order 2 × 2 system.

3.1 The system of differential equations and the associated operators.

For λ ∈ C, we consider the mixed order system of differential
equations

η
′′
2 − λη1 + aη2 = 0,(3.1)

η
′
1 − λη2 = 0,(3.2)

where a ∈ C[0, 1], subject to periodic boundary conditions

η1 (0) = η1 (1) , η2 (0) = η2 (1) , η
′
2 (0) = η

′
2 (1) .

We associate an operator with this problem as follows. If η ∈
W(1,2)

p (0, 1), let

LD (λ) η =
(

η′′
2 − λη1 + aη2

η′
1 − λη2

)
,(3.3)

LRη =

⎛⎝ η1 (0) − η1 (1)
η2 (0) − η2 (1)
η′
2 (0) − η′

2 (1)

⎞⎠ ,(3.4)

and

L (λ) =
(
LD (λ) , LR

)
.(3.5)

Clearly,

Remark 3.1. L(λ) ∈ L
(W(1,2)

p (0, 1), (Lp (0, 1))2 × C3
)
.

3.2 The associated first order system. Here we consider the trans-
formation to a first order system, that is, we introduce the operator
TD (λ) given by

(3.6) TD (λ) y = y′ − A (λ) y,

where

(3.7) A (λ) =

⎛⎝ 0 λ 0
0 0 1
λ −a 0

⎞⎠ .
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Proposition 3.2. Let y = (y1, y2, y3)
t ∈ (W 1

p (0, 1)
)3 be a solution

of the equation TD (λ) y = 0, and put

(3.8) η = (y1, y2)
t .

Then η ∈ W(1,2)
p (0, 1) and LD (λ) η = 0.

Proof. Setting η =: (η1, η2)
t, we get from (3.8) that η1 = y1 ∈

W 1
p (0, 1) and η2 = y2 ∈ W 1

p (0, 1). Writing TD (λ) y = 0 in the form

y′
1 = λy2,(3.9)

y′
2 = y3,(3.10)

y′
3 = λy1 − ay2,(3.11)

it follows from (3.10) that

η′
2 = y′

2 = y3 ∈ W 1
p (0, 1) .

Thus η2 ∈ W 2
p (0, 1), and hence η ∈ W(1,2)

p (0, 1).

Now we shall prove that LD (λ) η = 0. Differentiating in (3.10) we
have y′′

2 = y′
3. Thus (3.11) gives

(3.12) y′′
2 = λy1 − ay2.

Observing that η1 = y1 and η2 = y2, we get from (3.9) and (3.12) that

LD (λ) η =
(

η′′
2 − λη1 + aη2

η′
1 − λη2

)
= 0.

Proposition 3.3. Let η = (η1, η2)t ∈ W(1,2)
p (0, 1) be a solution of

the equation LD (λ) η = 0, and put

y = (η1, η2, η
′
2)

t.

Then y ∈ (W 1
p (0, 1)

)3 and TD (λ) y = 0.
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Proof. By assumption on η,

y = (η1, η2, η
′
2)

t ∈ W(1,2,1)
p (0, 1) ⊂ (W 1

p (0, 1)
)3

.

Now we shall prove that TD (λ) y = 0. Writing y = (y1, y2, y3)t, the
definition of y and LD (λ) η = 0 give

y′
1 = λy2, y′

2 = y3, y′
3 = λy1 − ay2.

This can be written as y′ = A (λ) y, and TD (λ) y = 0 follows.

For y ∈ (W 1
p (0, 1)

)3, we put

(3.13) TRy = y (0) − y (1)

and introduce the operator function

(3.14) T (λ) =
(
TD (λ) , TR

)
,

where TD(λ) is given by (3.6).

Remark 3.4. T (λ) ∈ L
( (

W 1
p (0, 1)

)3
, (Lp(0, 1))3 × C3

)
.

Proposition 3.5. ρ(L) = ρ(T ).

Proof. It is well known that T (λ) is Fredholm operator valued with
index zero for all λ ∈ C, see e.g., [7, Corollary 3.1.3]. In a similar
way, see also [7, Section 6.3], it can be shown that L(λ) is a Fredholm
operator. In particular, λ ∈ ρ(L)[λ ∈ ρ(T )] if and only if L(λ) [T (λ)]
is injective.

Now let λ ∈ ρ(L) and y ∈ (W 1
p (0, 1))3 be such that T (λ) = 0. Putting

η = (y1, y2)t, it follows from TD(λ)y = 0 that y3 = η′
2, LD(λ)η = 0

by Proposition 3.2, and LRη = TRy = 0 by (3.4) and (3.13). Hence
η = 0 since λ ∈ ρ(L), and y = (η1, η2, η

′
2)

t = 0 follows. Thus T (λ) is
injective, and ρ(L) ⊂ ρ(T ) has been shown.

