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A MASSERA THEOREM FOR QUASI-LINEAR PARTIAL
DIFFERENTIAL EQUATIONS OF FIRST ORDER

KE WANG, MENG FAN AND MICHAEL Y. LI

ABSTRACT. Massera-type criteria are derived for the ex-
istence of periodic wave solutions of quasi-linear partial differ-
ential equations of first order. Results generalize a theorem of
Massera for first order scalar ordinary differential equations.

1. Introduction. In 1950, Massera [8] first established the following
results, which now are often referred to as Massera theorems.

Theorem A. For a scalar differential equation

(1) ẋ = f(t, x),

where f ∈ C(R+ × R → R) is ω-periodic in t for some ω > 0, the
existence of a solution that is bounded in the future implies the existence
of a nonconstant ω-periodic solution.

Theorem B. Consider a linear system of differential equation

(2) ẋ = A(t)x + b(t),

where A ∈ C(R → Rn×n) and b ∈ C(R → Rn) are ω-periodic for
some ω > 0. System (2) admits a nonconstant ω-periodic solution if
and only if it admits a solution that is bounded in the future.

In 1973, Chow [1] extended Theorem B to linear scalar functional
differential equations with finite delay of retarded type under a “small
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delay” assumption. Similar results are obtained by Li and Lin [5] for
linear functional differential equations. In 1995, Makay [7] extended
Chow’s results to general linear retarded functional differential equa-
tion with finite delay, infinite delay and also to integral equations. In
1999, Li et al. [6] proved several Massera-type criteria for linear pe-
riodic evolution equations. In 2000, Fan and Wang [2, 3] established
Massera-type criteria for linear and convex neutral functional differen-
tial equations with finite delay, infinite delay and also for hyperneutral
functional differential equations with finite delay.

In the present paper, we establish Massera-type criteria for the exis-
tence of periodic wave solutions of scalar quasi-linear partial differential
equations of first order. Our main result (Theorem 3) generalizes The-
orem A of Massera.

The paper is organized as follows. Section 2 provides basic terminolo-
gies and preliminary results. In Section 3, for two-dimensional quasi-
linear partial differential equations, we give, in Theorem 2, a Massera-
type result that establishes the equivalence between the existence of a
bounded solution and the existence of periodic wave solutions. In Sec-
tion 4, the n-dimensional version of the result is given in Theorem 3.
Since the proofs for Theorems 2 and 3 are essentially the same, for no-
tational simplicity, we provide a detailed proof only for the case n = 2.
Some examples are given in Section 4 to illustrate our results.

2. Preliminaries. Consider a quasi-linear partial differential
equation of first order

(En)
n∑

k=1

ak(x1, . . . , xn, u)
∂u

∂xk
= c(x1, . . . , xn, u),

where c, ak ∈ C(Rn × R → R), k = 1, . . . , n. The characteristic
differential equations of equation (En) are

(3)
ẋk = ak(x1, . . . , xn, u), k = 1, . . . , n,

u̇ = c(x1, . . . , xn, u).

The vector field defined by (3) in (x1, . . . , xn, u) space are called the
characteristic vector field of (En), and integral curves of (3) are called
characteristic curves. We assume that coefficients ak and c are such
that solutions to (3) are uniquely determined by their initial conditions.
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Definition 1. Let U ⊂ Rn be open. A function u ∈ C(U → R) is
said to be a weak solution of equation (En) over U if, for every P on
the graph of u, there exists a neighborhood N(P ) of P such that the
characteristic curve of (En) through P lies on the graph of u when it
is restricted to N(P ).

Definition 2. Let U ⊂ Rn be open. A weak solution u of equation
(En) over U is said to be a bounded weak solution of Lipschitz type, if
there exists a positive constant M > 0 such that

|u(X)| ≤ M, and |u(X1) − u(X2)| ≤ M |X1 − X2|,
for all X, X1, X2 ∈ U .

For 1 ≤ i ≤ n and ωi > 0, a function g ∈ C(Rn → R1) is said to be
ωi-periodic with respect to xi, if

g(x1, . . . , xi−1, xi+ωi, xi+1, . . . , xn) = g(x1, . . . , xi−1, xi, xi+1, . . . , xn),

for all (x1, . . . , xn) ∈ Rn.

Definition 3. Let 1 ≤ m ≤ n and 1 ≤ k1 < k2 < · · · < km ≤ n
be integers, and ωi > 0, i = 1, . . . , m. A weak solution u(x1, . . . , xn)
of equation (En) in Rn is said to be a periodic wave solution of period
ωi with respect to xki

, if u is periodic of period ωi with respect to xki
,

i = 1, . . . , m.

