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AND GELFAND-SHILOV SPACES

MARCO CAPPIELLO AND LUIGI RODINO

1. Introduction. Linear partial differential operators, or more
generally pseudodifferential operators, of SG-type (symbol global-type)
are defined in R™ by imposing suitable algebraic asymptotics as z — oo
for the symbols of the operators. Basic examples are —A + 1 and for
k>1

(0.1) H=(1+|z*)(~A+1) + Lyi(z,D)

where Lq(x, D) is a first order operator with polynomial coefficients of
degree 2k — 1. Let us refer to Parenti [16], Cordes [5], Schrohe [21],
Egorov and Schulze [10], Schulze [22] for a precise definition and the
corresponding pseudodifferential calculus in the frame of the Schwartz
spaces S(R™),S'(R™). As an application for the SG-elliptic operators
P, having H in (0.1) as prototype, the above mentioned authors
construct parametrices and deduce in particular the following result
of global regularity: all the solutions u € §'(R") of Pu = f € S(R")
are of class S(R™). In particular, when P is self-adjoint, as we have
for H in (0.1) if Li(x, D) is suitably chosen, there exists a system
of eigenfunctions in the space S(R"); see, for example, Maniccia and
Panarese [15] for the corresponding eigenvalue asymptotics.

Our aim in this paper is to obtain more precise information concern-
ing the behavior for x — oo and the local regularity of the solutions un-
der related assumptions on the regularity of the coefficients. The func-
tional frame, providing the two results simultaneously, is given here by
the classes S§(R™), 89 (R™),0 > 1, introduced by Gelfand and Shilov

[11]. Let us recall that Sj(R") is a subclass of S(R™), combining the

exponential decay e*L|‘”‘1/9, L > 0, with the local Gevrey estimates

of order 6, i.e., |Du(x)| < C1*I*1(a!)?. In turn, the ultradistribution
space S§ (R™) contains S’(R") and admits as examples functions with
growth eX*I” 5 < 1/6, see Section 1 for details. Observe that the
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1118 M. CAPPIELLO AND L. RODINO

classes S§(R") have been widely used in other contexts under different
names and notations, cf. the recent papers by Biagioni and Gramchev
[2] and by Pilipovic and Teofanov [17, 18].

In Section 2, we give a pseudodifferential SG-calculus in S§(R"),
SY (R™). Proofs are given in a shortened form, since they are variants
of the standard SG versions after combining with the local Gevrey
calculus in Rodino [20], Zanghirati [26], Hashimoto, Matsuzawa and
Morimoto [13], Cappiello [3, 4]. As an application we obtain a result of
Sf-regularity for the SG-elliptic operators P, namely all the solutions
u € S§(R") of Pu= f € S§(R™) are of class S§(R™), in particular,
they satisfy for 6 > 1 estimates of the type

(0.2) lu(z)| < Ce L=V’ 2 e R™

For H in (0.1), we intersect a number of known results, see for example
the work of Agmon [1], the recent paper of Rabier and Stuart [19]
and the references therein, using completely different arguments. The
estimate (0.2) with 6 = 1 will remain unfortunately outside of our
result, because of the technical difficulties coming from the analytic
class.

The second part of the paper is devoted to a microlocal version of
the regularity theorem above. As a preliminary step, in Section 3 we
present polyhomogeneous SG-symbols according to the approach in
[10, 22]; basic examples are operators with polynomial coefficients
including (0.1) as a particular case. Finally, in Section 4, we define a
particular wave front set for distributions on Sg/(R”)7 which allows to
control their behavior “at infinity” and prove the microellipticity and
microregularity relations with respect to classical SG-operators defined
in Section 3. The results presented here will be used in forthcoming
papers to study the well posedness and the propagation of singularities
for SG-hyperbolic problems in Gelfand-Shilov spaces, see Cordes [5],
Coriasco and Rodino [9], Coriasco and Panarese [8], Coriasco and
Maniccia [7] for the corresponding analysis in S(R™), S’'(R™).

1. Gelfand-Shilov spaces. In this section we introduce the
functional frame for our pseudodifferential calculus giving the basic
definitions and properties of the Gelfand-Shilov spaces Sg (R™), 0> 1,
and describing their relations with the Gevrey spaces. We will refer to
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[11, 12] for proofs and details. In the following, we will denote by Z
the set of all positive integers and by N the set Z U {0}.

Let A, B € Z, and 0 be a positive real number such that § > 1.

Definition 1.1. We denote by Sg:f (R™) the space of all functions
u in C*°(R™) such that

(1.1) sup sup A~lIB=IBl(a131)~0 |xa8£u(x)| < +o0.
a,FEN™ zeR™

We set o
Sp(R") = U Spa(R").
A,BEZ,

For any A, B € Z, the space Sg:f (R™) is a Banach space endowed
with the norm given by the left-hand side of (1.1). Therefore, we
can consider the space S§(R™) as an inductive limit of an increasing
sequence of Banach spaces.

Let us give another characterization of the space Sj(R™), providing
another equivalent topology to S§(R™), cf. the proof of Theorem 2.2
below.

Proposition 1.2. S§(R") is the space of all functions u € C*°(R™)
such that

sup sup Bfw(ﬂ!)feeL‘zll/e\3fu(x)| < 400
BEN™ zeR™

for some positive B, L.

Proposition 1.3. The following statements hold.
i) S§(R™) is closed under the differentiation;

ii) If f is a function in C°(R™) such that, for every e > 0 and for
some B >0 »
|05 f ()] < C.B* (o) %€ "]
for all x € R™, o € N, then the multiplication by f is a continuous
map from S§(R™) to S§(R™).
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Remark 1. We have
GJ(R") C S§(R™) € G°(R™),

where GY(R") is the Gevrey space of all functions u € C*(R")
satisfying for every compact subset K of R" estimates of the form

sup B8 (81) sup |08u(x)]| < +oo
BEN™ zeK

for some B = B(K) > 0 and GY(R") is the space of all functions of
G?(R™) with compact support.

We shall denote by Sg/ (R™) the dual space, i.e., the space of all linear
continuous forms on S§(R™).

An equivalent characterization of the elements of S’g / (R™) is given by
the following proposition.