Using Proposition 3.3 instead of Proposition 3.2, ρ(T ) ⊂ ρ(L) can be
shown in a similar manner.
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Proposition 3.6. Let (f1,f2) ∈ (Lp (0, 1))2 and f3 ∈ C3. Then, for
λ ∈ ρ (L),

L−1 (λ) (f1, f2, f3)
t =

(
1 0 0
0 1 0

)
T−1 (λ) (f2, 0, f1,f3)

t .

Proof. Let η = L−1 (λ) (f1,f2,f3)
t and y = (η1, η2, η

′
2)

t. We calculate(
f1

f2

)
= LD (λ)

(
η1

η2

)
=
(

η′′
2 − λη1 + aη2

η′
1 − λη2

)
=
(

y′
3 − λy1 + ay2

y′
1 − λy2

)
.

By definition of y, this implies that

y′
1 − λy2 = f2, y′

2 − y3 = 0, y′
3 − λy1 + y2 = f1.

Hence, by definition of TD (λ) in (3.6), TD (λ) y = (f2, 0, f1)
t. Since

TRy = LRy by (3.13) and (3.4), we have T (λ) y =
(
TD (λ) y, TRy

)
=

(f2, 0, f1, f3)
t, and therefore y = T−1 (λ) (f2, 0, f1,f3)

t as λ ∈ ρ(T ) by
Proposition 3.5. By definition of y this gives

L−1 (λ) (f1, f2,f3)
t =

(
1 0 0
0 1 0

)
T−1 (λ) (f2, 0, f1,f3)

t .

3.3 Transformations to third order differential equations. We note
that when dealing with nth order differential equations they are often
transformed into first order systems so that one can use, e.g., estimates
of the Green’s function for systems, see [7, Chapters VI, VII]. That
is exactly what we have repeated for the case under consideration
here. On the other hand, using the special structure of nth order
differential equations, one can obtain stronger results for them, see,
e.g., [7, Chapter VIII]. There are two canonical ways to obtain a third
order differential equation from (3.1) and (3.2), namely substituting
one of η1, η2 from (3.2) into (3.1). Eliminating η2 we have to take
η2 = (1/λ)η′

1, which excludes the value λ = 0. Although the resulting
differential equation can be written as

(3.15) η′′′
1 − λ2η1 + aη′

1 = 0,
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with no problem for λ = 0, we still would not have an equivalence of
this differential equation to the given problem for λ = 0.

Eliminating η1, we would have to differentiate (3.1), which would
result in loss of information. For example, taking a = 1, if in the
resulting differential equation

(3.16) η′′′
2 − λ2η2 + η′

2 = 0

we put λ = 0, then any constant η2 satisfies this differential equation,
whereas with η2 being a nonzero constant, (3.1) is not satisfied.

In the following, the first order system operator T will be used
through estimates of its resolvent for |λ| large. However, if we would
consider the operators associated with the nth order differential equa-
tion (3.15) or (3.16), respectively, then we should make use of the cor-
responding expansion theorems, see [7, Chapter VIII] otherwise we
would have to go back to the estimates for the resolvent of the asso-
ciated first order systems and any possible advantage of introducing
the third order differential equation would be lost. Then, of course, all
λ ∈ C had to be taken into account, and λ = 0 would need to be in-
vestigated separately. Although it might be possible to overcome these
difficulties, we will not pursue this direction.

3.4 Asymptotic parameter-linearization. Let L be the differential
operator function defined by (3.5) in subsection 3.1. We want to prove
expansion theorems in terms of eigenfunctions and associated functions
of L. For this we are going to use the techniques and results in [7].
That is, we have to consider the associated first order system function
T defined by (3.14). To apply the estimates in [7] we would need that
T is asymptotically linear in the eigenvalue parameter and that the
coefficient matrix of the parameter-linear term in TD is diagonalizable.
Although T is λ-linear, the coefficient matrix of λ is not diagonalizable.
Therefore, one introduces ρα = λ, α > 0, and looks for an asymptotic
ρ-linearization with a diagonalizable ρ-coefficient. We are also trying
to make this ρ-coefficient an invertible matrix. The reason for this
is that the larger the rank of this matrix, the more functions will be
expandable. The asymptotic ρ-linearization is achieved by a matrix

(3.17) C0 (ρ) = diag {ρν1 , ρν2 , ρν3}
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with real numbers ν1, ν2, ν3 such that

(3.18) C−1
0 (ρ)A (ρα)C0 (ρ) =: Ã (ρ) = ρÃ1 + Ã0 (·, ρ) ,

where A is given by (3.7) and Ã0 (ρ) is bounded with respect to ρ as
ρ → ∞. We have

Ã (ρ) =

⎛⎝ 0 ραρν2−ν1 0
0 0 ρν3−ν2

ραρν1−ν3 −aρν2−ν3 0

⎞⎠ .

