REAL RANK OF C^{*}-TENSOR PRODUCTS WITH THE C^{*}-ALGEBRA OF BOUNDED OPERATORS

TAKAHIRO SUDO

Abstract

We show under an assumption on the real rank zero that the real rank of the minimal C^{*}-tensor products of unital exact C^{*}-algebras with the C^{*}-algebra of bounded operators is less than or equal to one. Moreover, several consequences of this result are obtained.

1. Introduction. The real rank for C^{*}-algebras was introduced by Brown and Pedersen [3]. This notion has been quite important in the theory of C^{*}-algebras such as the classification theory of C^{*}-algebras, cf. $[\mathbf{9}]$ and its reference. On the other hand, some basic formulas for the real rank has been obtained by $[\mathbf{1}, \mathbf{3}, \mathbf{6}, \mathbf{1 0}, \mathbf{1 1}, \mathbf{1 5}]$, etc. However, it is hard to compute the real rank of C^{*}-algebras in some general situations so that some desirable formulas for the real rank has not been proven yet. For example, the real rank formula for C^{*}-tensor products has not been obtained completely.

In this paper we obtain a real rank formula for the minimal C^{*}-tensor products of unital exact C^{*}-algebras with the C^{*}-algebra of bounded operators under an assumption on the real rank zero. The main idea of the proof is a modification (to the real rank case) of Rieffel's proof for the stable rank formula $[\mathbf{1 6}$, Theorem 6.4$]$ for C^{*}-tensor products by the C^{*}-algebra of compact operators. However, the process of the real rank case is more complicated than the stable rank case as shown in Theorem 1. As a consequence, several results of the real rank of C^{*}-tensor products are obtained by using the results of Kodaka-Osaka [10, 11, 15], Zhang [24] and Lin [13]. Also, the real rank formula in Theorem 1 would be useful in other situations in the future. See [5, 17-22] for some related works.

Notation. Let $\mathbf{B}(H)$ be the C^{*}-algebra of all bounded operators on a separable infinite-dimensional Hilbert space H, and let \mathbf{K} be the C^{*} -

[^0]algebra of all compact operators on H. Denote by $Q(H)=\mathbf{B}(H) / \mathbf{K}$ the Calkin algebra. The symbol \otimes means the minimal (or unique) C^{*} tensor product throughout this paper. For a unital C^{*}-algebra \mathfrak{A}, or the unitization \mathfrak{A}^{+}of a nonunital C^{*}-algebra \mathfrak{A}, we denote by $\mathrm{RR}(\mathfrak{A})$ the real rank of \mathfrak{A}, cf. [3]. By definition, $\operatorname{RR}(\mathfrak{A}) \in\{0,1, \ldots, \infty\}$ and $\operatorname{RR}(\mathfrak{A}) \leq n$ if and only if for any $\varepsilon>0$ and $\left(a_{j}\right) \in \mathfrak{A}^{n+1}$ with $a_{j}^{*}=a_{j}$, there exists $\left(b_{j}\right) \in \mathfrak{A}^{n+1}$ with $b_{j}^{*}=b_{j}$ such that $\left\|a_{j}-b_{j}\right\|<\varepsilon$, $1 \leq j \leq n+1$, and $\sum_{j=1}^{n+1} b_{j}^{2}$ is invertible in \mathfrak{A} (this condition is equivalent to that there exists $\left(c_{j}\right) \in \mathfrak{A}^{n+1}$ such that $\sum_{j=1}^{n+1} c_{j} b_{j}$ is invertible in $\mathfrak{A})$.

Theorem 1. Let \mathfrak{A} be a unital exact C^{*}-algebra with $\mathrm{RR}(\mathfrak{A} \otimes$ $Q(H))=0$. Then we have $\operatorname{RR}(\mathfrak{A} \otimes \mathbf{B}(H)) \leq 1$.

