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POINT X-RAYS OF CONVEX BODIES
IN PLANES OF CONSTANT CURVATURE

PAOLO DULIO AND CARLA PERI

ABSTRACT. Let K be a convex body in a plane of constant
curvature R2. The X-ray of K at a point p ∈ R2 gives the
lengths of all the intersections of K with geodetics through
p. Hammer’s X-ray problem queries how many points must
be taken to permit the exact reconstruction of K from the
corresponding X-rays. The known answer in the Euclidean
plane is here extended by proving that a convex body in R2

is distinguished from others by its X-rays from four point
sources in general position, up to a reflection in the origin on
the sphere. As a further generalization, we prove that three
points in general position suffice when we work with the class
of spherical lunes.

1. Introduction. In this paper we continue the discussion of
Hammer’s X-ray problem in non-Euclidean spaces, which was begun
in [2] and continued in [3].

Our setting here is a complete simply connected Riemannian surface
of constant curvature k which is, as is well known, either a Euclidean
plane E2, k = 0, or sphere S2

k, k > 0, or hyperbolic plane H2
k , k < 0.

We shall scale the distance function induced by the Riemannian metric
so that k = 0, 1,−1 and denote the spaces E2, S2 := S2

1 and H2 := H2
−1

simply by R2.

Let K ⊂ R2 be a compact convex set with nonempty interior. The
X-ray of K at a point p ∈ R2 gives the lengths of all the intersections
of K with lines through p. Hammer’s X-ray problem [10] (and its non-
Euclidean generalization) queries how many points must be taken to
permit the exact reconstruction of K from the corresponding X-rays.

In E2 the answer is due to Volčič [16], who proved that four points,
no three collinear, are enough to distinguish K among all other planar
convex bodies. He was the first who employed the idea of using
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a measure having appropriate invariance properties for X-rays, see
Lemma 5.

On the other hand, when the sources are chosen in particular po-
sition, the number of points can be reduced, as was shown in earlier
papers. In [4] and [5] Falconer proved that a convex body can be dis-
tinguished from others by X-rays at two inner points p1 and p2, and
that the same holds, with some exceptions, if p1 and p2 are exterior.
This was obtained through a version of the stable manifold theorem
of differentiable dynamics, that also provided a method for the recon-
struction of the body. A simplified approach was presented by Gardner
in [7], who generalized the measure introduced by Volčič. Three non-
collinear point X-rays determine a convex body in the interior of the
triangle whose vertices are the points, [6]. If directed X-rays are con-
sidered, then three noncollinear point X-rays can distinguish a convex
body among all planar convex bodies, [16] (see also Kurusa [12]).

Concerning the determination of a convex body K by X-rays in non-
Euclidean planes, we proved in [2] that K is uniquely determined by
its X-rays at two points p and q, provided the line through p and q is
known to intersect the interior of K and p and q are either both interior
or exterior to K. In [3] we added the case when the line supports K
and showed that these results cannot be improved without restrictions
on the curvature of the space.

The main result of the present paper is the generalization of Volčič’s
four points theorem. Namely, we prove that X-rays from four points,
with no three collinear, distinguish between all convex bodies in R2,
up to a reflection in the origin when R2 = S2, see Theorem 8. Note
that such an exception in the spherical setting cannot be avoided,
since a convex body in S2 and its reflection in the origin have equal
X-ray at each point p ∈ S2. We first show that X-rays at three
noncollinear points determine uniquely a convex body, provided some
a priori knowledge about the position of the body relative to the points
is available, see Theorem 7. On the other hand, examples in the sphere
show that three points may not suffice for determining uniquely a
convex body, see [3, Example 8], while this holds true for a suitable class
of spherical sets, namely the class of spherical lunes, see Theorem 14.

A comprehensive introduction to this and related subjects, together
with updated references, can be found in Gardner’s book [8].
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2. Definitions and preliminary results. In this section we
introduce some basic definitions and technical tools which will be
employed in the next section where the main results are presented.