The asymptotic behavior required in (3.18) yields

α + ν2 − ν1 ≤ 1, ν3 − ν2 ≤ 1, α + ν1 − ν3 ≤ 1, ν2 − ν3 ≤ 1,

and for the invertibility of the matrix Ã1 we need

α + ν2 − ν1 = 1, ν3 − ν2 = 1, α + ν1 − ν3 = 1

since each row and column of Ã1 must have a nonzero element. This is
satisfied if we put

(3.19) α =
3
2
, ν1 = 0, ν2 = −1

2
, ν3 =

1
2
.

Then the matrix Ã has the form

Ã (ρ) =

⎛⎝ 0 ρ 0
0 0 ρ
ρ −aρ−1 0

⎞⎠ ,

and therefore

(3.20) Ã1 =

⎛⎝ 0 1 0
0 0 1
1 0 0

⎞⎠ .

A straightforward calculation shows that Ã1 can be diagonalized as

(3.21) A1 = C−1Ã1C =

⎛⎝ 1 0 0
0 ω 0
0 0 ω2

⎞⎠ ,
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where ω = e2πi/3 and

C =

⎛⎝ 1 ω ω2

1 ω2 ω
1 1 1

⎞⎠ .

We introduce the differential operator

(3.22)

T̃ (ρ) =
(

T̃D(ρ)
T̃R(ρ)

)
=
(

C−1C0 (ρ)−1 0
0 C−1C0 (ρ)−1

)
T
(
ρ3/2

)
C0(ρ)C,

where the above considerations show that

(3.23) T̃D (ρ) y = y′ − (ρA1 + ρ−1A−1) y,

where the matrix A−1 does not depend on ρ.

3.5 Birkhoff regularity for T̃ . In order to prove expansion theorems
in terms of eigenfunctions and associated functions of L we are first
going to verify Birkhoff regularity for T̃ . From (3.22) we obtain that

T̃R(ρ)y = C−1C−1
0 (ρ)TR (C0 (ρ)Cy) = y (0) − y (1) .

Hence, all matrices in [7, (4.1.25)] are of the form I3 − Δ + Δ = I3

and thus invertible, where I3 is the 3 × 3 identity matrix. That is,
by [7, Definition 4.1.2], the boundary eigenvalue problem T̃ (ρ)y = 0
is Birkhoff regular. Hence, by [7, Theorem 4.6.9], there are circles
γν = {λ ∈ C : |λ| = ρν} (ν ∈ N) with ρν → ∞ as ν → ∞ such that
γν ⊂ ρ(T̃ ) and the operators

(3.24)
Pνh = − 1

2πi

∮
γν

J̃ T̃−1 (ρ) (A1h, 0) dρ,

h ∈ (Lp (0, 1))3 , ν ∈ N,

where J̃ :
(
W 1

p (0, 1)
)3 → (Lp (0, 1))3 is the canonical embedding,

satisfy Pνh → h as ν → ∞ in (Lp(0, 1))3 for all h ∈ (Lp(0, 1))3 and
1 < p < ∞.
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3.6 Expansion theorems for L (λ).

Theorem 3.7. Let 1 < p < ∞. There are circles γν =
{λ ∈ C : |λ| = μν}, ν ∈ N, with μν → ∞ as ν → ∞, such that
γν ⊂ ρ(L) and Qj

νg → g in Lp (0, 1) for j = 1, 2, and g ∈ Lp (0, 1),
where

Qj
νg = − 1

2πi

∮
γν

et
jJL−1 (λ) (ejg, 0) dλ

and J : W(1,2)
p (0, 1) → (Lp (0, 1))2 is the canonical embedding.

Proof. From (3.22) we infer for h ∈ (Lp(0, 1))3 that

(3.25) T̃−1 (ρ) (A1h, 0) = C−1C0 (ρ)−1 T−1(ρ3/2) (C0 (ρ) CA1h, 0) .

Putting

(3.26) h = A−1
1 C−1

⎛⎝ f2

0
f1

⎞⎠
we get in view of (3.17) and (3.19) that

(3.27) C0 (ρ)CA1h =

⎛⎝ f2

0
ρ1/2f1

⎞⎠ .