Proof. Since \mathfrak{A} is exact, the following exact sequence is obtained, cf. [7]:

$$
0 \longrightarrow \mathfrak{A} \otimes \mathbf{K} \longrightarrow \mathfrak{A} \otimes \mathbf{B}(H) \xrightarrow{\pi} \mathfrak{A} \otimes Q(H) \longrightarrow 0
$$

Let a, b be two self-adjoint elements of $\mathfrak{A} \otimes \mathbf{B}(H)$. Then $\pi(a)$ and $\pi(b)$ can be approximated by invertible self-adjoint elements s, t of $\mathfrak{A} \otimes Q(H)$ by assumption, respectively. Let $c, d, c^{\prime} \in \mathfrak{A} \otimes \mathbf{B}(H)$ be self-adjoint lifts of s, t, s^{-1} respectively. Then there exist self-adjoint elements $l, l^{\prime} \in \mathfrak{A} \otimes \mathbf{K}$ such that the norms of $a-c-l$ and $b-d-l^{\prime}$ are small enough, and there exists $k \in \mathfrak{A} \otimes \mathbf{K}$ such that $1-k=c^{\prime} c$. We may replace l, l^{\prime} with self-adjoint finite sums $\sum l_{j} \otimes n_{j}, \sum l_{j}^{\prime} \otimes n_{j}^{\prime}$ of simple tensors $l_{j} \otimes n_{j}$ and $l_{j}^{\prime} \otimes n_{j}^{\prime}$ such that all the ranges of the factors n_{j}, n_{j}^{\prime} in \mathbf{K} are finite dimensional. By the following multiplication, we have

$$
\left(c^{\prime}(c+l), d+l^{\prime}\right)=\left(1-k+c^{\prime} l, d+l^{\prime}\right) \in(\mathfrak{A} \otimes \mathbf{K})^{+} \oplus(\mathfrak{A} \otimes \mathbf{B}(H))
$$

By the following matrix operation, we have

$$
\left(\begin{array}{cc}
1 & 0 \\
-d & 1
\end{array}\right)\binom{1-k+c^{\prime} l}{d+l^{\prime}}=\binom{1-k+c^{\prime} l}{d k-d c^{\prime} l+l^{\prime}} \in \oplus^{2}(\mathfrak{A} \otimes \mathbf{K})^{+}
$$

where we identify the units between $\mathfrak{A} \otimes \mathbf{B}(H)$ and $(\mathfrak{A} \otimes \mathbf{K})^{+}$. Since $k, d k \in \mathfrak{A} \otimes \mathbf{K}$, there exist finite sums $m=\sum m_{j}^{1} \otimes m_{j}^{2}$ and $n=\sum n_{j}^{1} \otimes n_{j}^{2}$ of simple tensors of $\mathfrak{A} \otimes \mathbf{K}$ such that all the ranges of m_{j}^{2} and n_{j}^{2} are
finite dimensional, and the norms $\|k-m\|$ and $\|d k-n\|$ are small enough. In particular, we may let $\|d k-n\|<\varepsilon^{2}$, where $\varepsilon>0$ is fixed later.

Let $P=1 \otimes p$ be a projection of $\mathfrak{A} \otimes \mathbf{K}$, where p is a finite rank projection with its range containing all the ranges of the factors $\left(m_{j}^{2}\right.$, n_{j}^{2} and n_{j}^{\prime}) in \mathbf{K} of simple tensors of m, n and l^{\prime} (finite sums of simple tensors), and all the spaces obtained by restricting (or reducing) the ranges of $c^{\prime} l, d c^{\prime} l$ to H. Let $1 \otimes q$ be a projection of $\mathfrak{A} \otimes \mathbf{K}$, where q is orthogonal and equivalent to p. Let $U=1 \otimes u, V=1 \otimes v$ be partial isometries of $\mathfrak{A} \otimes \mathbf{K}$ such that $u v=p$ and $v u=q$. Since l^{\prime} has no effect from the above multiplication and matrix operation, we may replace l^{\prime} with $l^{\prime}+\varepsilon\left(V+V^{*}\right)$ for $\varepsilon>0$ small enough. Then, it follows that