Proposition 1.4. A linear form u on S§(R™) belongs to S§ (R™)
if and only if for every A, B € Z., there exists C = C(A, B) > 0 such
that

lu()] < C sup ATIMB=IB(a13) 70 sup |2205u(x)]
a,BEN™ z€ER™

for all v € S§(R™).

Remark 2. Given u € S§ (R"), the restriction of u on GZ(R") is a
Gevrey ultradistribution in Dj(R™), topological dual of G(R"). In
this sense, we have that S§ (R") C Dj(R"). Similarly, the space of the
ultradistributions with compact support £,(R") can be regarded as a

subset of S§ (R™).

Theorem 1.5. There exists an isomorphism between the space
L(S§(R™), S (R™)) of all linear continuous maps from S§(R™) to
SY(R™), and S§ (R*"), which associates to every T € L(S§(R™),
SY'(R™)) a distribution Kr € S§ (R?") such that

(Tu,v) = (Kr,v ®u)

for every u,v € S§(R™). Kr is called the kernel of T
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Finally we give a result concerning the action of the Fourier transfor-
mation on S§(R™).

Proposition 1.6. The Fourier transformation u — U defined by
(&) :/ e‘“’”’@u(:ﬂ) dx
Rn

s an automorphism of S’g(R”), and it extends to an automorphism of
S8 (R)

2. SG-calculus on Gelfand-Shilov spaces. In the following we
will use the following notation:

() = (14 |z|))? for zeR"
Dy =Dg!...Dgr forall aeN", xeR",
where D,, = —i0,,, h=1,... ,n.

Let w,v be real numbers such that p > 1, v > 1, and let m =
(m1,mo) € R2.

Definition 2.1. For every C' > 0, we denote by T/ (R*";C) the
Banach space of all functions p(x,£) € C*°(R?") such that

sup sup Cf‘o‘Hm(a!)fﬂ(ﬁ!)f”@)_mlﬂal<x>_m2+‘m
o,BEN™ (z,6)ER2"
x |DgDIp(x,€)| < +00
endowed with the norm || - ||¢ given by the left-hand side of (2.1).
We set
m 2ny\ __ . m 2n,
FHV(R ) - lll;n F/,LV(R ’C)
C—+o0

with the topology of inductive limit of an increasing sequence of Banach
spaces.

Given a symbol p € T (R*"), we can consider the associated
pseudodifferential operator defined by

(22) Pu(x) = p(, D)u(x) = / 0 p(r, €)i(€)dE, e SYR™)

n
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where d§ = (2m)""d{. We denote by OPS);,(R") the space of all
operators of the form (2.2) defined by a symbol p el (R™). We set

oPS,,(R") = |J oPSp(R™).

;u/
meR?

This is a subclass of the SG-pseudodifferential operators in [5, 10,
16, 21, 22] on S(R™), S'(R™). Taking advantage of the estimates (2.1)
we are able to prove continuity on S§(R").

Theorem 2.2. Let p € I, (R*"), and let 6 be a real number such
that > max{u,v}. Then, the operator P defined by (2.2) is a linear
continuous operator from S’g(R”) to S§(R™) and it extends to a linear
continuous map from Sgl(R”) to S’g/ (R™).

Proof. Let A, B € Z and F be a bounded subset of ng(R") It is
sufficient to show that there exists Ay, By € Zy, C > 0, such that for
every «, 3 € N,

(2.3) sup. |22 DE Pu(z)| < c A B (alp1)?

for all u € F, with A, By, C independent of u € F. We have, for every
NeZ,

2D Pu(w) = 2% ) (ﬁ,) / e e 8 DI~ p(a, )in(€)de
g\

) Y (ﬁ/) / @9 (1 - AN [ DI pla, €a€)

B'<B

ac.

—

By Propositions 1.2 and 1.6, we easily obtain the estimate:

angPu(:c)| < COB(‘)Q‘+2N(2N!)9<:C>\a\+m2—2N

/[3) 1\ 0 I\V mq 70“5‘1/6

' (BN (B-08") &)Me s
5;ﬁ (ﬁ /n

for some By, Cy, a > 0 independent of w € F. Hence, choosing
N = min{n € Z; : 2N > |a| + mz2}, we obtain that there exist
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A1, B1,C > 0 such that (2.3) holds for all w € F. This concludes
the first part of the proof. To prove the second part, we observe that,
for u,v € S§(R™),

/n Pu(z)v(z)dx = /n W(€)py(€) d€
where
po(T,§) Z/" @ p(x, €)v(x)de.

By the same argument of the first part of the proof, the map v — p, is
linear and continuous from S§(R™) to itself. Then, we can define, for

u e S§ (R™)
Pu(v) = i(p,), v e SHRM).

This map is linear and continuous from S§ (R™) to itself and it extends
pP. O

By Theorems 1.5 and 2.2, we can associate to P a kernel Kp €
S8(R2") given as standard by

2.4 Kray) = [ et 9p(a,¢)de

where (2.4) has the meaning of an oscillatory integral. We can prove
the following result of regularity for the kernel (2.4).

Theorem 2.3. Let p € T}, (R*"). For k€ (0,1), define

Q= {(z,y) €R*™ : |z —y| > k(z)}.

Then the kernel Kp defined by (2.4) is in C*°(Qy), and there exist
positive constants C,a depending on k such that

(25) [DID}Kp(a,y)| < CPFI (B exp [—a(|e]/* + y]/?)

for every (x,y) € Q and for every 3,7 € N™.
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Lemma 2.4. For any given R > 0, we may find a sequence
YN (€) € C(R™), N =0,1,2,... such that

iU)N:l in Rn,

supp ¥o C {§: (§) < 3R}
supp ¥y C {€:2RN? < (¢) <3R(N+1)%}, N=1,2,...,

and
—|a

|DgYn ()] < 1o (1) [Rsup(N?, 1)]

for every a € N™ and for every £ € R".

Proof. Let ¢ € C§°(R™) such that ¢(&) = 1 if (§) < 2, ¢(§) = 0 if
(€) > 3. Assume further ¢ € G*(R"), i.e

|Dgo(e)| < Clolti(at)?

for all @« € N™ and for all £ € R". We may then define

w@)m(ﬁ)w(}&e), N>1. o

Proof of Theorem 2.3. We can assume without loss of generality that
pisin I‘g,, (R?"). Let us consider a sequence {¢)y } >0 as in Lemma 2.4.