In order to express (3.25) in terms of L−1, we also need(
1 0 0
0 1 0

)
T−1.

To this end we set

(3.28) F (ρ) =
(

1 0
0 ρ1/2

)
,

(3.29) E =
(

1 0 0
0 1 0

)
C,
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and obtain

(3.30) EC−1C0 (ρ)−1 = F (ρ)
(

1 0 0
0 1 0

)
.

From (3.24), (3.25), (3.30) and (3.27), it follows that

EPνh = − 1
2πi

∮
γν

ĴEC−1C0 (ρ)−1 T−1(ρ3/2) (C0 (ρ)CA1h, 0) dρ

= − 1
2πi

∮
γν

ĴF (ρ)
(

1 0 0
0 1 0

)
T−1(ρ3/2)(f2, 0, ρ1/2f1, 0)t dρ

= − 1
2πi

∮
γν

J

(
1 0
0 ρ1/2

)
L−1(ρ3/2)(ρ1/2f1, f2, 0)t dρ,

where Ĵ : (W 1
p (0, 1))2 → (Lp (0, 1))2 is the canonical embedding and

the last identity follows from Proposition 3.6.

Clearly, we want to express this integral as an integral over λ = ρ3/2.
If ρ runs twice through the circle γν with radius ρν , then λ runs
three times through the circle γν with radius rν = ρ

3/2
ν , and since

dλ = 3ρ1/2/2 dρ, it follows that

EPνh = − 1
2πi

∮
γν

J

(
1 0
0 ρ1/2

)
L−1 (λ) (f1, ρ

−1/2f2, 0) dλ.

If we now define

h1 = A−1
1 C−1

⎛⎝ 0
0
f1

⎞⎠ , h2 = A−1
1 C−1

⎛⎝ f2

0
0

⎞⎠ ,

then clearly et
jEPνhj = Qj

νfj , j = 1, 2. But in subsection 3.5 we have
seen that Pνhj → hj as ν → ∞, and therefore Qj

νfj → et
jEhj as

ν → ∞ for j = 1, 2.

We note that (3.21) gives Ã1C = CA1, and that

Ã1

⎛⎝ f1

f2

0

⎞⎠ =

⎛⎝ f2

0
f1

⎞⎠ .
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Therefore,(
f1

f2

)
=
(

1 0 0
0 1 0

)⎛⎝ f1

f2

0

⎞⎠ =
(

1 0 0
0 1 0

)
Ã−1

1

⎛⎝ f2

0
f1

⎞⎠
=
(

1 0 0
0 1 0

)
Ã−1

1 CA1h =
(

1 0 0
0 1 0

)
Ch = Eh.

Altogether, we have shown that Qj
νfj → fj as ν → ∞.

In the proof of Proposition 3.5 we have shown that L(λ) is Fredholm
valued, and the Birkhoff regularity of T̃ and Proposition 3.5 give
ρ(L) �= ∅. Hence L has discrete spectrum.

Theorem 3.8. Let 1 < p < ∞. Let λ0, λ1, . . . , be the eigenvalues of
L defined by (3.5), and let {y(j)

k,l : j = 1, . . . , r(λk); l = 0, . . . , mk,j − 1}
and {(u(j)

k,l , d
(j)
k,l) : j = 1, . . . , r(λk); l = 0, . . . , mk,j − 1} be biorthogonal

CSEAVs of L and L∗ at λk. Choose the curves γν , ν ∈ N, according
to Theorem 3.7. Then

h = − lim
ν→∞

∑
k∈N

|λk|<μν

r(λk)∑
j=1

mk,j−1∑
l=0

y
(j)
k,l

∫ 1

0

u
(j)
k,mk,j−1−l (x)t h (x) dx

in (Lp (0, 1))2 for each h ∈ (Lp (0, 1))2.

Proof. The result follows by inserting (2.2) into Theorem 3.7. It is
convenient to elaborate on the biorthogonal CSEAVs. Since L(λ) :
W(1,2)

p (0, 1) → (Lp (0, 1))2 × C3, we have that the y
(j)
k,l belong to

W(1,2)
p (0, 1), and, since L(λ)∗ : (Lp′ (0, 1))2 × C3 → (W(1,2)

p (0, 1))′,
1/p + 1/p′ = 1, we have that u

(j)
k,l ∈ (Lp′(0, 1))2 and d

(j)
k,l ∈ C3. Since L

is linear in λ, only k = 0 and q = 1 occur in (2.1), which thus has the
form

−
∫ 1

0

(
u

(j)
k,l(x)

)t

y
(i)
k,mi−1(x) dx = δijδ0l.