We first reformulate the notion of X-ray in terms of the exponential
map. For notions and results from Riemannian geometry that are used
without explanation, we refer to [13] and [17]. For p ∈ R2, let TpR2

denote the tangent space to R2 at p. Each nonzero vector v ∈ TpR2 can
be written uniquely as ru, where u is a unit vector and r is a positive
real number. The exponential map at p is the map expp : TpR2 → R2

that sends the origin to p and the vector ru to the end point of the
segment of length r on the geodesic γu issuing from p with initial vector
u.

Let θ denote the angle between u and a fixed direction. The area
element at p in terms of geodesic polar coordinates (r, θ) centered at p
is then represented by

dq = snk(r) dr dθ,

with

(1) snk(r) :=

⎧⎨
⎩

r if k = 0
sin r if k = 1
sinh r if k = −1.

If A is a set in R2, then cl A, bdA, int A and conv A denote
the closure, the boundary, the interior and the convex hull of A,
respectively. For properties of convex sets, see [14].

If k = 1 then −A denotes the reflection of A in the origin. Further
the characteristic function of a set A ∈ R2 will be denoted by 1A.

Definition 1. Let A be a bounded measurable set in R2. The X-ray
of set A at point p is defined by

(2) XpA(u) :=
∫ +∞

−∞
1A(expp(tu)) dt,

for all unit vectors u ∈ TpR2 for which the integral exists.
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Remark 2. In S2 ⊂ E3 the tangent planes at two antipodal points
p,−p ∈ S2 can both be identified with the subspace p⊥ ⊂ E3 orthogonal
to p. Then for each bounded measurable set A ⊂ S2 we have
X−pA(u) = XpA(u), for all unit vectors u ∈ p⊥ for which the integral
(2) exists.

In Euclidean spaces X-rays have been studied mainly within the class
of star sets or that of convex bodies. Here our main results are stated
for convex bodies. A compact set K with nonempty interior, which is
contained in an open hemisphere when k = 1, is a convex body if any
two points of K can be connected by a geodesic segment inside K. As
for star sets, we refer to the notion given in [2], which extends that
introduced by Gardner and Volčič in [9], see also [8, p. 18].

It should be noted that a convex body in Euclidean and hyperbolic
plane is always star-shaped at any given point p, whereas this is not
the case in the sphere. In fact, a convex body K in S2 which contains a
segment having the point −p in its relative interior is not star-shaped at
p. However, in this case −K is star-shaped at p, so that the uniqueness
results obtained in [2] for X-rays of star sets hold true even for convex
bodies, up to a reflection in the origin when k = 1.

We also need the following trigonometric formulas. Let Δ ⊂ R2 be
a geodesic triangle with side lengths a, b, c, where a, b, c < π in the
spherical case and opposite angles α, β, γ. Then the Law of Cosines
[13, p. 324] states

⎧⎨
⎩

c2 = a2 + b2 − 2ab cos γ if k = 0
cos c = cos a cos b + sin a sin b cos γ if k = 1
cosh c = cosh a cosh b − sinh a sinh b cos γ if k = −1.

Furthermore, if γ = π/2, then

(4) snk(a) = snk(c) sin α, snk(b) = snk(c) sinβ

with the conventions (1).

In [2] we introduced the following measure which provides a useful
tool for testing whether two sets have the same X-rays at a given point.
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Definition 3. Let γ be a given geodesic in R2. For a bounded
measurable set A in R2, the measure νγ(A) is given by

νγ(A) :=
∫

A

|snk(d(q, γ))|−1 dq,

where d(q, γ) denotes the distance of q from γ. The geodesic γ is called
the base line of νγ .

The measure νγ is finite on sets bounded away from γ and can be
finite even on sets intersecting γ as the next lemma shows.

Lemma 4. Let γ be a geodesic through a given point p ∈ R2 and let
(r, θ) be polar coordinates centered at p, θ being evaluated with respect
to the base line γ. For 0 < α < β < π and r0 > 0, where r0 < π in the
spherical case, the sector defined by

T (α, β, r0) := {(r, θ) : 0 ≤ r ≤ r0, α ≤ θ ≤ β}

has finite νγ measure.