Lemma 1. Suppose that ak(x1, . . . , xn, u), k = 1, . . . , n, and
c(x1, . . . , xn, u) are periodic functions of period ωi with respect to xi.
Let W ⊂ Rn−1 be open and u(x1, . . . , xn) be a weak solution to (En)
over the region

Ω = {(x1, . . . , xn) ∈ Rn : xi > 0, (x1, . . . , xi−1, xi+1, . . . , xn) ∈ W}.
Then uk(x1, . . . , xi−1, xi, xi+1, . . . , xn) = u(x1, . . . , xi−1, xi + kωi,
xi+1, . . . , xn) is also a weak solution to (En) over Ω.

Proof. Without loss of generality, we may assume that i = 1, and
denote (x1, . . . , xn) = (x, y), where x = x1 ∈ R and y = (x2, . . . , xn) ∈
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Rn−1. Let (x0, y0, u0) be a point on the graph of uk(x, y), i.e.,

(x0, y0, u0) ∈ {(x, y, uk(x, y)) : (x, y) ∈ Ω}.

Then u0 = uk(x0, y0) = u(x0 + kω, y0), and hence (x0 + kω, y0, u0) is
on the graph of u(x, y). Since u(x, y) is a weak solution of equation
(E2), there exists a neighborhood V of (x0 + kω, y0, u0) such that the
characteristic curve of (E2) through (x0 + kω, y0, u0) is on the graph
of u(x, y) when restricted to V . Let (x(t), y(t), u(t)) be the solution of
the characteristic equations with (x(0), y(0), u(0)) = (x0 + kω, y0, u0).

Define a shift operator Pkω : Rn+1 → Rn+1 as follows

Pkω(x, y, u) = (x − kω, y, u).

Then Pkω(x0 + kω, y0, u0) = (x0, y0, u0), PkωV is a neighborhood of
(x0, y0, u0), and

Pkω(x(t), y(t), u(t)) = (x(t) − kω, y(t), u(t)).

Set x1(t) = x(t) − kω. Then

ẋ1(t) = ẋ(t) = a(x(t), y(t), u(t))
= a(x1(t) + kω, y(t), u(t))
= a(x1(t), y(t), u(t)),

ẏ(t) = b(x1(t), y(t), u(t)),
u̇(t) = c(x1(t), y(t), u(t)),

x1(0) = x(0) − kω = x0, y(0) = y0, u(0) = u0.

Therefore (x1(t), y(t), u(t)) is the characteristic curve of (En) through
(x0, y0, u0).

Since (x(t), y(t), u(t)) is on the graph of u(x, y) when restricted to
V , and the graph of u(x, y) is transformed into that of uk(x, y) under
the action of Pkω, (x1(t), y(t), u(t)) is on the graph of uk(x, y) when
restricted to PkωV . This completes the proof.

Lemma 2. Let V ⊂ Rn be open. Suppose that u1(x1, . . . , xn)
and u2(x1, . . . , xn) are weak solutions of (En) over V . Let G1 and
G2 be the graphs of u1 and u2, respectively. If G1 ∩ G2 �= ∅,
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then, for any (x0
1, . . . , x0

n, u0) ∈ G1 ∩ G2, there exists a neighbor-
hood V ∗ of (x0

1, . . . , x0
n, u0) such that the characteristic curve through

(x0
1, . . . , x0

n, u0) lies on G1 ∩ G2 when restricted to V ∗.

Proof. Let X = (x1, . . . , xn). Since u1(X) and u2(X) are weak
solutions of (En), there exists a neighborhood of (X0, u0) such that the
characteristic curve through (X0, u0) is on the graph Gi of ui when
restricted to Vi, i = 1, 2. Let V ∗ = V1 ∩ V2. Then the characteristic
curve through (X0, u0) is on G1 ∩ G2 when restricted to V ∗.

Lemma 3. Let u1(x1, . . . , xn) and u2(x1, . . . , xn) be weak solutions
of equation (En) over an open set U ⊂ Rn. Then

u(x1, . . . , xn) = min{u1(x1, . . . , xn), u2(x1, . . . , xn)}
is a weak solution of (En) over U .

Proof. Let G1 and G2 denote the graphs of u1(X) and u2(X),
respectively. For any point (X0, u0) on the graph of u(X), if (X0, u0) /∈
G1 ∩ G2, then (X0, u0) ∈ G1 or (X0, u0) ∈ G2, and hence there
exists a neighborhood V of (X0, u0) such that the characteristic curve
through (X0, u0) is on the graph of u(X) when restricted to V . If
(X0, u0) ∈ G1∩G2, then the existence of such a neighborhood V follows
from Lemma 2.