$$
\begin{aligned}
(1-P)(1- & \left.(k-m+m)+c^{\prime} l\right) \\
& +\varepsilon^{-1} U\left(d k-n+n-d c^{\prime} l\right. \\
& \left.+l^{\prime}+\varepsilon\left(V+V^{*}\right)\right) \\
= & 1-P-(k-m+m)+c^{\prime} l \\
& +P(k-m)-P\left(-m+c^{\prime} l\right) \\
& +\varepsilon^{-1} U(d k-n)+\varepsilon^{-1} U\left(n-d c^{\prime} l+l^{\prime}\right)+U\left(V+V^{*}\right) \\
= & 1-P-(k-m)+P(k-m)+\varepsilon^{-1} U(d k-n)+0+P \\
= & 1-(k-m)+P(k-m)+\varepsilon^{-1} U(d k-n) .
\end{aligned}
$$

Since the norms of $k-m, P(k-m)$ are small enough, and $\| \varepsilon^{-1} U(d k-$ $n) \|<\varepsilon$, the last expression in the above calculation is invertible in $(\mathfrak{A} \otimes \mathbf{K})^{+}$. This is equivalent to that $\left(1-k+c^{\prime} l\right)^{2}+\left(d k-d c^{\prime} l+l^{\prime}+\right.$ $\left.\varepsilon\left(V+V^{*}\right)\right)^{2}$ is invertible in $(\mathfrak{A} \otimes \mathbf{K})^{+} \subset \mathfrak{A} \otimes \mathbf{B}(H)$. Since the matrix in the above matrix operation is invertible, we deduce that there exist $r, r^{\prime} \in \mathfrak{A} \otimes \mathbf{B}(H)$ such that $r c^{\prime}(c+l)+r^{\prime}\left(d+l^{\prime}+\varepsilon\left(V+V^{*}\right)\right)$ is invertible in $\mathfrak{A} \otimes \mathbf{B}(H)$, cf. [16, Proposition 4.1]. Moreover, this is equivalent to that $(c+l)^{2}+\left(d+l^{\prime}+\varepsilon\left(V+V^{*}\right)\right)^{2}$ is invertible in $\mathfrak{A} \otimes \mathbf{B}(H)$. Therefore, it is concluded that $R R(\mathfrak{A} \otimes \mathbf{B}(H)) \leq 1$.

Remark. If $\mathfrak{A} \otimes Q(H)$ is unital, simple and purely infinite, then it has the real rank zero, cf. [3, Proposition 3.9]. Especially, we can take the Cuntz algebras O_{n} for $2 \leq n \leq \infty$ as \mathfrak{A} in Theorem 1. In fact, O_{n} is nuclear, and $\operatorname{RR}\left(O_{n} \otimes Q(H)\right)=0$ since $O_{n} \otimes Q(H)$ is simple and purely infinite, cf. [9, Proposition 4.5 and Theorem 5.11], [15, Corollary 2.3]. On the other hand, we can take all AF-algebras as \mathfrak{A} in Theorem 1.

Remark. For \mathfrak{A} a nonunital C^{*}-algebra, the assumption in Theorem 1 should be replaced by $\operatorname{RR}\left(\mathfrak{A}^{+} \otimes Q(H)\right)=0$. Then $\operatorname{RR}(\mathfrak{A} \otimes \mathbf{B}(H)) \leq 1$ is deduced from Theorem 1 and that $\mathfrak{A} \otimes \mathbf{B}(H)$ is a closed ideal of $\mathfrak{A}^{+} \otimes \mathbf{B}(H)$, cf. [6, Theorem 1.4].

Moreover, the following theorem is obtained:

Theorem 2. Let \mathfrak{A} be a unital exact C^{*}-algebra with $\mathrm{RR}(\mathfrak{A} \otimes$ $Q(H))=0$ and $K_{1}(\mathfrak{A}) \neq 0$. Then we have $\mathrm{RR}(\mathfrak{A} \otimes \mathbf{B}(H))=1$.

