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REAL RANK OF C∗-TENSOR PRODUCTS WITH THE
C∗-ALGEBRA OF BOUNDED OPERATORS

TAKAHIRO SUDO

ABSTRACT. We show under an assumption on the real
rank zero that the real rank of the minimal C∗-tensor products
of unital exact C∗-algebras with the C∗-algebra of bounded
operators is less than or equal to one. Moreover, several
consequences of this result are obtained.

1. Introduction. The real rank for C∗-algebras was introduced by
Brown and Pedersen [3]. This notion has been quite important in the
theory of C∗-algebras such as the classification theory of C∗-algebras,
cf. [9] and its reference. On the other hand, some basic formulas for the
real rank has been obtained by [1, 3, 6, 10, 11, 15], etc. However, it is
hard to compute the real rank of C∗-algebras in some general situations
so that some desirable formulas for the real rank has not been proven
yet. For example, the real rank formula for C∗-tensor products has not
been obtained completely.

In this paper we obtain a real rank formula for the minimal C∗-tensor
products of unital exact C∗-algebras with the C∗-algebra of bounded
operators under an assumption on the real rank zero. The main idea
of the proof is a modification (to the real rank case) of Rieffel’s proof
for the stable rank formula [16, Theorem 6.4] for C∗-tensor products
by the C∗-algebra of compact operators. However, the process of the
real rank case is more complicated than the stable rank case as shown
in Theorem 1. As a consequence, several results of the real rank of
C∗-tensor products are obtained by using the results of Kodaka-Osaka
[10, 11, 15], Zhang [24] and Lin [13]. Also, the real rank formula in
Theorem 1 would be useful in other situations in the future. See [5,
17 22] for some related works.

Notation. Let B(H) be the C∗-algebra of all bounded operators on
a separable infinite-dimensional Hilbert space H, and let K be the C∗-
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algebra of all compact operators on H. Denote by Q(H) = B(H)/K
the Calkin algebra. The symbol ⊗ means the minimal (or unique) C∗-
tensor product throughout this paper. For a unital C∗-algebra A, or
the unitization A+ of a nonunital C∗-algebra A, we denote by RR (A)
the real rank of A, cf. [3]. By definition, RR (A) ∈ {0, 1, . . . ,∞}
and RR (A) ≤ n if and only if for any ε > 0 and (aj) ∈ An+1 with
a∗

j = aj , there exists (bj) ∈ An+1 with b∗j = bj such that ‖aj − bj‖ < ε,
1 ≤ j ≤ n + 1, and

∑n+1
j=1 b2

j is invertible in A (this condition is
equivalent to that there exists (cj) ∈ An+1 such that

∑n+1
j=1 cjbj is

invertible in A).

Theorem 1. Let A be a unital exact C∗-algebra with RR (A ⊗
Q(H)) = 0. Then we have RR (A ⊗ B(H)) ≤ 1.

Proof. Since A is exact, the following exact sequence is obtained, cf.
[7]:

0 −→ A ⊗ K −→ A ⊗ B(H) π−→ A ⊗ Q(H) −→ 0.

Let a, b be two self-adjoint elements of A ⊗ B(H). Then π(a) and
π(b) can be approximated by invertible self-adjoint elements s, t of
A ⊗ Q(H) by assumption, respectively. Let c, d, c′ ∈ A ⊗ B(H) be
self-adjoint lifts of s, t, s−1 respectively. Then there exist self-adjoint
elements l, l′ ∈ A⊗K such that the norms of a− c− l and b−d− l′ are
small enough, and there exists k ∈ A ⊗ K such that 1 − k = c′c. We
may replace l, l′ with self-adjoint finite sums

∑
lj ⊗ nj ,

∑
l′j ⊗ n′

j of
simple tensors lj ⊗nj and l′j ⊗n′

j such that all the ranges of the factors
nj , n

′
j in K are finite dimensional. By the following multiplication, we

have

(c′(c + l), d + l′) = (1 − k + c′l, d + l′) ∈ (A ⊗ K)+ ⊕ (A ⊗ B(H)).