Proof. This is easily proved by computing the measure νγ in the
coordinates (r, θ).

We now consider the behavior of the measure νγ for sets having the
same X-rays at a given point.

The invariance property of the measure νγ for X-rays at points
belonging to γ is stated by the following Lemma which easily follows
from (4) by computing νγ in polar coordinates centered at p, see also
[2].

Lemma 5. Let γ be a geodesic through a given point p ∈ R2. Suppose
that A1 and A2 are measurable sets in R2 with finite measure νγ and
the same X-rays at p. Then νγ(A1) = νγ(A2).

The following lemma illustrates the behavior of the measure νγ when
the point p does not belong to γ.
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Lemma 6. Let p ∈ R2 and let (r, θ) be polar coordinates centered at
p. For 0 < α < β < π, let

Ej = {(r, θ) : 0 < rj(θ) ≤ r ≤ sj(θ), α ≤ θ ≤ β} ,

for j = 1, 2, be star-shaped at p, with equal X-rays at p. Suppose also
that s1(θ) < r2(θ) for α ≤ θ ≤ β. Let γ be a given geodesic such that
p /∈ γ. Then

(i) if R2 = S2 and p, E1, E2 are contained in the same open
hemisphere bounded by γ, then νγ(E1) < νγ(E2);

(ii) if R2 = H2 and γ separates p from E1 and E2, then νγ(E1) >
νγ(E2).

Proof. (i) Let c be the center of the open hemisphere bounded by γ
and containing p, E1 and E2. If p = c then snk(d(q, γ)) = cos r and

νγ(Ej) :=
∫ β

α

∫ sj(θ)

rj(θ)

tan r dr dθ.

Since the integrand increases with r and s1(θ)− r1(θ) = s2(θ)− r2(θ),
with s1(θ) < r2(θ), we have νγ(E1) < νγ(E2), as required. If p �= c,
let (ρ, ϕ) denote the polar coordinates centered at c, where both θ and
ϕ are evaluated with respect to the geodesic joining p and c. Then by
(3) we get snk(d(q, γ)) = cos ρ = cos r cos a + sin r sin a cos θ, where a
denotes the distance of p from c. Therefore, we have

νγ(Ej) :=
∫ β

α

∫ sj(θ)

rj(θ)

1
cot r cos a + sin a cos θ

dr dθ.

Since the integrand increases with r and s1(θ)− r1(θ) = s2(θ)− r2(θ),
with s1(θ) < r2(θ), we have νγ(E1) < νγ(E2), as required.

(ii) Let a denote the distance of p from γ, and let n be the foot of
the perpendicular from p to γ. Denote by (ρ, ϕ) the polar coordinates
centered at n, where ϕ is evaluated with respect to the geodesic line
γ. Suppose also that θ is evaluated with respect to the geodesic
joining p and n. Then by (3) we get snk(d(q, γ)) = sinh ρ sin ϕ =
cosh a sinh r cos θ − sinh a cosh r, so that

νγ(Ej) :=
∫ β

α

∫ sj(θ)

rj(θ)

1
cosh a cos θ − sinh a coth r

dr dθ.
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Since the integrand decreases with r and s1(θ)− r1(θ) = s2(θ)− r2(θ),
with s1(θ) < r2(θ), we have νγ(E1) > νγ(E2) as required.

We also need the following notations. Let K and K ′ be convex bodies
with int (K�K ′) �= ∅, where K�K ′ denotes the symmetric difference
of K and K ′, and let C be a connected component of int (K�K ′). An
endpoint of C is a point belonging to clC ∩bdK ∩bd K ′. If K and K ′

have the same X-rays at a given point p ∈ R2 and F ⊂ C, let

(5) F (p) := ∪(δ ∩ (intK � K ′)) \ F

where the union is taken over all the geodesics δ issuing from p such
that δ ∩ F �= ∅. If F is nearer to p than F (p) we write pF := F (p),
whereas if F (p) is nearer to p, we write p−1F := F (p). Thus either pF
or p−1F is well defined.