We also note that the d
(j)
k,l from the CEAV of L∗ do not occur in

the expansion or the biorthogonal relations because the boundary
conditions do not depend on the eigenvalue parameter λ.
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4. A system of differential equations for a coil spring.

4.1 The system of differential equations and the associated operator
L (λ). Goolin and Kartyshov [4], see also [2], considered the equation
of motion for a coil spring. Separation of variables leads to a system of
three ordinary differential equations of second, fourth and sixth order
respectively. A method to evaluate the eigenvalues was given in [4].
Here we will prove eigenfunction expansions for this system under
modified boundary conditions which lead to a Birkhoff regular case.
The original problem, which would give a Stone regular problem, will
be dealt with in a forthcoming paper. We omit the formulation of the
problem as a system of differential equations with boundary conditions
and immediately proceed to its operator form.

For λ ∈ C and η ∈ W(2,4,6)
p (0, 1), let

(4.1) LD (λ) η =

⎛⎝ A11η1 + A12η2 + A13η3 − λB11η1

A21η1 + A22η2 + A23η3 − λ(B22η2 + B23η3)
A31η1 + A32η2 + A33η3 − λ(B32η2 + B33η3)

⎞⎠ ,

where Aij and Bij are differential expressions of the form

Aij = aij
d2

ds2
+ bij , (i, j) = (1, 1) , (1, 2) , (1, 3) , (2, 1) , (3, 1) ,

Aij = aij
d4

ds4
+ bij

d2

ds2
+ cij , (i, j) = (2, 2) , (2, 3) , (3, 2) ,

A33 = a33
d6

ds6
+ b33

d4

ds4
+ c33

d2

ds2
+ e33,

(4.2)

B11 = f11,

Bij = fij + gij
d2

ds2
, (i, j) = (2, 2) , (2, 3) , (3, 2) ,

B33 = f33 + g33
d2

ds2
+ h33

d4

ds4
,

and s is the independent variable. Here all coefficients are constant and
real. We assume that the maximum order of differentiation is attained,
i.e., that a11, a22, a33, f11, g22, and h33 are different from 0. We also
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let

(4.3) LRη =
(
η1 (0) , η1 (1) , η2 (0) , η2 (1) , η

′′
2 (0) , η

′′
2 (1) ,

η3 (0) , η3 (1) , η
′′
3 (0) , η

′′
3 (1) , η

(4)
3 (0) , η

(4)
3 (1)

)t
.

For the boundary eigenvalue operator function

(4.4) L (λ) =
(
LD (λ) , LR

)
we clearly have

Remark 4.1. L (λ) ∈ L
(W(2,4,6)

p (0, 1), (Lp (0, 1))3 × C12
)
.

For η ∈ W(2,4,6)
p (0, 1) we set

y =
(
η1, η

′
1, η2, η

′
2, η

′′
2 , η

(3)
2 , η3, η

′
3, η

′′
3 , η

(3)
3 , η

(4)
3 , η

(5)
3

)t
.

Then LD (λ) η = 0 is equivalent to a first order system

(4.5) y′ = A (λ) y,

where the first, second and third components of LD(λ)η = 0 are used
to find the second, sixth and twelfth rows of A(λ). The components
of this 12 × 12 matrix are obtained by a straightforward but lengthy
calculation, see [5] for its explicit representation.

We define the operator TD (λ) by

(4.6) TD (λ) y = y′ − A (λ) y, y ∈ (W 1
p (0, 1)

)12
.

Analogous to Propositions 3.2 and 3.3 we obtain

Proposition 4.2. Let y=(yj)
12
j=1∈

(
W 1

p (0, 1)
)12 be a solution of the

equation TD (λ) y =0, and set η =(y1, y3, y7)
t. Then η∈W(2,4,6)

p (0, 1)
and LD (λ) η=0.

Proposition 4.3. Let η = (η1, η2, η3)
t ∈ W(2,4,6)

p (0, 1) be a solution
of LD (λ) η = 0, and set

y =
(
η1, η

′
1, η2, η

′
2, η

′′
2 , η

(3)
2 , η3, η

′
3, η

′′
3 , η

(3)
3 , η

(4)
3 , η

(5)
3

)t
.
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Then y ∈ (W 1
p (0, 1)

)12 and TD (λ) y = 0.

Let TD be given by (4.6) and

(4.7) TRy =
(
y1 (0) , y1 (1) , y3 (0) , y3 (1) , y5 (0) , y5 (1) ,

y7 (0) , y7 (1) , y9 (0) , y9 (1) , y11 (0) , y11 (1)
)t

.

We associate to it the operator function

(4.8) T (λ) =
(
TD (λ) , TR

)
.