The following lemma is often referred to as the Dini theorem and can
be found in standard analysis texts, see e.g. [9].

Lemma 4 (Dini theorem). Let E be a compact metric space, and
let {fn} be a monotone sequence of real-valued continuous functions on
E. If {fn} converges pointwisely to a continuous function g, then {fn}
converges uniformly to g.

3. Massera criteria for n = 2. Let x = (x, y) ∈ R2. We consider
the quasi-linear differential equation (En) with n = 2

(E2) a(x, y, u)
∂u

∂x
+ b(x, y, u)

∂u

∂y
= c(x, y, u),
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where a, b, c ∈ C(R3 → R) are such that solutions to the characteristic
equations

(4)
ẋ = a(x, y, u)
ẏ = b(x, y, u)
u̇ = c(x, y, u).

are uniquely determined by their initial conditions. Let

R2
+ = {(x, y) ∈ R2 : x > 0}

denote the right half plane.

Theorem 1. Suppose that a, b, c are periodic of period ω with respect
to x and equation (E2) has a bounded weak solution of Lipschitz type
over R2

+. Then (E2) has a periodic wave solution of period ω with
respect to x.

Proof. Let u(x, y) be the bounded weak solution of Lipschitz type
of (E2) defined on R2

+, and let its bound and Lipschitz constant be
M > 0. Define

ui(x, y) = u(x + i ω, y), x, y ∈ R2
+, i = 1, 2, . . . .

By Lemma 1, ui(x, y), i = 1, 2, . . . , are bounded weak solutions
of Lipschitz type of equation (E2) over R2

+, and their bounds and
Lipschitz constants are M .

Define

wk(x, y) = min{u0(x, y), u1(x, y), . . . , uk(x, y)},
x, y ∈ R2

+, k = 0, 1, 2, . . . .

By Lemma 3, for k = 0, 1, 2, . . . , wk(x, y) is also a bounded weak
solution of Lipschitz type to (E2) over R2

+, and its bound and Lipschitz
constant are M . Furthermore, {wk(x, y)} is uniformly bounded and
equicontinuous on R2

+. By the Arzela-Ascoli theorem, there exist a
subsequence {wm} of {wk} and a continuous function w(x, y) defined on



A MASSERA THEOREM FOR FIRST ORDER PDES 1721

R2
+ such that {wm(x, y)} converge uniformly to w(x, y) on any compact

subset of R2
+.

By the definition of wk(x, y), we have

wk(x, y) ≥ wk+1(x, y), for (x, y) ∈ R2
+, k = 0, 1, 2, . . . .

Then the Dini theorem (Lemma 4) implies that {wk(x, y)} converges
uniformly to w(x, y) on any compact region D of R2

+, and hence
w(x, y) is bounded and satisfies Lipschitz condition, and its bound and
Lipschitz constant are M .

Next, we show that w(x, y) is a weak solution of (E2) over R2
+.

Let W denote the graph of w(x, y), and let (x(t), y(t), u(t)) be the
solution of (4) such that (x(0), y(0), u(0)) = (x0, y0, u0) ∈ W . Set
u

(k)
0 = wk(x0, y0). Then

(x0, y0, u
(k)
0 ) −→ (x0, y0, u0), as k → ∞.

Let (xk(t), yk(t), uk(t)) denote the solution of (4) such that

(xk(0), yk(0), uk(0)) = (x0, y0, u
(k)
0 ).

Since wk(x, y) is a weak solution of (E2), (xk(t), yk(t), uk(t)) is on
the graph of wk(x, y) for sufficiently small t. The fact that wk(x, y)
uniformly converges to w(x, y) on any compact domain of R2

+ implies
that, for sufficiently small t, the distance from (xk(t), yk(t), uk(t)) to
W

d((xk(t), yk(t), uk(t)), W ) −→ 0, as k → ∞.

By continuous dependence on initial conditions,

d
(
(xk(t), yk(t), uk(t)), (x(t), y(t), u(t))

) −→ 0 as k → ∞,

for sufficiently small t, which implies that there exists a neighborhood
V of (x0, y0, u0) such that if (x(t), y(t), u(t)) ∈ V , then it must be on
W , and hence u(x, y) is a weak solution of (E2).

Define

zk(x, y) = w(x + kω, y), (x, y) ∈ R2
+, k = 0, 1, 2, . . . .
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Then zk(x, y) is also a bounded weak solution of Lipschitz type of (E2)
over R2

+, and its bound and Lipschitz constant can be taken as M > 0.