3. Uniqueness theorems. We next prove a uniqueness result for
X-rays from three point sources.

Theorem 7. Let p1, p2, p3 be three noncollinear points in R2, and
let K be a convex body contained in the interior of the triangle formed
by the points. If K ′ has the same X-rays as K at pj, for 1 ≤ j ≤ 3,
then K ′ = K when k = 0,−1, and K ′ = ±K when k = 1.

Proof. In the Euclidean and hyperbolic plane we can repeat the same
proof given in [8, Theorem 5.3.5]. In the spherical setting we need a
different argument, as the area of two star sets with the same X-ray at a
point p does not always increase with the distance from p. We use here
the measure νγ . Suppose K ′ �= ±K and denote the triangle formed by
the points pj , 1 ≤ j ≤ 3, by T . Let us first suppose that K ′ ⊂ int T .
Then K and K ′ intersect and int K � K ′ �= ∅. For 1 ≤ i < j ≤ 3, let
νi,j denote the measure with the geodesic through pi and pj as base
line. Let μ be the measure defined by

μ(A) := ν1,2(A) + ν1,3(A) + ν2,3(A),

for measurable sets A ⊂ S2. Suppose C is a connected component of
int K � K ′ of maximum μ-measure. For some j, the set pjC is well
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defined and we may suppose j = 1, without loss of generality. Then by
Lemma 5 we have ν1,2(C) = ν1,2(p1C), ν1,3(C) = ν1,3(p1C), while by
Lemma 6 we have ν2,3(C) < ν2,3(p1C) so that μ(p1C) > μ(C), which
is a contradiction. Now if K ′ � int T then K ′ ⊂ int (−T ), since K ′ has
the same X-rays as K at pj , for 1 ≤ j ≤ 3. Hence the set K ′′ = −K ′

is contained in int T and by applying the previous argument to K ′′ we
get K ′′ = K, so that K ′ = −K, as required.

We now show that X-rays at four points in general position suffice
for determining a convex body.

Theorem 8. Convex bodies in R2 are determined by X-rays at any
set of four points, with no three collinear, up to a reflection in the origin
when R2 = S2.

Proof. Let K and K ′ be two convex bodies with the same X-rays at
pj , 1 ≤ j ≤ 4. We first consider the Euclidean and hyperbolic cases,
since the spherical case is slightly different as we show below. If two
of the points pj belong to int K, then K = K ′ by [2, Proposition 22].
Therefore we can assume that at least three points, say pj , j = 1, 2, 3,
do not belong to int K. If the geodesic through two of the points, say
p1 and p2, intersects the interior of K, then p1 p2 /∈ int K ′, and K, K ′

intersect the same component of such a geodesic, since they also have
the same X-ray at p3, p4. Thus the result follows from [2, Theorem
28]. If the geodesic through two of the points supports K then K = K ′

by [3, Theorem 1]. If K is contained in the interior of the triangle T
whose vertices are the points pj , 1 ≤ j ≤ 3, then the result follows
from Theorem 7. Then by permuting the indices if necessary, we may
assume that K is contained in the cone determined by the geodesics
through p1 and pj , j = 2, 3, and containing the triangle T . In this case
we can apply the same argument used in [8, Theorem 5.3.6], where
in the hyperbolic case Lemma 5.2.5 and Lemma 5.2.7 (ii) have to be
replaced by Lemma 5 and Lemma 6 (ii), to get K ′ = K.

We now consider the spherical case.