We have, for u,v € S§(R™),
oo
(Kp,v®@u) = ZKN,’U®U
N=0

with
Ka(eg) = [ e 9p(a, un(e) de
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so we may decompose
(o)
Kp = E Ky.
N=0

Let £ € (0,1) and (z,y9) € Q. Let h € {1,...,n} such that
|xn — yn| > k/n{x). Then, for every a,vy € N™,

DDy Kn(x,y) = (-1 Y (g) / v ety (€)

,BSQ n
x DY Pp(x, &) dé

= (-0 Y () -

BLa

‘ / DY [ (€) D (e, )] dE.

Now, given ¢ > 0, we consider the operator

where

In view of the fact that Le?(*~¥€) = ¢i(#=%:£) e can integrate by parts
obtaining that

a (Th —yn)~
DD Ky (z,y) = (—U‘”‘*NW

) j )
> <;) > (j§)29 /n TV NN agn (@, €) dE

BLa

)

with

(2.6)  Anjvapy(2,€) = (1= Ae)/ DY [¢PT7n (§) DY p(, €)] -
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Let e, be the hth vector of the canonical basis of R™ and 8, =
(Byen),vn = (v,en). Developing in the right-hand side of (2.6) we
obtain that

(—i)Nl N! (6h +7h)!

Ni!No!N3! o (Bn + v — Np)!

MjNapy(@,6) = Y

Ni1+N2+N3=N
N1<Bn+7n

(1= Ag)? [¢957=Nen DYy (€) DY DE P p(, €)]
Hence
|>‘th04{3’¥ (QC, £)|

Z N! ) (Br + )" o= Bl+Nat+Ns +1
Ni!No!N3! (Br +n — Ny)! ot

<

Ni1+N2+N3=N
N1<Brn+vn

. 1 \ M2
S (N2)? (N3l [(a = B)1]” C3 (5 (W) (g)lPIrhI=t=h,

We observe that on the support of ¥y, 2RN? < (¢) < 3R(N + 1)°.
Thus, from standard factorial inequalities, since 6 > max{y,v}, it
follows that

o » s\ N
Ainagsy (,€)] < CITH a0 (1) (f)

with C3 independent of R. Moreover, by Proposition 2.4 in [14], we
have that
mag.c(x — y)| > Cexpld/ ¢ |z —y |9,

From these estimates, choosing ¢ < Cy ! we deduce that
1 c\ N
Ds D Eiv(o)| < O e (GF) exl-ecH O -y

with Cy = Cy(k) independent of R. Choosing R sufficiently large and
observing that |z — y| > ¢’ ({x) + (y)) on Q, we obtain the estimates
(2.5). O
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Remark 3. From Theorem 2.3, in view of Remark 2, it is possible
to deduce the pseudolocal property for the operator (2.2). Namely, we
have

f — sing supp Pu C 6 — sing supp u

where 6 —sing supp denotes the standard G? singular support, cf. [20].
We address the reader to Section 4 for more precise results in terms
of wave front sets concerning the subclass of the polyhomogeneous
operators, cf. Section 3.

Definition 2.5. A linear continuous operator from S§(R") to
SE(R™) is said to be f-regularizing if it extends to a linear continuous
map from S§ (R™) to S§(R™).

We now give a symbolic calculus for our symbols. We set, for ¢ > 0,

Qr = {(z,€) e R*": (z) < t, (¢) <t}
Qf =R*"\ Q.

Definition 2.6. We denote by FS;(R*") the space of all formal
sums Y. pj(x,€) such that p;(z,§) € C°(R**) for all j > 0, and
there exist B,C > 0 such that

(2.7)
sup  sup O S el e %) RV e P
j>0 a,BeEN™ (z,£)€Q°

Bjntv—1

(&) TN () T | Dg D (,€)] < oo

We observe that every symbol p € I'}} (R?") can be identified with

v

an element of FS} (R*") by setting pg = p and p; = 0 for all j > 1.

Definition 2.7. We say that two sums Zj>0pj, Zj>0p;» from
FS (R?") are equivalent, we write

> v~ py

=0 =0
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if there exist constants B, C > 0 such that

sup  sup sup O~ lal=IBI=2N ()= (g1) =7 (N1) ~H=v+
NEZy o,BEN" (2,6)€Q%, 1\ 4

(g) TN gy Tt BN Da DB N (p) — pf)| < oo
J<N

Theorem 2.8. Given };-,p; € FS (R*™), there exists a symbol
p e (R*™) such that
D~ ij in FS](R*™).
>0

Proof. Let ¢ € C®(R™), 0 < ¢ < 1 such that p(x,£) = 0 if
(l’,f) € QQ, Sﬁ(x,f) =1 lf ((E,f) € Q§ and

(2.8) sup
(xﬂf) ER2"

DYD2yp(,€)| < L ()(s1).

We define, for R > 0,

<P0('Ia€) =1 on R2n

T £ .
ij(x7§):(p<RjP«+V1,le‘+V1)7 J > 1.

We want to prove that if R is sufficiently large, then
p(a,8) =D @@, &p;(,6)
>0
is in I} (R**) and p ~ > j>0pj in FS (R*™).
Consider

pen(e ) =3 5 () (§) 0202 it 907Dl 0.6),

j20v<sa
0<p
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If R > B, where B is the same constant of Definition 2.6, we can apply
the estimates (2.7) and obtain

|DEDIp(x, )| < oI a1g1(e)y™ 1 @)™ PN ™ 1 g (2, €)

Jj=0
where
R I RO
Hjaalay) = 3 EZ I =0 cormiiobl s
2 o
s<p

()" (@) | DDy, €)]

The condition (2.8) implies that

Hjas(z, ) < OO )= (1) <%> :

with C independent of R. Choosing R sufficiently large, we obtain that
pis in I} (R®™). It remains to prove that p ~ > j>oPj in FS (R?™).

v

Let N be a positive integer. We observe that, for (z,£) € Qf5yu+v—1,

p(xaf) - Z pj($7§) = ij(l‘,f)(ﬁj(l’,g)

J<N >N

which we can estimate by arguing as above. |

Proposition 2.9. Let p € I‘?W(RQ”), andlet@ > p+v—1. Ifp~0
in FS’SV(R%), then the operator P is 0-regularizing.