Proof. If \mathfrak{A} is a unital exact C^{*}-algebra with $K_{1}(\mathfrak{A}) \neq 0$, then $\operatorname{RR}(\mathfrak{A} \otimes \mathbf{B}(H)) \geq 1$ by Kodaka and Osaka ([10], [15, Proposition 1.1]). Combining this result with Theorem 1 , the conclusion is obtained. \square

Remark. We can take $\mathfrak{B D} \otimes O_{n}$ and $\mathfrak{A}_{\theta} \otimes O_{n}, 2 \leq n \leq \infty$, as \mathfrak{A} in Theorem 2, where $\mathfrak{B D}$ is one of the Bunce-Deddens algebras and \mathfrak{A}_{θ} is one of the irrational rotation algebras. In fact, $\mathfrak{B D} \otimes O_{n}$ and $\mathfrak{A}_{\theta} \otimes O_{n}$ are simple and purely infinite with $K_{1}\left(\mathfrak{B D} \otimes O_{n}\right) \neq 0$ and $K_{1}\left(\mathfrak{A}_{\theta} \otimes O_{n}\right) \neq 0$, cf. [8], [15, Remark 1.3], [4, V. 3 and V.7], [2, 10.11.4 and 10.11.8] and [23, 9.3.3 and 12.3]. However, it is known that $K_{1}\left(O_{n}\right)=0$ for $2 \leq n \leq \infty$. It is obtained by [15, Corollary 2.3] that $\operatorname{RR}\left(O_{n} \otimes \mathbf{B}(H)\right)=0$ for $2 \leq n \leq \infty$.

For simple C^{*}-algebras, the following theorem is obtained:

Theorem 3. Let \mathfrak{A} be a unital, simple, separable, purely infinite, nuclear C^{*}-algebra with $K_{1}(\mathfrak{A}) \neq 0$. Then $\mathrm{RR}(\mathfrak{A} \otimes \mathbf{B}(H))=1$.

Remark. If \mathfrak{A} is a unital, simple, separable, purely infinite, nuclear C^{*}-algebra, then $\mathfrak{A} \otimes Q(H)$ is always purely infinite by [$\left.\mathbf{9}\right]$, cf. [8]. See [15, Corollary 2.3 and its proof].

It is obtained by the same way as Theorem 1 that

Theorem 4. Let $M(\mathfrak{A} \otimes \mathbf{K})$ be the multiplier algebra of $\mathfrak{A} \otimes \mathbf{K}$ for \mathfrak{A} either a σ-unital purely infinite, simple C^{*}-algebra or a σ-unital simple C^{*}-algebra with $\operatorname{RR}(\mathfrak{A})=0$ and stable rank one. Then

$$
\operatorname{RR}(M(\mathfrak{A} \otimes \mathbf{K}))= \begin{cases}0 & \text { if } K_{1}(\mathfrak{A})=0 \\ 1 & \text { if } K_{1}(\mathfrak{A}) \neq 0\end{cases}
$$

Proof. Note that the following exact sequence is obtained:

$$
0 \longrightarrow \mathfrak{A} \otimes \mathbf{K} \longrightarrow M(\mathfrak{A} \otimes \mathbf{K}) \longrightarrow M(\mathfrak{A} \otimes \mathbf{K}) / \mathfrak{A} \otimes \mathbf{K} \longrightarrow 0
$$

By [24, Corollary 2.6] or [13, Theorem 15], $\mathrm{RR}(M(\mathfrak{A} \otimes \mathbf{K}) / \mathfrak{A} \otimes \mathbf{K})=0$. Note that $\mathfrak{A} \otimes \mathbf{K}$ has real rank zero and stable rank one by $[\mathbf{3}$, Corollary $3.3]$ and $[\mathbf{1 6}$, Theorem 3.6]. Moreover, it is obtained by [24, Corollary 2.6] that $\operatorname{RR}(M(\mathfrak{A} \otimes \mathbf{K}))=0$ if and only if $K_{1}(\mathfrak{A})=0$. Thus, if $K_{1}(\mathfrak{A}) \neq 0$, then $\operatorname{RR}(M(\mathfrak{A} \otimes \mathbf{K})) \geq 1$.