If two of the points in P := {pj ,−pj , 1 ≤ j ≤ 4} belong to int K,
then the result follows from [2, Proposition 22], by Remark 2. Hence
at most one of the points in P belongs to int K, so that we can
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suppose pj ,−pj /∈ int K, where 1 ≤ j ≤ 3. If K does not intersect
any geodesic through two of the points pj , for 1 ≤ j ≤ 3, then K is
contained in the interior of one of the triangles with vertices belonging
to {pj ,−pj , 1 ≤ j ≤ 3}, so that the result follows from Theorem 7, by
Remark 2. If the geodesic through two of the points pj , for 1 ≤ j ≤ 3,
supports K then the result follows from [3, Theorem 1]. Thus, the case
that remains is when the geodesic through two of the points pj , for
1 ≤ j ≤ 3, say p1 and p2, intersects the interior of K. This case has
been considered in [2, Theorem 28], where nevertheless some additional
assumptions on the mutual positions of K and the points p1 and p2

were required. However, our assumptions here enable us to get the
result, as is shown below. Let us consider a hemisphere H such that
K ⊂ int H. Since the points pj , for 1 ≤ j ≤ 3, are noncollinear, then
pi �= −pj , for i.j = 1, 2, so that we can suppose pj ∈ int H, for j = 1, 2,
and int H ∩ γ ⊆ [p1, p2] ([p1, p2] being the geodesic segment joining p1

and p2), up to exchanging the roles of pj and −pj , thanks to Remark 2.
Denote the geodesic through p1 and p2 by γ. If γ supports K ′, then the
result follows again from [3, Theorem 1]. Hence we have γ∩ intK ′ �= ∅
and p1,p2 /∈ int K ′, since K and K ′ have the same X-rays at p1 and p2.
Further, since K and K ′ also have the same X-rays at p3 and p4, then
we have int K ′ ∩ γ ⊆ [p1, p2], up to a reflection in the origin. This also
implies K ′ ⊂ H, so that we can apply Theorem 28 proved in [2] to get
K ′ = K, up to a reflection in the origin.

We end this section by considering the case when the point sources
are collinear. In the Euclidean plane it is unknown if X-rays at n
collinear points suffice for determining a convex body, see [8, Problem
5.4]. Next we show that this question has a negative answer in the
sphere.

Proposition 9. For each n ∈ N, there exists a set of n collinear
points in S2 such that there are different convex spherical polygons with
the same X-rays at these points.

Proof. Let p ∈ S2 and let (r, θ) be geodesic polar coordinates centered
at p. For 0 < α < π/2, consider the spherical regular n-gon Q with
vertices aj := (α, 2πj/n), for 1 ≤ j ≤ n. Let Q′ be obtained from
Q by a rotation of π/n about p. Denote the vertices of Q′ by a′

j ,
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for 1 ≤ j ≤ n. The points aj , a
′
j , for 1 ≤ j ≤ n, are the vertices

of a spherical regular 2n-gon P . Denote by pj , −pj , for 1 ≤ j ≤ n,
the intersections of p⊥ ∩ S2 with the geodesic joining two consecutive
vertices of P . By symmetry Q and Q′ have the same X-rays at the set
of collinear points pj , for 1 ≤ j ≤ n.

For odd values of n the spherical polygons Q, Q′, introduced in the
previous proof, have the same X-rays at the point p as well. This
implies the following result.

Proposition 10. For each n ∈ N, there exists a set of n + 1 points
in S2, n of them on a same geodesic γ, such that there are different
convex polygons with the same X-rays at these points, which miss γ
and contain the remaining point.

For n = 2 this provides a negative answer to the spherical version
of Problem 5.3 in [8] and shows that knowledge of X-rays at three
points does not determine, in general, a convex body in a plane of
constant curvature, see also [3, Example 8]. Hence Theorem 8 cannot
be improved without restrictions on the curvature of the space.

4. On spherical lunes. In our definition a convex body in S2

cannot contain pairs of antipodal points. It is worth remarking that
convex sets on a convex surface are sometimes defined to be sets which
contain with any two points x and y at least a geodesic segment joining
the points x and y [1]. Further in some texts, see for instance [11], a
set K ⊂ Sn is said to be convex if the cone o ∗ K in En+1 defined by

o ∗ K := {λu : u ∈ K and λ ≥ 0}
is convex in En+1. Thus, according to this definition, in S2 we did not
include the set of lunes (a lune in Sn being the intersection of at most
n hemispheres). We prefer to treat this case apart, chiefly because it
renders a stronger result as we show below, see Theorem 14.