To prove this proposition, we need the following preliminary result.

Lemma 2.10. Let M,r, 0, B be positive numbers, o > 1. We define

rN "
Moy = me MOV g

0o<N<Baze AN/e
Then there exist positive constants C, T such that

h(\) < Ce™) AeRF.
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Proof. See Lemma 3.2.4 in [20] for the proof. O

Proof of Proposition 2.9. It is sufficient to prove that the kernel
(29) Knlog) = [ e r9p(g)ag

is in S§(R?"). This will easily imply that P is f-regularizing.
If p ~ 0, by Definition 2.7, there exist positive constants B, C; such
that, for every (x,¢) € R?",
o « 1 v —|a —
| D¢ Dfp(a, &)] < "7 (ayr (51 (€)1 ()T
CQN(N!);H-V—I
. in —
0SN<B (&) a) /et ()N (z)
Applying Lemma 2.10, we obtain
(210) | DgDp(e. )] < G5 (a18)’ expl—o (|2l + 1¢[7)]

for some positive Ca, 0. Therefore, p € Sj(R?"). Applying (2.10) in
(2.9), we easily obtain that also Kp € S§(R*"). O

Proposition 2.11. Let P = p(x,D) € OPS;,(R"), and let 'P be
its transpose defined by

(2.11) (*Pu,v) = (u, Pv), wueS§RY), veSHRM.
Then, 'P = Q+R, where R is a 0-regularizing operator for @ > u+v—1
and Q = q(x, D) is in OPS);,(R") with
g(,&) ~ > Y (o) o Dp(e, =€)
720 |al=j
in FS™ (R™).

ng

Theorem 2.12. Let P = p(z,D) € OPS],(R"), Q = q(x,D) €
OPSZL/(R”). Then PQ = T + R where R is O-reqularizing for
0>u+v—1and T =t(z,D) in OPSL’L””/(R”) with

tz, &)~ > Y (a)T'ogp(x, §)Doq(x,€)

320 |a|=j
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in FSIuH™ (R2m).

To prove Proposition 2.11 and Theorem 2.12, it is convenient to
introduce more general classes of symbols.

Let w,v be real numbers such that ¢ > 1, v > 1, and let m =
(ml,mg,mg) S R3.

Definition 2.13. For C' > 0, we shall denote by II"™ (R3"; () the

ng

Banach space of all functions a(x,y, &) € C*°(R3") such that
sup sup C*\a\*\ﬁ\*lvl(a!)fu(ﬂwgfv
a,B,yEN™ (z,y,f)ER3"
()7 ) T ) Tt DE DDy ae,y, €)] < oo
We set
" 3ny 13 ” 3n.
I (R) = lim  II7 (R™; C).
C—+4o0

It is immediate to verify the following relations:
i) if a(z,y,€) € I (R?), then the function (z,£) — a(z,z,§)

belongs to T, (R?"), where m = (m1, my + ms).
ii) if p € T)1 (R?") for some m = (my,my) € R?, then p(z,§) €

g% (R and p(y, €) € ") (R2).

Given a € HZL,,(R‘?"), we can associate to a a pseudodifferential
operator defined by

(2.12) Au(x)Z/ v a(z,y, Ouly) dydé, ue S§(R")
R2n

with the standard meaning of oscillatory integral.
Theorem 2.2 and Theorem 2.3 hold also for operators (2.12).

In order to prove Proposition 2.11 and Theorem 2.12, we give the
following result. The proof follows the same line of the proof of
Theorem 3.9 in [3] and we will omit it for the sake of brevity.

Theorem 2.14. Let A be an operator defined by an amplitude
a € HZL(R%); m = (mi,mo,m3) € R3.  Then we may write
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A =P+ R, where R is a 0-regularizing operator for 0 > p+v —1 and
P =p(z,D) € OPS],(R"), m = (m1,ma + mg) with p ~ > .5,pj,
where

(2.13) pi(@,§) = Y (a) 'O Dyalw,y,€) y=a -

lel=3

Proof of Proposition 2.11. By (2.11), P is defined by
Pul) = [y~ Cuty) dyde, e SHRY).

Thus, ¢ P is an operator of the form (2.12) with amplitude p(y, —¢). By
Theorem 2.14, ' P = Q+ R where R is §-regularizing and Q = q(z, D) €
OPS,(R"), with

gz, &) ~ Y (a) o Dp(x,—¢). o

720 al=;

Proof of Theorem 2.12. We can write Q@ = '(*Q). Then, by
Theorem 2.14 and Proposition 2.11, Q@ = Q1 + R;, where R; is 6-
regularizing and

(2.14) Quula) = [ Oy, €)uly) dye

with q1(y,€) € T (R®"), qu(y,€) ~ Y, (a))"19gDgq(y, —€). From
(2.14) it follows that

Qrué) = / MO gy (y, Ouly) dy, € SI(R™)

n

from which we deduce that

PQu(x) = /R (a1 (y, ©uly) dy dE + PRyu(x).
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We observe that p(z,&)q1(y, &) € HLTﬁm/l’mQ’m;)(R?’”), then we may
apply Theorem 2.14 and obtain that

PQu(x) = Tu(z) + Ru(z)
where R is f-regularizing and T = t(z, D) € OPSZ?,*‘m/(R") with
tz, &)~ > Y (a) ' ogp(x, §)Deq(x,€)

320 |al=j

in FSTH (R, o

Remark 4. In Theorem 2.12, if p ~ Zj>0pj in FSZ”LV(R%) and
qn~ ijo g; in FSZL/ (RQn), then

Ha, )~ D> > () 0gpa(@, §)Dig(w,€) in FSIF™ (R™).

720 |a|+h+k=j

To conclude this section, we introduce a notion of ellipticity for
the elements of OPS,,(R"). It coincides with the definition of SG
ellipticity in [5, 10, 16, 21, 22].

Definition 2.15. A symbol p € T, (R*") is said to be elliptic if
there exist B, C' > 0 such that

p(x, &) = C(™ ()™ forall (x,€) € Q.