Remark 4.4. T (λ) ∈ L
(
(W 1

p (0, 1))12, (Lp (0, 1))12 × C12
)
.

Proposition 4.5. Let (f1, f2, f3) ∈ (Lp (0, 1))3, f4 ∈ C12 and set

(4.9) E2 =

⎛⎝ 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0

⎞⎠
and U = diag

(
1, D2, D4

)
, where D is differentiation with respect to

the independent variable. Then, for λ ∈ ρ (L),

UL−1 (λ) (f1, f2,f3, f4)
t

= E2T
−1 (λ)

(
0,

1
a11

f1, 0, 0, 0,
1

a22
f2, 0, 0, 0, 0, 0,

1
a33

f3, f4

)t

.

Proof. Let η = L−1 (λ) (f1, f2,f3, f4)
t and

(4.10) y =
(
η1, η

′
1, η2, η

′
2, η

′′
2 , η

(3)
2 , η3, η

′
3, η

′′
3 , η

(3)
3 , η

(4)
3 , η

(5)
3

)t
.

Then

(f1, f2, f3)
t = LD (λ) η

=

⎛⎝ A11η1 + A12η2 + A13η3 − λB11η1

A21η1 + A22η2 + A23η3 − λ(B22η2 + B23η3)
A31η1 + A32η2 + A33η3 − λ(B32η2 + B33η3)

⎞⎠ .
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By definition of y and A (λ), this implies that

TD(λ)y = y′−A (λ) y =
(

0,
1

a11
f1, 0, 0, 0,

1
a22

f2, 0, 0, 0, 0, 0,
1

a33
f3

)t

;

note that, e.g., the first component of LD(λ)η = (f1, f2, f3)t reads
a11η

′′
1 + · · · = f1. This shows that

y = T−1 (λ)
(

0,
1

a11
f1, 0, 0, 0,

1
a22

f2, 0, 0, 0, 0, 0,
1

a33
f3, f4

)t

,

which completes the proof in view of (4.10).

4.2 Asymptotic parameter-linearization. Let L be the differential
operator as defined by (4.4) in subsection 3.1. We want to prove
expansion theorems in terms of eigenfunctions and associated functions
of L. For this we are going to use the techniques and results in
[7]. That is, we have to consider the associated first order systems
T . To apply the estimates in [7] we need that T is asymptotically
linear in the eigenvalue parameter and that the coefficient matrix of
the parameter-linear term in TD is diagonalizable. Although T is λ-
linear, the coefficient matrix of λ is not diagonalizable. Therefore, we
introduce ρ2 = λ and look for an asymptotic ρ-linearization with a
diagonalizable ρ-coefficient. The asymptotic ρ-linearization is achieved
by a matrix

C0 (ρ) = diag {ρν1 , ρν2 , . . . , ρν12} ,

where we require that

C−1
0 (ρ)A

(
ρ2
)
C0 (ρ) = Ã (ρ) = ρÃ1 + Ã0 + Ã1 (ρ)

with Ã1 (ρ) → 0 as ρ → ∞. This is satisfied if we put ν1 = 0,
ν6 = ν12 = 2 and νj = 1 for all other j, and then the matrix
Ã1 = (ai,j)12i,j=1 is of the form that a1,2 = a5,6 = a11,12 = 1, the ai,j with
(i, j) having the values (2, 1), (6, 3), (6, 5), (6, 7), (6, 9), (12, 3), (12, 5),
(12, 7), (12, 9), (12, 11) are possibly nonzero, and all other entries of Ã
are 0. For details we refer to [5].

Clearly, Ã has rank at most 6, and computer algebra calculations
show that for certain values of the coefficients in (4.2), Ã has 6 distinct
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nonzero eigenvalues. Since the eigenvalues depend algebraically on the
coefficients of Ã, this is the generic case. Therefore we obtain

Proposition 4.6. For generic coefficients in (4.2), the matrix Ã1

has rank 6 and is diagonalizable.

In the sequel we will only consider this generic case in which Propo-
sition 4.6 holds. Let C1 be a matrix which diagonalizes Ã1, i.e., C1 is
invertible and

A1 = C−1
1 Ã1C1

is a diagonal matrix with zeros in the first 6 diagonal entries. Putting

C (ρ) = C0 (ρ)C1,

it follows that

C−1 (ρ)A
(
ρ2
)
C (ρ) = ρA1 + A0 + ρ−1A−1 (ρ) .

We introduce the differential operator

T̃D (ρ) y = C−1
1 C0 (ρ)−1 TD

(
ρ2
)
C0 (ρ)C1y.