First let us observe that we cannot give unrestricted uniqueness
results. In fact, since the X-ray of a hemisphere H at each point p ∈
S2 \ bdH has constant value π, two hemispheres are not distinguished
by their X-rays at any set of points which are not in their boundaries.
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However, this is the unique exception, as we are going to show. We also
note that any point in the interior of a hemisphere H is an equichordal
point of H, according to the definition given in [8, pp. 225 226]. A
family of convex bodies in S2, different from hemispheres, with two
equichordal points is shown in [15].

For the rest of this section, a lune in S2 will always mean a set with
nonempty interior which is the intersection of two distinct hemispheres.
Therefore, a lune L contains exactly one pair of antipodal points q,−q,
called the poles of L, and it will be denoted by L(q) when its poles have
to be specified. The length of the arc L(q)∩ q⊥ will be called the girth
of L.

For x, y ∈ S2, we denote by d(x, y) the spherical distance between x
and y. By [x, y] we also denote the geodesic segment with endpoints
x and y, where y �= −x. Further d(x, A) will denote the distance of a
point x from a set A ⊂ S2.

We also need the following technical result.

Lemma 11. Let H be a hemisphere and q ∈ bd H. Consider a lune
L(q) ⊂ H with girth α and a geodesic γ through y ∈ bd H ∩ q⊥ such
that γ � bdH ∪ q⊥. Let {a, b} = γ ∩ bd L(q). Then d(a, b) decreases
with δ := min {d(y, L(q)), d(−y, L(q))} , when L(q) varies within the
set of the lunes with poles ±q and girth α.

Proof. Consider two lunes L1(q), L2(q) ⊂ H, with the same girth α.

Let δi := min {d(y, Li(q)), d(−y, Li(q))} and {ai, bi} = γ ∩ bdLi(q),
where i = 1, 2. We have to prove that δ1 < δ2 implies d(a1, b1) >
d(a2, b2). Up to a reflection in the center of H, we can suppose
δi = d(y, Li(q)), for i = 1, 2.

Suppose further that y, a1, b1, a2, b2 are in that order on γ. Let
n ∈ γ ∩ H be the point having distance π/2 from y and suppose
d(q, n) = min {d(q, n), d(−q, n)}. For i = 1, 2, we have

sin d(ai, bi) =
sin α

sin d(q, n)
sin d(q, ai) sin d(q, bi).

Since d(q, a1) > d(q, a2) and d(q, b1) > d(q, b2), we obtain the result.
The other cases can be treated similarly.
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In [2, Proposition 25] it was proved that a lune is uniquely determined
by its X-rays at two distinct inner points, up to reflection in the origin.
This is not the case when the two points do not belong to the lune, as
the following examples show, see also [3]. The first example considers
the case when the geodesic through the points meets the interior of the
lune, whereas in the second one the geodesic through the two points
supports the lune.

Example 12. Let q ∈ S2, and let (r, θ) be geodesic polar coordinates
centered at q. For 0 < α < β < π/2, let L and L′ be the lunes with
poles ±q which are defined by

L := {(r, θ) : 0 ≤ r ≤ π, α ≤ θ ≤ β} ,

L′ := {(r, θ) : 0 ≤ r ≤ π, π − β ≤ θ ≤ π − α} .

By symmetry L and L′ have the same X-rays at p1 := (π/2, 0) and
p2 := (π/2, π/2).

Example 13. Let q ∈ S2 and (r, θ) be geodesic polar coordinates
centered at q. Consider the lune L with poles ±q, defined by

L := {(r, θ) : 0 ≤ r ≤ π, π/4 ≤ θ ≤ 3π/4} ,

and let L′ be obtained from L by a rotation of π/2 about the point
p := (π/2, π/2). By symmetry L and L′ have the same X-rays at
p1 := (π/4, 0) and p2 := (π/4, π).