Theorem 2.16. If p € T2 (R*") is elliptic, then there exist

LV

Ei,Ey € OPS"(R") such that E1P =1+ Ry, PEy = I + Rs, where

ng

Ry, Ry are O-regularizing operators, for 6 > u+v — 1.

Proof. Let e}(z,&) be fixed such that
eo(z,€) = p(z,€)7" forall (z,€) € Q

and define, by induction, for j > 1

6} (l‘,f) = _e(l)(x7€) Z (a!)_lc’??e;7|a‘(x,g)Dgp(:ug).

0<]a| <
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It is easy to verify that Zj>0 6]1. (z,6) € FS;J”(RQ"). Applying Theo-
rem 2.8, we can find e' € I',/"(R®") such that e' ~ 2250 e}. Denote
by E; the operator with symbol e!. By construction, Theorem 2.12
implies that E1 P — I is a #-regularizing operator. The construction of

€2 is analogous. Proposition 2.9 gives the conclusion. u]

As an immediate consequence of Theorem 2.16, we obtain the follow-
ing result of global regularity.

Corollary 2.17. Let p € T2 (R®") be elliptic, and let f € SH(R™)

for some 0 > y+v —1. Then, if u € Sg/ (R™) is a solution of the
equation
Pu=f,

then u € S§(R™).

Ezample. Consider the operator in (0.1):
H=(1+z]*)(~A+1)+ Li(x, D)

where k > 1 and Li(x, D) is a first order operator with polynomial
coefficients of degree 2k — 1. H is elliptic and its symbol is in
I‘,(ﬁ)%)(RQ”) for every p,v such that > 1, v > 1. By Corollary 2.17,
if u is a solution of the equation Pu = f € S§(R"™), 6§ > 1, and
u € S§ (R™), then u € SY§(R™).

Our result is not sharp for the solutions of the homogeneous equation
Hu = 0. Namely, beside observing the well-known local analyticity

of the solutions, we may test the behavior at infinity in the one-
dimensional case and for k = 1 as follows.

Ezxample. Consider
(2.15) Hy=—(1+2%)y" + 2%y —2xy, z€R.
The operator H is L? self-adjoint and then there exists a sequence

Aj € R, j = 1,2,..., such that Hy; = Ajy; for some nontrivial
y; € S(R), cf. [15]. From Corollary 2.17, we obtain y; € S§(R)
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for every € > 1. On the other hand, by the theory of asymptotic
integration, see Tricomi [24] and Wasow [25], we have that

yi(z) = Cx~te Pl O(z7%e1#l)  when |z| — 400,
giving more precise information about the behavior at infinity.

We can generalize Definition 2.15 giving the notion of ellipticity of a
symbol with respect to another one, which will be applied in Section 4.

Definition 2.18. Let m,m’ € R? and let p € I'JL(R*), ¢ €
I‘Z‘V/ (R?"). We say that p is elliptic with respect to ¢ if there exist

B,C > 0 such that
p(2,8) = C{E)™ ()™ forall (z,¢) € QF Nsupp (q).

We observe that a symbol p is elliptic according to Definition 2.15 if
it is elliptic with respect to g(x, &) = 1.

v v

with respect to q, then there exist Fy, Fy € OPS’Z,‘//""(R%) such that

Proposition 2.19. Let p € I'j; (R*™), q € I‘ZL/ (R?™). If p is elliptic

E\P=Q+R,, PE=Q+R;

where Ry, Ry are O-reqularizing operators.

Proof. The proof follows the same lines of the one of Theorem 2.16,
by defining

el(z, €) = ggg for all (z,€) € Q%,
1 — (03 «
HO g o ) R D)

j>1. ]
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3. Polyhomogeneous symbols. The examples at the end of
Section 2 suggest the study of a subspace of I‘/TV(RQ"); namely, we
introduce classical polyhomogeneous SG-symbols. We will refer to the
approach of Egorov and Schulze [10, 23] in the § — §’-frame and we
will define three principal subclasses of I'},(R*"), whose elements are
respectively polyhomogeneous in x, in £ and in both z, £. Before giving
precise definitions for these spaces, we need to introduce in our context
a notion of asymptotic expansion with respect to x and & separately.

Let p, v be real numbers such that 4 > 1, v > 1, and let m = (mq, m2)
be a vector of R2.

Definition 3.1. We denote by FS} .(R*") the space of all formal
sums > -4 pj(, &) such that p; € C>(R?") for all j > 0, and there
exist B,C' > 0 such that

(31) swp swp  swp OV gy e
j>0 «,BEN™ (g)>pjutv—1
50

.<§>7m1+|a‘+j<x>fm2+w‘ |D?Dfpj(:c,§)| < 4o0.

As in Definition 2.7, we can define an equivalence relation among the

elements of F'S", . (R*").

Deﬁnition .3.2. Two sums dis0Pis 2jsoP; € FSZl‘,’g(RQ") are
said to be equivalent, we write

> pi~e Y b

Jj=0 =0

if there exist B,C > 0 such that

sup  sup sup  Clel=IBI=N (g r(pn Y (N1 v
N€Zy o,fEN™ (g)>pBNHTv—1
zeR"™

.<§>—ml+|a\+N<x>—mz+W\ D?Dg Z (p; _pg) < +00.

J<N
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In an analogous way, we can define the space F' Sm,_’z(RQ”) and the
corresponding relation ~.

Remark 5. We observe that

FS[(R?™) C FSy, ((R*) N FS], (R?™).

pv,€ nv,x

Furthermore, if °,50pj ~ Y501} in FS),(R*"), then

Dopiedopy and Y opi~a o ph

=20 =0 =0 =0

With the same arguments of Theorem 2.8, it is easy to prove the
following result.

Proposition 3.3. Given ) ,50p; € FS[, (R*), > ,50q €
FS™ (R2"), then there exist p,q € T (R?") such that

KV, ing
pre Y pi in FST (R,

j>0
G~o Y g i FSp (R

j=0

We can define the following classes of homogeneous symbols.