The above considerations shows that

(4.11) T̃D (ρ) y = y′ − (ρA1 + A0 + ρ−1A−1 (ρ)
)
y.

We define

T̃ (ρ) =
(

C (ρ)−1 0
0 C2 (ρ)−1

)
T
(
ρ2
)
C (ρ) ,

where C2 (ρ) is a 12 × 12 invertible matrix polynomial which will be
determined later.

4.3 Birkhoff regularity for T̃ . In order to prove expansion theorems
in terms of eigenfunctions and associated functions of L we are going to
prove first Birkhoff regularity for T̃ . For this we will use the techniques
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in [7, Theorem 4.1.3]. The boundary term is given by (4.6) and can
therefore be written as

TRy = Ŵ (0)y (0) + Ŵ (1)y (1) .

Put W̃ (j) (ρ) = Ŵ (j)C0 (ρ)C1, j = 0, 1. We want to find an invertible
12 × 12 matrix polynomial C2 (ρ) such that

C−1
2 (ρ)

(
Ŵ (0)C0 (ρ) C1, Ŵ

(1)C0 (ρ)C1

)
=
(
W

(0)
0 , W

(1)
0

)
+ O

(
ρ−1

)
as ρ → ∞ and such that

(
W

(0)
0 , W

(1)
0

)
is a 12 × 24 matrix of rank 12.

We write

A0 =
(

A00 ∗
∗ ∗

)
.

Then P [0] is defined as P [0] = diag
(
P

[0]
00 , P

[0]
11 , . . . , P

[0]
66

)
, where P

[0]
00 is

uniquely given by

P
[0]′
00 = A00P

[0]
00 ,

P
[0]
00 (0) = I6,

and P
[0]
jj , j = 1, . . . , 6, are scalar functions.

For the calculation of the Birkhoff matrices, we need the diagonal
matrices Δ0 = diag (0, . . . , 0, 1, . . . , 1) with 6 zeros and 6 ones, Λ =
diag (δ1,δ2, . . . , δ12), where δj ∈ {0, 1} , j = 1, 2, . . . , 12, and M̃2 =
W

(0)
0 + W

(1)
0 P [0].

The Birkhoff matrices are W
(0)
0 (In− Λ) Δ0+W

(1)
0 ΛΔ0+M̃2 (In− Δ0)

and W
(0)
0 ΛΔ0 + W

(1)
0 (In − Λ)Δ0 + M̃2 (In − Δ0). Computer algebra

calculations show that, for certain choices of the coefficients in (4.2),
these Birkhoff matrices are invertible. Again, this is the generic case. In
the following, we shall therefore assume that the coefficients are chosen
in such a way that the problem (4.1), (4.3) is Birkhoff regular.

The eigenvalues and Birkhoff matrices can be calculated explicitly.
Hence, given any particular choice of coefficients, it can be verified
whether the problem is Birkhoff regular in that case. Now we can
explain why we changed the original boundary conditions to those given
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in (4.3). The operator T̃ with the original boundary conditions as in
[4] is not Birkhoff regular. With a different choice of C0 (ρ), one might
obtain Birkhoff regularity, or one can consider Stone regularity. We
will investigate this in a forthcoming paper.

By [7, Theorem 4.6.9], there are circles γν = {λ ∈ C : |λ| = ρν},
ν ∈ N, with ρν → ∞ as ν → ∞ such that γν ⊂ ρ(T̃ ) and operators

(4.12)

Pνh = − 1
2πi

∮
γν

J̃ T̃−1 (ρ) (A1h, 0) dρ, h ∈ (Lp (0, 1))12 , ν ∈ N,

where J̃ :
(
W 1

p (0, 1)
)12 → (Lp (0, 1))12 is the canonical embedding,

satisfy Pνh → h as ν → ∞ in (Lp(0, 1))12 for all h ∈ (Lp(0, 1))12 with
Δ0h = h and 1 < p < ∞.

4.4 Expansion theorems for L (λ).

Theorem 4.7. Let 1 < p < ∞. There are circles γν =
{λ ∈ C : |λ| = rν}, ν ∈ N, with rν → ∞ as ν → ∞ such that Qj

νg → g
as ν → ∞ for all g ∈ Lp (0, 1), where

Qj
νg = − 1

2πi

∮
γν

JD2j−2et
jL

−1 (λ) (ejβjg, 0) dλ

for j = 1, 2, 3, D denotes differentiation with respect to the independent
variable, J : W 2

p (0, 1) → Lp (0, 1) is the canonical embedding, and
β1 = f11, β2 = g22, β3 = h33.