By the following matrix operation, we have
(

1 0
−d 1

) (
1 − k + c′l

d + l′

)
=

(
1 − k + c′l

dk − dc′l + l′

)
∈ ⊕2(A ⊗ K)+

where we identify the units between A ⊗ B(H) and (A ⊗ K)+. Since
k, dk ∈ A⊗K, there exist finite sums m =

∑
m1

j⊗m2
j and n =

∑
n1

j⊗n2
j

of simple tensors of A ⊗ K such that all the ranges of m2
j and n2

j are
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finite dimensional, and the norms ‖k − m‖ and ‖dk − n‖ are small
enough. In particular, we may let ‖dk − n‖ < ε2, where ε > 0 is fixed
later.

Let P = 1 ⊗ p be a projection of A ⊗ K, where p is a finite rank
projection with its range containing all the ranges of the factors (m2

j ,
n2

j and n′
j) in K of simple tensors of m, n and l′ (finite sums of simple

tensors), and all the spaces obtained by restricting (or reducing) the
ranges of c′l, dc′l to H. Let 1 ⊗ q be a projection of A ⊗ K, where q is
orthogonal and equivalent to p. Let U = 1 ⊗ u, V = 1 ⊗ v be partial
isometries of A⊗K such that uv = p and vu = q. Since l′ has no effect
from the above multiplication and matrix operation, we may replace l′

with l′ + ε(V + V ∗) for ε > 0 small enough. Then, it follows that

(1 − P )(1 − (k − m + m) + c′l)

+ ε−1U(dk − n + n − dc′l
+ l′ + ε(V + V ∗))

= 1 − P − (k − m + m) + c′l
+ P (k − m) − P (−m + c′l)
+ ε−1U(dk − n) + ε−1U(n − dc′l + l′) + U(V + V ∗)

= 1 − P − (k − m) + P (k − m) + ε−1U(dk − n) + 0 + P

= 1 − (k − m) + P (k − m) + ε−1U(dk − n).

Since the norms of k−m, P (k−m) are small enough, and ‖ε−1U(dk−
n)‖ < ε, the last expression in the above calculation is invertible in
(A ⊗ K)+. This is equivalent to that (1 − k + c′l)2 + (dk − dc′l + l′ +
ε(V + V ∗))2 is invertible in (A ⊗ K)+ ⊂ A ⊗ B(H). Since the matrix
in the above matrix operation is invertible, we deduce that there exist
r, r′ ∈ A⊗B(H) such that rc′(c+ l)+r′(d+ l′+ε(V +V ∗)) is invertible
in A ⊗ B(H), cf. [16, Proposition 4.1]. Moreover, this is equivalent to
that (c+ l)2+(d+ l′+ε(V +V ∗))2 is invertible in A⊗B(H). Therefore,
it is concluded that RR (A ⊗ B(H)) ≤ 1.

Remark. If A⊗Q(H) is unital, simple and purely infinite, then it has
the real rank zero, cf. [3, Proposition 3.9]. Especially, we can take the
Cuntz algebras On for 2 ≤ n ≤ ∞ as A in Theorem 1. In fact, On is
nuclear, and RR (On⊗Q(H)) = 0 since On⊗Q(H) is simple and purely
infinite, cf. [9, Proposition 4.5 and Theorem 5.11], [15, Corollary 2.3].
On the other hand, we can take all AF-algebras as A in Theorem 1.
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Remark. For A a nonunital C∗-algebra, the assumption in Theorem 1
should be replaced by RR (A+ ⊗Q(H)) = 0. Then RR (A⊗B(H)) ≤ 1
is deduced from Theorem 1 and that A ⊗ B(H) is a closed ideal of
A+ ⊗ B(H), cf. [6, Theorem 1.4].

Moreover, the following theorem is obtained:

Theorem 2. Let A be a unital exact C∗-algebra with RR (A ⊗
Q(H)) = 0 and K1(A) 
= 0. Then we have RR (A ⊗ B(H)) = 1.

Proof. If A is a unital exact C∗-algebra with K1(A) 
= 0, then
RR (A ⊗ B(H)) ≥ 1 by Kodaka and Osaka ([10], [15, Proposition
1.1]). Combining this result with Theorem 1, the conclusion is obtained.