By the definitions of zk(x, y) and w(x, y), one can show that zk(x, y)
is the limit function of the function sequence {wi(x+kω, y)}∞i=1. Since

wi(x + kω, y) = min{u0(x + kω, y), u1(x + kω, y), . . . , ui(x + kω, y)}
= min{uk(x, y), uk+1(x, y), . . . , uk+i(x, y)},

i = 0, 1, 2, . . . ,

we have
zk(x, y) = inf{uk(x, y), uk+1(x, y), . . . },

and
zk(x, y) ≥ zk+1(x, y), x, y ∈ R2

+, k = 0, 1, 2, . . . .

Applying the Arzela-Ascoli theorem and Dini theorem again, we deduce
that there exists a continuous function z(x, y) defined on R2

+ such that
{zk(x, y)} converges uniformly to z(x, y) on any compact region of R2

+,
and z(x, y) is a weak solution of (E2) over R2

+. For any (x, y) ∈ R2
+,

we have

z(x, y) = lim
k→+∞

zk(x, y) = lim
k→+∞

zk−1(x + ω, y) = z(x + ω, y).

Define

z∗(x, y) := z(x − (k − 1)ω, y), x ∈ [k ω, (k + 1)ω], k = 0,±1,±2, . . . .

Since ω ≤ x − (k − 1)ω ≤ 2 ω, z∗(x, y) is defined on R2 and z∗(x, y) ≡
z(x, y) for any (x, y) ∈ R2

+. Moreover, z∗(x + ω, y) = z∗(x, y) for
(x, y) ∈ R2. We have shown that z(x, y) can be extended to R2.

To complete the proof, it is left to show that z∗(x, y) is a weak
solution of (E2). Let (x0, y0, u0) be an arbitrary point on the graph
of z∗(x, y); without loss of generality, we can assume that x0 ≤ 0,
x0 ∈ [kω, (k + 1)ω], k ≤ −1.

Let Pkω be the shift operator defined above; then

P(k−1)ω(x0, y0, u0) = (x0 − (k − 1)ω, y0, u0).
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Since (x0 − (k − 1)ω, y0, u0) is on the graph of z(x, y) and z(x, y) is a
weak solution, there exists a neighborhood V of (x0 − (k − 1)ω, y0, u0)
such that the characteristic curve through (x0 − (k − 1)ω, y0, u0) is on
the graph of z(x, y) when restricted to V . By the definition of z∗(x, y),
the graph of z(x, y) lying in V becomes the graph of z∗(x, y) lying in
the neighborhood P(k−1)ωV of (x0, y0, u0) under the action of P(k−1)ω.
By a similar argument as above, one can show that the characteristic
curve through (x0− (k−1)ω, y0, u0) restricted to V is transformed into
the characteristic curve through (x0, y0, u0) restricted to P(k−1)ωV , and
hence on the graph of z∗(x, y). This proves that z∗(x, y) is a weak
solution of (E2), completing the proof.

Let
R2

++ := {(x, y) ∈ R2 : x > 0, y > 0}
denote the positive quadrant of R2.

Theorem 2. Suppose that a, b, c are periodic of period ω1 and ω2

with respect to x and y, respectively. If equation (E2) has a bounded
weak solution of Lipschitz type defined on R2

++, then equation (E2) has
a periodic wave solution over R2, with period ω1 and ω2 with respect
to x and y, respectively.

Proof. Let u(x, y) be a bounded weak solution of Lipschitz type of
(E2) over R2

++. Define

ui(x, y) = u(x, y + iω2), i = 0, 1, 2, . . . ,

wk(x, y) = min{u0(x, y), u1(x, y), . . . , uk(x, y)},
(x, y) ∈ R2

++, k = 0, 1, 2, . . . .

A similar argument as in the proof of Theorem 1 yields that there exists
a continuous function w(x, y) defined on R2

++ such that {wk(x, y)}
converges uniformly to w(x, y) on any compact region of R2

++, and
w(x, y) is a bounded weak solution of Lipschitz type to (E2).

Let

zk(x, y) := w(x, y + kω2), (x, y) ∈ R2
++, k = 0, 1, 2, . . . .
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Then zk(x, y) is also a bounded weak solution of Lipschitz type to (E2)
over R2

++. In addition, we have

zk+1(x, y) ≤ zk(x, y), for (x, y) ∈ R2
++, k = 0, 1, 2, . . . .

Using a similar argument as above, one can prove that there exists
a continuous function z(x, y) defined on R2

++ such that {zk(x, y)}
uniformly converges to z(x, y) on any compact region of R2

++, and
z(x, y) is a bounded weak solution of Lipschitz type of (E2). By the
monotonicity of {zk(x, y)}, we have

z(x, y + ω2) = z(x, y), for any (x, y) ∈ R2
++.