Definition 3.4. We denote by le]’mz(RQ”) the space of all
symbols p € T (R*") such that p(z, \§) = A p(x, &) for all A > 1,

v

|€] > ¢ > 0, z € R™. Analogously, we define the space FZ’,}’[mQ](RQ”)
by interchanging the roles of x and £. Finally, we set

le],[m@] (R2n) _ ]_-\stl],m2 (R2n) N I\ZLVl,[mQ] (R2n)

Using Definitions 3.1, 3.2 and 3.4, we can now introduce classical
polyhomogeneous symbols.
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Definition 3.5. We denote by F;szc[ﬂ?)] (R?") the space of all

p € I‘T;’[mﬂ(R%) satisfying the following condition: there exists a

sum Y, - pr € FS7, (R*") such that py, € I‘Eﬁl*k]"[mﬂ (R?") for all

k>0and p~gdsopr in FSL’f,’g(R%).

Definition 3.6. We denote by I‘;”Vl crlrzZ) (R2") the space of all symbols
p € I (R*") satisfying the following condition: there exists a sum

Y ks Pk € FSI ((R*™) such that p, € I‘ﬂzlfk]"m%Rz”) forall k >0
and p ~g D450 pr in FSL’f,’g(R%).

Analogous definitions can be given for the spaces FL’ZIQZ?;{? (R?*") and

e (R?), by interchanging the roles of 2 and €. Finally, we define
pvcl(z)
a space of symbols which are classical polyhomogeneous with respect

to both the variables.
Definition 3.7. We denote by F::Ly,cz(R%) the space of all symbols
p € I (R?") for which the following conditions hold:

v

i) there exists Y, -0 pk € FS), (R*") with py, € FLTIJ(I;])’mz (R?")
for all k € N, p ~¢ 3 5oPk in FS/Z’LV75(R2") and p — >, Dk €

pmi—Nma (R?") for all N € Z;

pr,cl(x)

ii) there exists 3,50 qn € FSI (R*") with g, € T7ol2 =" (R2)
for all h € N, p ~z > ,50qn in FSZZL,@(R%) and p — >, _nan €
mo—N n ~
I‘ZL;”CZZZ) (R?") for all N € Z .
The following inclusions hold:

(3.2) Trlm(RA) c (R, TR T (R,
A simple homogeneity argument shows that for every p € qu’u,cl(Rzn)
and for every k € N, there exists a unique function Ufjflfk(p) €
C*(R™x(R™\{0})) such that Uzllfk(p)(x, ) = )\ml_kozﬁbl*k p)(x,&)
for all A > 0, z € R", £ # 0 and Uzlrk(p)(x,g) = pr(x,§) for
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|€] > ¢ > 0. Analogously, in view of condition ii) of Definition 3.7,
we can associate to every p € T ,(R*") the functions am2=h(p)
for all h € N such that ¢™2~"(p) belongs to C=((R™ \ {0}) x R"),
o= (p)(z,€) = qu(x,€) for |z| > ¢ > 0 and o2 "R (p)(\z,§) =
Am2—hgma=h(p)(z €) for all A > 0, £ € R", x # 0.

We also observe that if w € G*(R™) is an excision function, i.e.,
w = 0 in a neighborhood of the origin and w = 1 in a neighborhood

of oo, then w(ﬁ)ag”fk(p)(:zr,f) is in FLTIJ(I;])’mZ‘(RQ"). Similarly, if
X(z) is an excision function in G*(R™), then X(z)o™2~"(p)(x,&) is

. ,lma—h] n
in P;Tyl,cl(?) (R2").

By these considerations and by the inclusions (3.2), we can also
consider the functions U;’fl*k(ag”?’h(p)) and 0;”27}‘(0;7171“(1))). It is
easy to show that

e

o (o (p) = oM o R ()

for all h,k € N.

In particular, given p € T'""

m,«(R*"), we can consider the triple

{0y (p); 0l(p); oje(p)}

where we denote 077", (p) = Uz,“ (02 (p))-

The function o' (p) is called the homogeneous principal interior
symbol of p and the pair {072 (p), o7} (p)} is the homogeneous principal

exit symbol of p.

By the previous results, it turns out that, given two excision functions
w(§) in GH(R™) and X(x) € G*(R"™), then we have

(E)UZLI (p)(x7 g) c FLT,ICZLm2)(R2n)
(x)o-gnz (p) (l‘,§) c F(mth*l)(RQn)

pv,cl

@ W
= e
N—
A~ ]
==
8 8
oo
N— S—
| |
= &

(3.5)
p(x,€) — w(§)ay" (p)(, ) = X(2) (0 (p) (7, €) — w(§)oye(p)(2,€))
c 1—\171—6(:[;{2”)7

pv,cl
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where we denote e = (1,1). We denote by OPS};, ,(R™) the set of all
operators of the form (2.2) defined by a symbol p € T™ _(R?"), and

pv,cl
we set, for 8 > 1,

oPS4R™" = |J oOPsy ,(RM.
meR?

(il +o0)
pn+r—1<0

Remark 6. Arguing as in the previous section and applying Remark 4,
it is easy to prove that if P € OPS™ (R"), Q@ € OPS™ _(R"), then

pv,cl pv,cl

the operator PQ is in OPSZLZ" (R™).

To conclude this section, we give an alternative definition of ellipticity
for classical polyhomogeneous symbols.

Definition 3.8. A symbol p € F/TV’cl(RQ”) is said to be elliptic if
the three following conditions hold:

i) oyt (p)(x,€) # 0 for all (z,£) € R™ x (R"\ {0})
ii) 07" (p)(x,§) # 0 for all (z,£) € (R"\ {0}) x R"
iii) o, (p) (2, &) # 0 for all (,&) € (R™\ {0}) x (R™\ {0}).