Remark. See [15, Corollary 2.4] for the same result in the case of \mathfrak{A} a nonunital, σ-unital purely infinite simple C^{*}-algebra. Also see $[\mathbf{1 2}$, Theorem 3.2] as a related result on extremally rich C^{*}-algebras. On the other hand, it is deduced from [24, Examples 2.7] and Theorem 4 that

$$
\operatorname{RR}\left(M(\mathbf{K} \otimes Q(H))=1, \quad \text { and } \quad \operatorname{RR}\left(M\left(\mathbf{K} \otimes O_{A}\right)\right)=1\right.
$$

where O_{A} is the Cuntz-Krieger algebra for A an irreducible matrix such that $\operatorname{det}(I-A)=0$. Moreover, it is obtained from [24, Corollary 3.6] that

$$
\begin{cases}\operatorname{RR}\left(M\left(C_{(2 m-1)}(\mathfrak{A}) \otimes \mathbf{K}\right)\right)=1 & \text { if } K_{0}(\mathfrak{A}) \neq 0 \\ \operatorname{RR}\left(M\left(C_{(2 m)}(\mathfrak{A}) \otimes \mathbf{K}\right)\right)=1 & \text { if } K_{1}(\mathfrak{A}) \neq 0\end{cases}
$$

for \mathfrak{A} a σ-unital, nonunital purely infinite, simple C^{*}-algebra, where $C_{(n+1)}(\mathfrak{A})=M\left(C_{(n)}(\mathfrak{A}) \otimes \mathbf{K}\right) / C_{(n)}(\mathfrak{A}) \otimes \mathbf{K}$ for $n \geq 1$, with $C_{(1)}(\mathfrak{A})=$ $M(\mathfrak{A}) / \mathfrak{A}$.

As a remarkable generalization of Theorem 1, the following is obtained:

Theorem 5. Let \mathcal{E} be an extension of a C^{*}-algebra \mathfrak{B} with $\mathrm{RR}(\mathfrak{B})=$ 0 by $\mathfrak{A} \otimes \mathbf{K}$ for \mathfrak{A} a C^{*}-algebra. Then $\operatorname{RR}(\mathcal{E}) \leq 1$.

Proof. Note that $0 \rightarrow \mathfrak{A} \otimes \mathbf{K} \rightarrow \mathcal{E} \rightarrow \mathfrak{B} \rightarrow 0$. If \mathcal{E} is nonunital, we have $0 \rightarrow \mathfrak{A} \otimes \mathbf{K} \rightarrow \mathcal{E}^{+} \rightarrow \mathfrak{B}^{+} \rightarrow 0$, with $\operatorname{RR}\left(\mathfrak{B}^{+}\right)=\operatorname{RR}(\mathfrak{B})=0$. The the rest of the proof is the same as the proof of Theorem 1.

Remark. This result would be useful in the extension theory of C^{*} algebras with real rank zero. Note that $\operatorname{RR}(\mathcal{E})=1$ when $\operatorname{RR}(\mathfrak{A} \otimes \mathbf{K})=$ 1. For example, we may let $\mathfrak{A}=C([0,1])$ the C^{*}-algebra of continuous functions on $[0,1]$, cf. [14, Proposition 5.1]. On the other hand, we obtain $\operatorname{RR}(\mathcal{E})=0$ when $\mathfrak{A}=\mathbf{C}$ and $\mathfrak{B}=O_{n}$ or $\mathbf{B}(H)$ by [11, Lemma 1] or $[\mathbf{1 4}$, Proposition 1.6].

Finally, we state the following question:

Question. Is it true that $\operatorname{RR}(\mathfrak{A} \otimes \mathbf{B}(H)) \leq 1$ for any C^{*}-algebra \mathfrak{A} ?

Remark. If this question is true, we obtain $\operatorname{RR}(\mathbf{B}(H) \otimes \mathbf{B}(H)) \leq$ 1, which answers Osaka's question in [15]. Unfortunately, $\mathbf{B}(H)$ is nonexact $([\mathbf{7}])$, so that our Theorem 1 is not available to this case. On the other hand, $\operatorname{RR}(\mathfrak{A} \otimes \mathbf{K}) \leq 1$ for any C^{*}-algebra \mathfrak{A} by $[\mathbf{1}]$.