The last example shows that Theorem 1 in [3] does not hold for lunes.
Furthermore, in the previous examples the lunes L and L′ also have the
same X-rays at the points −pj , j = 1, 2, by Remark 2. Therefore, three
collinear points containing a pair of antipodal points in general do not
distinguish a lune from the others. However, in contrast to the case of
convex bodies, see Proposition 9, this is the unique exception, as we
are going to show.

Theorem 14. A lune in S2 is determined by X-rays at any set of
three points, noncontaining antipodal points, up to a reflection in the
origin.
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Proof. Let P := {pj , 1 ≤ j ≤ 3} be a set of distinct points in S2

noncontaining pairs of antipodal points, and let L ⊂ S2 be a lune with
poles q,−q. We can assume pj �= q,−q, for each j, with 1 ≤ j ≤ 3,
since otherwise L is uniquely determined by the X-rays at q, up to a
reflection in the origin. Denote by γj the geodesic through q and pj ,
for 1 ≤ j ≤ 3.

If L contains two distinct points of the set {pj ,−pj , 1 ≤ j ≤ 3} in its
interior, then the result follows from [2, Proposition 25].

Suppose that at most one of the points in the set {pj ,−pj , 1 ≤ j ≤ 3}
belongs to the interior of L. Let L′ be either a convex body or a lune
with the same X-rays as L at pj , for 1 ≤ j ≤ 3.

First we show that L′ is a lune as well. Suppose it is the contrary. If
either pj ∈ L or −pj ∈ L, for some j, then the geodesic joining pj and q
meets L and therefore also L′ in a segment of length π, contrary to the
assumption that L′ is not a lune. Hence we can suppose pj ,−pj /∈ L,
for 1 ≤ j ≤ 3, so that γj meets L exactly at q and −q, while any other
geodesic through pj meets L in a segment of positive length. The same
happens for L′, since L′ has the same X-rays as L at pj , for 1 ≤ j ≤ 3.
For 1 ≤ j ≤ 3, the geodesic γj is thus a support line of L′ and pj ∈ L′,
since L′ is not a lune. Further γj is the unique support line of L′ at pj .
The convexity of L′ gives a contradiction.

Hence let L′ �= ±L be a lune with poles q′,−q′, which has the same
X-rays as L at pj , for 1 ≤ j ≤ 3. We distinguish two cases.

Case 1. First let us suppose {q,−q} �= {q′,−q′}. For each j, with
1 ≤ j ≤ 3, the geodesic γj meets L either in a segment of length π or
at the two points q,−q. Since L′ is a lune having the same X-rays as
L at pj , then {q′,−q′} ⊂ (γj ∩ L′).

If γi �= γj , for some i �= j, then γi∩γj = {q,−q} = {q′,−q′}, contrary
to the assumption.

If γ1 = γ2 = γ3, then γ1 supports L and L′, since otherwise at least
two distinct points of {pj ,−pj , 1 ≤ j ≤ 3} belong to the interior of L or
L′, so that L′ = ±L by [2, Proposition 25], contrary to the assumption.
Let H be the hemisphere bounded by γ1 which contains L. Up to a
reflection in the origin we can assume L′ ⊂ H as well. Let us first
suppose that γ1 ∩L = {q,−q}. Then γ1 ∩L′ = {q,′ −q′} so that L∩L′
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is a quadrangle. Let a, b, c, d be the vertices of L∩L′ and suppose that
they are in that order on bd (L∩L′). Since L′ has the same X-rays as
L at pj , then the points pj belong either to the geodesic joining a and
c or to the geodesic joining b and d. This contradicts the assumption
that the set P does not contain a pair of antipodal points. Let us
now suppose that γ1 meets L in a segment of length π. Then L ∩ L′