Remark 7. A symbol p € I‘Z’V)Cl(RQ") is elliptic if and only if it is

elliptic according to Definition 2.15.
Proof. See Proposition 1.4.37 in [23] for the proof. o

Ezxample. Consider a partial differential operator with polynomial

coefficients
P = Z caﬁxﬁDa.

|a|<my
[B|<m2

The corresponding symbol belongs to F;T;,CZ(R%) for every pu > 1,

v > 1, with m = (my, ma). The operator P is elliptic in the SG-sense
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and Corollary 2.17 applies if
oyt = Z CapPE* #0,

|a|=my
[B|<m2

ol = Z cagmﬁfa;éo,

|| <mmy
‘ﬂ\:m2

o = Z CaptP €Y #0,
|a|=m

|B]=m2

according to Definition 3.8. In particular, for H in (0.1) we have
of = (L+ |2P)EP, o028 = [aM (1€ + 1), 032" = Mg

4. Wave front set. In this section we introduce a notion of
wave front set for the distributions of S§ (R™), which allows to control
their behavior “at infinity,” and prove the standard properties of
microellipticity with respect to the polyhomogeneous operators defined
in the previous section. Similar results have been proved by Coriasco
and Maniccia [7] for Schwartz tempered distributions.

For every 7, € R™\ {0}, we will denote by ocon, the projection 7, /|no]
on the unit sphere S”~!. In the following, an open set V C R" is said
to be a conic neighborhood of the direction ocon, if it is the intersection
of an open cone containing the direction oon, with the complementary
set of a closed ball centered in the origin. The decomposition of the
principal symbol into three components in the previous section suggests
to define for the elements of S§ (R™) three sets which we will denote
by WFg, WE?, WFge, 0> 1.

To give precise definitions, we need to introduce two types of cut-off
functions.

Definition 4.1. Let y, € R" and fix v > 1. We denote by R} the
set of all functions ¢ € G¥(R™) such that 0 < 9 < land ¢ =1in a
neighborhood of y,.

Definition 4.2. Let 1, € R™\ {0} and fix ¢ > 1. We denote by
Z# the set of all functions ¢ € C°°(R") such that (\{) = ¥(§) for
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all A > 1 and |¢] large, 0 < ¢ < 1, ¥ = 1, in a conic neighborhood V'
of con,, 1 = 0 outside a conic neighborhood V' of con,, V C V’ and

IDy(n)] < 1 (@) 7ol e R

for every @ € N™ and for some C' > 0.

Elements in Z}' can be constructed by considering Gevrey functions
Yt of order pon ™71, ¥ = 1 in a neighborhood of 7,, ¥ = 0 outside
a larger neighborhood, extending them as homogeneous functions of
order 0 on R™ and cutting-off in a neighborhood of the origin, cf. [20,
pp. 153-154].

Definition 4.3. Let 6 be a positive real number such that 6 > 1,
and let u € S (R™).

o We say that (z,,£,) € R" x (R™\ {0}) is not in WFgu if there
exist positive numbers p,v € (1,400) such that 6 > p+ v — 1,
and there exist cut-off functions ., in Ry , ¢, € ZZ, such that
Pu, (e, (D)u) € SHR™).

e We say that (z,,&,) € (R™\ {0}) x R" is not in WF?u if there
exist positive numbers p,v € (1,400) such that 6 > pu+ v — 1,
and there exist cut-off functions ¢, in ’RZU, e, € Z; such that
Va, (pe, (D)u) € SHR™).

e We say that (z,,&,) € (R™\ {0}) x (R™\ {0}) is not in Weru if
there exist positive numbers p,v € (1,4+00) such that § > p+ v — 1,
and there exist cut-off functions v, € 2y, ¢, € Z{ such that

Va, (e, (D)u) € SHR™).

Remark 8. We can consider Wqu as a subset of R™ x S"~1,
being WFgu invariant with respect to the multiplication of the second

variable ¢ by positive scalars. Analogously, we can consider W F/u C
Sn~1 x R™ and Weru c 8t x gl

Remark 9. Every u € Sg/ (R™) can be regarded as an element
of Dj(R"), according to Remark 2. It is easy to show that WFgu
coincides with the standard Gevrey wave front set of u, see for example
[20].
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Ezxample. Consider the distribution

u= Z 60

aENP

where the coefficients a,, satisfy the following estimate. For every & > 0,
there exists C; > 0 such that

(4.1) laa| < Ceel®l (o).

Under the assumption (4.1), u € E)(R") c S§ (R™) C Djy(R™), and
we have

WFju={0} x$"', WFu=WFju=@.

Let us characterize the sets defined before in terms of characteristic
manifolds of polyhomogeneous operators. For p € I‘Z‘V)Cl(R%), we
define

Chary(P) = {(z,£) € R" x §"": 07" (p) (2, €) = 0}
Char.(P) = {(z,¢) € S" ' x R™ : ¢™2(p)(x, &) = 0}
Charye(P) = {(z,£) € "' x S" ' 1 o7 (p)(x, €) = O}.

Proposition 4.4. Let u € Sg,(R"). We have the following relations:

WFju = (1  Chary(P), WFlu= (1  Char(P),
PcOPSS (R™) PcOPSS (R™)
PucSy(R™) PucS§(R™)

WF)u= (1  Chary(P)
PEOPSY (R™)
PucS{(R™)

Proof. Let (x,,00,) ¢ WFiu. Then, there exist p,v as in Defini-
tion 4.3 and ¢, in RY , v, in Z{ such that Pu = @, (¢, (D)u) €

S8(R™). Observe that P can be regarded as a pseudodifferential opera-
tor with symbol @, ()¢, (€) € TY, ,(R?") and that o, (20 )b, (AE,) =
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1 for A € Ry sufficiently large. Hence, (z,,00f,) does not be-
long to Npcg PSfZ(Rn)Charw (P). Conversely, let us assume that there
PueS§(R™)

exists P = p(x,D) in OPS%(R") such that Pu € S§(R") and
oy (p)(xo,008,) # 0. Then, there exists a neighborhood U of z, and
a conic neighborhood V' of oof, such that oy (p)(x,00f) # 0 for all
(x,€) € U x V. Furthermore, by (3.3), it turns out that if |¢] is suffi-
ciently large, we have that

p(z, )] loy@)(@, O] _ |p(@,§) = ou(p)(z, ¢ > 00

[ ()™ 7 fgfm ()™ €] ()™

for some C' > 0. Hence, we can construct two cut-off functions ¢, , V¢,
respectively supported in U and in V such that p is elliptic with respect
to ., (7)1, (§). By Theorem 2.19, there exists E' € OPS_ ;" (R") such
that EPu = ¢, (Y¢,(D)u) + Ru, where R is #-regularizing. Then,
¢z, (Ve,(D)u) = Ru — EPu € S§(R™). This gives the statement
for WFiu. The corresponding relation for WF/u can be obtained
with the same argument by simply interchanging the roles of x and
£. For what concerns the third relation, we obtain the inclusion
mPeOPSfZ(R")Chard)e(P) C WFY_u directly again from Definition 4.3.
PucS§(R™)
Assume now that there exists P € OPSY(R") such that Pu € S§(R"™)
and oy (p)(cozg, 00€p) # 0. Then, there exist two conic neighborhoods
Vo Ve, such that oye(p)(z, §) # 0if (z,§) € V, x Ve,. Hence, by (3.5),
we have that

p@ Ol - o,

[l

if |z| and || are large enough. Then, we can conclude arguing as for
WFgu. u]