Acknowledgment. The author would like to thank Professor Hiroyuki Osaka for some stimulating conversations and comments.

REFERENCES

1. E.J. Beggs and D.E. Evans, The real rank of algebras of matrix valued functions, Internat. J. Math. 2 (1991), 131-138.
2. B. Blackadar, K-theory for operator algebras, 2nd ed., Cambridge, 1998
3. L.G. Brown and G.K. Pedersen, C^{*}-algebras of real rank zero, J. Funct. Anal. 99 (1991), 131-149.
4. K.R. Davidson, C^{*}-algebras by example, Fields Inst. Monogr., Amer. Math. Soc., Providence, 1996.
5. N. Elhage Hassan, Rangs stables de certaines extensions, J. London Math. Soc. 52 (1995), 605-624.
6. N. Elhage Hassan, Rang réel de certaines extensions, Proc. Amer. Math. Soc. 123 (1995), 3067-3073.
7. E. Kirchberg, The Fubini theorem for exact C^{*}-algebras, J. Operator Theory 10 (1983), 3-8.
8. -, The classification of purely infinite C^{*}-algebras using Kasparov's theory, preprint.
9. E. Kirchberg and M. Rørdam, Non-simple purely infinite C^{*}-algebras, Amer. J. Math. 122 (2000), 637-666.
10. K. Kodaka and H. Osaka, Real rank of tensor products of C^{*}-algebras, Proc. Amer. Math. Soc. 123 (1995), 2213-2215.
11. - FS-Property for C^{*}-algebras, Proc. Amer. Math. Soc. 129 (2000), 999-1003.
12. N.S. Larsen and H. Osaka, Extremal richness of multiplier algebras and corona algebras of simple C^{*}-algebras, J. Operator Theory 38 (1997), 131-149.
13. H. Lin, Exponential rank of C^{*}-algebras with real rank zero and the BrownPedersen conjectures, J. Funct. Anal. 114 (1993), 1-11.
14. M. Nagisa, H. Osaka and N.C. Phillips, Ranks of algebras of continuous C^{*}-algebra valued functions, Canad. J. Math. 53 (2001), 979-1030.
15. H. Osaka, Certain C^{*}-algebras with non-zero real rank and extremal richness, Math. Scand. 85 (1999), 79-86.
16. M.A. Rieffel, Dimension and stable rank in the K-theory of C^{*}-algebras, Proc. London Math. Soc. 46 (1983), 301-333.
17. T. Sudo, Stable rank of the reduced C^{*}-algebras of non-amenable Lie groups of type I, Proc. Amer. Math. Soc. 125 (1997), 3647-3654.
18. , Stable rank of the C^{*}-algebras of amenable Lie groups of type I, Math. Scand. 84 (1999), 231-242.
19. Dimension theory of group C^{*}-algebras of connected Lie groups of type I, J. Math. Soc. Japan 52 (2000), 583-590.
20. -, Structure of group C^{*}-algebras of Lie semi-direct products $\mathbf{C}^{n} \rtimes \mathbf{R}$, J. Operator Theory 46 (2001), 25-38.
21. T. Sudo and H. Takai, Stable rank of the C^{*}-algebras of nilpotent Lie groups, Internat. J. Math. 6 (1995), 439-446.
22. - Stable rank of the C^{*}-algebras of solvable Lie groups of type I, J. Operator Theory 38 (1997), 67-86.
23. N.E. Wegge-Olsen, K-theory and C^{*}-algebras, Oxford Univ. Press, Oxford, 1993.
24. S. Zhang, Certain C^{*}-algebras with real rank zero and their corona and multiplier algebras, Part I, Pacific J. Math. 155 (1992), 169-197.

Department of Mathematical Sciences, Faculty of Science, University
of the Ryukyus, Nishihara, Okinawa 903-0213, Japan
E-mail address: sudo@math.u-ryukyu.ac.jp

[^0]: 2000 AMS Mathematics Subject Classification. Primary 46L05, 46L80, 19K56.
 Key words and phrases. Real rank, C^{*}-tensor products, bounded operators.
 Received by the editors on June 3, 2002.