Moreover, z(x, y) can be extended to a bounded weak solution of
Lipschitz type to (E2) over R2

+, say z∗(x, y) and z∗(x, y+ω2) = z∗(x, y)
for any (x, y) ∈ R2

+.

Since z∗(x, y) is a bounded weak solution of Lipschitz type to (E2)
over R2

+, Theorem 1 implies that there exists a periodic wave solution
z∗∗(x, y) of (E2) with respect to the first variable x, which is defined
on R2. From the proof of Theorem 1, one can see that the periodicity
of z∗(x, y) with respect to the second variable y is intact during the
derivation of z∗∗(x, y), and hence z∗∗(x, y) is a periodic wave solution of
(E2) over R2 of period ω1 and ω2 with respect to x and y, respectively.

4. Massera criteria for general n. Using the proof of Theorem 2
inductively, we can establish the following Massera criteria for equation
(En) for any finite n. We omit the proof.

Theorem 3. Let 1 ≤ m ≤ n and 1 ≤ k1 < k2 < · · · < km ≤ n
be integers and ωi > 0, i = 1, . . . , m. For 1 ≤ k ≤ n, assume that
ak(x1, . . . , xn, u) and c(x1, . . . , xn, u) are periodic with respect to xi

of period ωi, i = 1, . . . , m. If equation (En) admits a bounded weak
solution of Lipschitz type over the cone

{(x1, . . . , xn) ∈ Rn : xki
> 0, i = 1, . . . , m},

then (En) admits a periodic wave solution of period ω1, . . . , ωm with
respect to xk1 , . . . , xkm

, respectively.
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When n = 1, Theorem 3 gives Theorem A.

Example 1. Consider the following quasi-linear partial differential
equation

(5) ux − uy = −(sin x + 2 cos 2y)u.

It can be verified that

u(x, y) = ecos x+sin 2y
(
1 − e−(x+y)

)

is a bounded solution of Lipschitz type of equation (5) defined on R2
++.

Theorem 2 implies that equation (5) admits a periodic wave solution
of period 2π and π with respect to x and y, respectively. In fact,

u∗(x, y) = ecos x+sin 2y

is such a periodic wave solution of equation (5).

Solutions to a quasi-linear equation (En) can be obtained by finding
first integrals of its characteristic equations (3). A nonconstant Lips-
chitz function V (x1, . . . , xn, u) is said to be a first integral of system
(3) in a region U ⊂ Rn+1 if

V (x1(t), . . . , xn(t), u(t)) = const.

for all solutions (x1(t), . . . , xn(t), u(t)) to (3) in U . A necessary and
sufficient condition for V to be a first integral of (3) is

n∑
i=1

∂V

∂xi
ai +

∂V

∂u
c = 0

for all (x1, . . . , xn, u) ∈ U . The following result is standard, see [4].

Lemma 5. Let V (x1, . . . , xn, u) be a first integral of (3) in U ⊂
Rn+1. Then, for any Lipschitz function Φ(ξ), the equation

(6) Φ(V (x1, . . . , xn, u)) = 0

defines an implicit weak solution to (En).
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Theorem 3 and Lemma 5 give the following result.

Corollary 1. Under the assumptions of Theorem 3, suppose that
system (3) admits a first integral V (x1, . . . , xn, u) such that, for some
Lipschitz function Φ(ξ), equation (6) defines a weak solution

u = u(x1, . . . , xn)

of Lipschitz type that is bounded in

{(x1, . . . , xn) ∈ Rn : xki
> 0, i = 1, . . . , m}.

Then (En) admits a periodic wave solution of period ω1, . . . , ωm with
respect to xk1 , . . . , xkm

, respectively.

Example 2. Consider a quasi-linear partial differential equation

(7)
(sin x + u2)ux + (sin 2y + u2)uy + (sin 3z − 2u2)uz

= −u(sin x + sin 2y + sin 3z).

Its characteristic equations

x′ = sin x + u2

y′ = sin 2y + u2

z′ = sin 3z − 2u2

u′ = −u(sin x + sin 2y + sin 3z)

have a first integral

V = x + y + z + ln |u|.

Then, by Lemma 4, Φ(x+y+z+ln |u|) = 0 defines an implicit solution
to (7) for any Φ. In particular,

u = e−x−y−z

is a weak solution to (7) of Lipschitz type and is bounded in the
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positive cone R3
+++ of R3. Therefore, by Theorem 3, equation (7) has

a wave solution that is periodic in x, y, and z of period 2π, π and 2π/3,
respectively.
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