is a triangle T having two vertices at the poles of L and L′, say q, q′.
Let v be the third vertex of T . The points pj , for 1 ≤ j ≤ 3, do
not belong to the side [q, q′] of T , since each geodesic joining pj to a
point in the relative interior of [v, q] meets L and L′ in segments of
different lengths. Thus we can suppose pj ∈ [q,−q′], for 1 ≤ j ≤ 3, up
to exchange the roles of pj and −pj , if necessary. For p ∈ [q,−q′], let
α := d(p, q), δ := d(q, q′). If α �= (π − δ)/2, then d(p, q′) �= d(q,−p),
so that the geodesic joining p to a point a ∈ [v, q′] sufficiently close
to q′ meets L and L′ in segments of different lengths. This gives a
contradiction.

Case 2. Let now {q,−q} = {q′,−q′}. First suppose that one of
the geodesics γj , say γ1, meets L just at q and −q. Denote by H
the hemisphere bounded by γ1 which contains L. Since L′ has the
same X-rays as L at p1, then γ1 ∩ L′ = {q,−q}, so that we can
assume L′ ⊂ H, up to a reflection in the origin. Further, we can
suppose p2, p3 ∈ H by Remark 2. Denote by α, α′ the girth of L, L′,
respectively. We can assume α ≤ α′, by exchanging the roles of
L and L′, if necessary. We select a point x ∈ q⊥ ∩ H such that
0 < d(x, L′) < min {d(x, L), d(−x, L)}. Let L′′(q) ⊆ L′(q) be a lune
with girth α such that d(x, L′′) = d(x, L′). Let us first suppose that the
points pj are noncollinear. Then at least one of them does not belong
to q⊥, say pi. Consider the geodesic δ joining x and pi. By Lemma 11,
δ meets L′′ in an arc which is longer than the corresponding arc in L.
This contradicts the assumption that L and L′ have the same X-rays at
pi. Now let us suppose that the points pj belong to a same geodesic γ. If
γ �= H∩q⊥ then again one of the points pj does not belong to q⊥ and we
can repeat the previous argument to get a contradiction. If γ = H ∩q⊥

then α = α′, since L and L′ have the same X-rays at pj . By applying
Lemma 11 to a geodesic δj through pj such that δj �= γ, γj , we get
min {d(pj , L), d(−pj , L)} = min {d(pj , L

′), d(−pj , L
′)}, for 0 ≤ j ≤ 3.

This gives a contradiction, since P does not contain pairs of antipodal
points.
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Let us now suppose that each geodesic γj , for 1 ≤ j ≤ 3, meets
L in a segment of length π. At least one of these geodesics, say γ1,
has empty intersection with int L ∪ int L′, since otherwise one of the
lunes L, L′ contains at least two points of the set {pj ,−pj , 1 ≤ j ≤ 3}
in its interior, contrary to the assumption. Let H be the hemisphere
bounded by γ1 which contains L. Up to a reflection in the origin, we
may assume L′ ⊂ H and p2, p3 ∈ H as well. If γ1 ∩ L′ = γ1 ∩ L,
then L = L′, since L and L′ have the same X-rays at p1. This gives
a contradiction. Therefore, let γ1 ∩ L′ �= γ1 ∩ L. We can assume
p1 ∈ γ1 ∩ L, by exchanging the roles of L and L′, if necessary. If
p1 /∈ q⊥, then there exists a geodesic η through p1 which meets
L ∩ (L�L′) in an arc longer than π/2, so that η meets L′ in an
arc shorter than π/2 since p1 is an equichordal point of H. This
contradicts the assumption that L and L′ have the same X-rays at
p1. If p1 ∈ q⊥, then L and L′ have the same girth α. By applying
Lemma 11 to a geodesic δ1 through p1 other than γ1 and q⊥ ∩ H, we
get min {d(p1, L), d(−p1, L)} = min {d(p1, L

′), d(−p1, L
′)}. Further at

least one of the points p2, p3, say p2, differs from the center c of H.
Thus, we can find a geodesic η through p2 which cut arcs with different
lengths in L and L′, contrary to the assumption that L and L′ have
the same X-rays at p2.
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