Remark 10. By the arguments in the preceding proof, it follows
easily that Definition 4.3 is independent of the choice of p and v.
Namely, if (z,,0&,) ¢ WFgu, then for any given p > 1, v > 1, with
p+v—1<6, we may actually find ¢,, € R} , ¥¢, € Zgéo such that

@z, (e, (D)u) € S§(R™), and similarly for W Fu, WF?_u.
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Theorem 4.5. Let u € S§ (R™) andp € I‘ZTMCZ(R%), with p+v—1 <
0. Then, the following inclusions hold:

(4.2) WF)(Pu) C WFEju C WF,(Pu) U Chary(P)
(4.3) WEF?(Pu) ¢ WE% ¢ WE?(Pu) U Char,(P)
(4.4) WF),(Pu) C WE)u C W Fye(Pu) U Chary.(P).

Proof. If (x,,&,) ¢ WFqu, then there exist cut-off functions ¢,, €
Ry, Ye, € Z{ such that w,, (1, (D)u) € SE(R™), where, in view
of Remark 10, we may take the same g, of the class I‘ZIMCZ(RQ”).
Shrinking the neighborhoods of x,,c0§,, we can construct two cut-
off functions @,, € Ry , v¢, € Z{ such that @, 0., = @, and
zljvgowgo = 1250. Denote by @ the operator with symbol ¢, ¢ and
by @ the operator with symbol @zo{bvgo. By Theorem 2.12, we have
that

QQPu = QPQu+ Q[Q, Plu = QPQu + Ru

where R is 6-regularizing. But QQ € OPSY(R") and U¢(@Q)(xo, 00&,)
= aw(é)(xo,ooﬁo)a¢(Q)(xo,oo§0) # 0. Then, by Proposition 4.4, we
conclude that (z,,00&,) ¢ WFg(Pu). This proves the first inclusion in
(4.2). Assume now that (z,,00&,) ¢ WF(Pu). By Proposition 4.4,
there exists Q@ = g(z, D) € OPS)), ,(R") such that QPu € SY(R™)
and 0, (Q) (20, 008,) # 0. Furthermore, if (z,,0&,) ¢ Char,(P), then
0y (QP) (20, 008,) = 0y(Q)(x0,00&) 0y (P) (20, 0&,) # 0. Moreover,
QP € OPS™ ., (R™). Hence, by Proposition 4.4, we conclude that

pv,cl

(X0, 008,) ¢ WFiu. The proofs of (4.3) and (4.4) are analogous. u]

Let us give an example showing that the second inclusion in (4.4) can
be a nontrivial identity.

Ezample. Consider the operator
P(z,Dy)=D, —z, z€R

for which Chary,(P) = @, Char.(P) = @, Char 4.(P) = S x S%. A
solution of the equation Pu = 0 is given by u(z) = ¢'(**/?) for which
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it is easy to verify that WFgu = WFu = @, WF u = S° x S,
see also [7]. We leave to the reader an application of Theorem 4.5 to
the example at the end of Section 3, under different assumptions on
Chary (P), Char.(P), Charye(P).

Proposition 4.6. Let u € 8§ (R"). Then, u € S(R™) if and only
if WFgu =WFu = WFgeu =a.

Proof. If Weru = @, then, for every (cox,,c0f,) € S"~1 x §"~1
there exist 1y, € ZY , ¢¢, € Z{ such that ¢, (Ve (D)u) € Sp(R").
In view of Remark 10, we may fix y, v independent of (coz,, 00&,). Let
us observe that U?p’g(l/)zo (z)1e,(€)) = 1 in a conic set in R*", obtained
as a product of conic sets of R} and Rg, intersecting S"~! x §n~1
in a neighborhood V,, ¢ of (coz,,o0,). By the compactness of
Sn=1 % 8"~ we can find a finite family (cox;,00¢;), j = 1,..., N,
such that V,, ¢, j=1,...,N cover S"~! x S"~!. Define

qo(x,ﬁ) = Z @Z}xj ('r)ng (f)
j=1,....N

If [£] > R and |z| > R, with R sufficiently large, then g,(x,&) > C > 0.
Moreover, by construction, g,(z, D)u € S§(R"™). Applying similar
compactness arguments to {z € R™ : |z|] < R} x S and to
Sn=Ix{¢ € R" : |¢] < R} and using the assumption WFgu =WFu =
@, we can construct ¢i(z,€),qa(z,€) such that qi(z, D)u € S§(R"),
q2(z,D)u € SHR™) and ¢ (z,&) > C1 > 0 if |¢| > R, |z| < R, and
g2(x,&) > Cy > 0 if |x| > R, |£] < R. Moreover, obviously ¢,,q1,¢2 €
F2V7CZ(R2TL)' Then, the function q(x, g) =Y (ZL’, 5) +q (.T, g) +q2($, f) is
an elliptic symbol of order 0 and ¢(x, D)u € S§(R™). Then, u € S§(R")
in view of Corollary 2.17. The inverse implication is trivial. O

We conclude with a proposition which makes clear in what sense the
exit components W F? WFge determine the behavior of a distribution
of S§'(R™) at infinity. The proof follows the same arguments of the
proof of Proposition 4.6. We omit it for the sake of brevity.
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Proposition 4.7. Let u € Sg'(R”), and denote by 11, : R?ﬂg —R?
the standard projection on the variable x. If xo ¢ 1L, (W FSuUW Ff u),
then there exists 1, € Z9  such that v, u € S§(R™).

Zo
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