Remark. We can take BD ⊗ On and Aθ ⊗ On, 2 ≤ n ≤ ∞, as A
in Theorem 2, where BD is one of the Bunce-Deddens algebras and
Aθ is one of the irrational rotation algebras. In fact, BD ⊗ On and
Aθ ⊗ On are simple and purely infinite with K1(BD ⊗ On) 
= 0 and
K1(Aθ ⊗ On) 
= 0, cf. [8], [15, Remark 1.3], [4, V.3 and V.7], [2,
10.11.4 and 10.11.8] and [23, 9.3.3 and 12.3]. However, it is known
that K1(On) = 0 for 2 ≤ n ≤ ∞. It is obtained by [15, Corollary 2.3]
that RR (On ⊗ B(H)) = 0 for 2 ≤ n ≤ ∞.

For simple C∗-algebras, the following theorem is obtained:

Theorem 3. Let A be a unital, simple, separable, purely infinite,
nuclear C∗-algebra with K1(A) 
= 0. Then RR (A ⊗ B(H)) = 1.

Remark. If A is a unital, simple, separable, purely infinite, nuclear
C∗-algebra, then A⊗Q(H) is always purely infinite by [9], cf. [8]. See
[15, Corollary 2.3 and its proof].

It is obtained by the same way as Theorem 1 that
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Theorem 4. Let M(A⊗K) be the multiplier algebra of A⊗K for A
either a σ-unital purely infinite, simple C∗-algebra or a σ-unital simple
C∗-algebra with RR (A) = 0 and stable rank one. Then

RR (M(A ⊗ K)) =
{

0 if K1(A) = 0,
1 if K1(A) 
= 0.

Proof. Note that the following exact sequence is obtained:

0 −→ A ⊗ K −→ M(A ⊗ K) −→ M(A ⊗ K)/A ⊗ K −→ 0.

By [24, Corollary 2.6] or [13, Theorem 15], RR (M(A⊗K)/A⊗K) = 0.
Note that A⊗K has real rank zero and stable rank one by [3, Corollary
3.3] and [16, Theorem 3.6]. Moreover, it is obtained by [24, Corollary
2.6] that RR (M(A ⊗ K)) = 0 if and only if K1(A) = 0. Thus, if
K1(A) 
= 0, then RR (M(A ⊗ K)) ≥ 1.

Remark. See [15, Corollary 2.4] for the same result in the case of A
a nonunital, σ-unital purely infinite simple C∗-algebra. Also see [12,
Theorem 3.2] as a related result on extremally rich C∗-algebras. On
the other hand, it is deduced from [24, Examples 2.7] and Theorem 4
that

RR(M(K⊗ Q(H)) = 1, and RR(M(K⊗ OA)) = 1,

where OA is the Cuntz-Krieger algebra for A an irreducible matrix such
that det(I − A) = 0. Moreover, it is obtained from [24, Corollary 3.6]
that {

RR (M(C(2m−1)(A) ⊗ K)) = 1 if K0(A) 
= 0,
RR (M(C(2m)(A) ⊗ K)) = 1 if K1(A) 
= 0

for A a σ-unital, nonunital purely infinite, simple C∗-algebra, where
C(n+1)(A) = M(C(n)(A) ⊗ K)/C(n)(A) ⊗ K for n ≥ 1, with C(1)(A) =
M(A)/A.

As a remarkable generalization of Theorem 1, the following is ob-
tained:
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Theorem 5. Let E be an extension of a C∗-algebra B with RR (B) =
0 by A ⊗ K for A a C∗-algebra. Then RR (E) ≤ 1.

Proof. Note that 0 → A ⊗ K → E → B → 0. If E is nonunital, we
have 0 → A⊗K → E+ → B+ → 0, with RR (B+) = RR (B) = 0. The
the rest of the proof is the same as the proof of Theorem 1.

Remark. This result would be useful in the extension theory of C∗-
algebras with real rank zero. Note that RR (E) = 1 when RR (A⊗K) =
1. For example, we may let A = C([0, 1]) the C∗-algebra of continuous
functions on [0, 1], cf. [14, Proposition 5.1]. On the other hand, we
obtain RR (E) = 0 when A = C and B = On or B(H) by [11, Lemma
1] or [14, Proposition 1.6].

Finally, we state the following question:

Question. Is it true that RR (A⊗B(H)) ≤ 1 for any C∗-algebra A?

Remark. If this question is true, we obtain RR (B(H) ⊗ B(H)) ≤
1, which answers Osaka’s question in [15]. Unfortunately, B(H) is
nonexact ([7]), so that our Theorem 1 is not available to this case. On
the other hand, RR (A ⊗ K) ≤ 1 for any C∗-algebra A by [1].
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