Proof. In order to prove the theorem we express Qj
νg in terms of Pν ,

i.e., L−1 (λ) in terms of T̃−1 (ρ). Let f1,f2,f3 ∈ Lp (0, 1), and set

f = (0, a2,1f1, 0, 0, 0, a6,5f2, 0, 0, 0, 0, 0, a12,11f3)
t .

Define f̃ =
(
f̃j

)12

j=1
by

f̃1 = f1, f̃5 = f2, f̃11 = f3 − a12,5

a12,11
f̃5,
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f̃j = 0 for the remaining indices. Then f = Ã1f̃ , where we have used
the last of the following properties:

a2,1 =
f11

a11
�= 0, a6,5 =

g22

a22
�= 0, a12,11 =

h33

a33
�= 0.

Then, putting

f̂ =
(
0, f̃1, 0, 0, 0, , f̃5, 0, 0, 0, 0, 0, f̃11

)t

it follows that f̃ = Ã1f̂ . For h = C−1
1 f̃ the identity Ã1C1 = C1A1

implies that

C0 (ρ)C1A1h = C0 (ρ) Ã1C1h = C0 (ρ) f.

We put

(4.13) F2 (ρ) =

⎛⎝ 1 0 0
0 ρ−1 0
0 0 ρ−1

⎞⎠
and

(4.14) E1 = F2 (ρ)E2C0 (ρ)C1.

Observe that
E1 = E2C1.

Then we obtain

E1Pνh = − 1
2πi

∮
γν

ĴE1C
−1
1 C−1

0 (ρ)T−1
(
ρ2
)
(C0 (ρ) C1A1h, 0) dρ

= − 1
2πi

∮
γν

ĴF2 (ρ)E2T
−1
(
ρ2
)
(C0 (ρ) f, 0) dρ

= − 1
2πi

∮
γν

ĴF2 (ρ)UL−1
(
ρ2
) (

ρβ1f1, ρ
2β2f2, ρ

2β3f3, 0
)

dρ,

where Ĵ : (W 1
p (0, 1))3 → (Lp (0, 1))3 is the canonical embedding and

the last identity follows from Proposition 4.5. From

h = C−1
1 f̃ = C−1

1 Ã1f̂ = A1C
−1
1 f̂
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and Δ0A1 = A1 we infer Δ0h = h. The considerations in subsection
4.3 show that E1Pνh → E1h as ν → ∞. If f2 = f3 = 0, we write h1

for h; h2 and h3 are defined correspondingly. Then, for j = 1, 2, 3,

et
jE1Pνhj = − 1

2πi

∮
γν

ρJet
jUL−1

(
ρ2
)
(ejβjfj , 0) dρ.

Clearly, we want to express this integral as an integral over λ = ρ2.
If ρ runs once through the circle γν with radius ρν , λ runs two times
through the circle γν with radius rν = ρ2

ν , and since dλ = 2ρdρ, it
follows that

et
jE1Pνhj = − 1

2πi

∮
γν

JD2j−2et
jL

−1 (λ) (ejβjfj , 0) dλ = Qj
νfj .

Altogether, we obtain Qj
νfj = et

jE1Pνhj → et
jE1hj = fj as ν → ∞.

As in subsection 3.6 we now obtain

Theorem 4.8. Let 1 < p < ∞. Let λ0, λ1, . . . , be the eigenvalues of
L defined by (4.4), and let {y(j)

k,l : j = 1, . . . , r(λk); l = 0, . . . , mk,j − 1}
and {(u(j)

k,l , d
(j)
k,l) : j = 1, . . . , r(λk); l = 0, . . . , mk,j − 1} be biorthogonal

CSEAVs of L and L∗ at λk. Choose the curves γν , ν ∈N, according
to Theorem 4.7 and put β1 = f11, β2 = g22, β3 = h33. Then for each
f ∈Lp (0, 1) and each l = 1, 2, 3,

f = − lim
ν→∞

∑
k∈N

|λk|<μν

( r(λk)∑
j=1

mk,j−1∑
h=0

D2l−2et
ly

(j)
k,l

×
∫ 1

0

u
(j)
k,mk,j−1−h (x)t elβl (x) fl(x) dx

)

in Lp(0, 1).
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Remark 4.9. We only obtained expansions with respect to D2l−2et
ly

(l)
k,j .

This can be explained by the fact that Bll is a differential operator of
order 2l − 2. For a detailed discussion of the general scalar case we
refer to [8]. Note that (2.1) has the form

−
∫ 1

0

(
u

(j)
k,l(x)

)t(⎛⎝B11 0 0
0 B22 B23

0 B32 B33

⎞⎠ y
(i)
k,mi−1

)
(x) dx = δijδ0l.
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