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ON BASIC EMBEDDINGS INTO THE PLANE

DUŠAN REPOVŠ AND MATJAŽ ŽELJKO

ABSTRACT. A subset K ⊂ R2 is said to be basic if for
each function f : K → R there exist functions g, h:R → R
such that f(x, y) = g(x) + h(y) for each point (x, y) ∈ K.
If all the three functions in this definition are assumed to be
continuous (differentiable), then the embedding is C0-basic
(C1-basic). This notion appeared in studies of Hilbert’s 13th
problem on superpositions. We prove that if a finite graph is
C0-basically embeddable in the plane, then it is C1-basically
embeddable in the plane. In our proof we construct an explicit
C1-basic embedding and use the Skopenkov characterization
of graphs C0-basically embeddable in the plane. Our result
is nontrivial because the plane contains graphs which are C0-
basic but not C1-basic and graphs which are C1-basic but not
C0-basic (Baran-Skopenkov). We also prove that given any
integer k ≥ 0, there is a subset of the plane which is Cr-basic
for each 0 ≤ r ≤ k but not Cr-basic for each k < r ≤ ω.

1. Introduction. The notion of a basic embedding appeared implic-
itly in the Kolmogorov-Arnold solution of Hilbert’s 13th problem [1,
5, 6]. A compactum K ⊂ R2 is said to be basic if, for each continuous
function f : K → R there exist continuous functions g, h:R → R such
that f(x, y) = g(x) + h(y) for each point (x, y) ∈ K. One can replace
in the definition of a basic embedding continuous functions by smooth
functions (by Lipschitz, Hölder, analytic, etc., functions) and obtain a
notion of basic embeddability in a smooth, Lipschitz, Hölder, analytic,
etc. sense.

This note is motivated by the following problems.

Problem 1. Find conditions on a compactum K ⊂ R2, under which
K is basically embeddable into the plane in the smooth sense.
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Problem 2. Find conditions on a finite graph K, under which K is
basically embeddable into the plane in the smooth sense.

Problem 3. Find conditions on an arbitrary compactum K, under
which K is basically embeddable into the plane in the smooth sense.

The answer to Problem 2 is given in the paper; the other two problems
remain open.

For a subset K of the plane, not necessarily open, a function f : K →
R is said to be r-analytic, 0 ≤ r < ∞, if for each point (x0, y0) ∈ K
there exists

{aij}r
i,j=0 ⊂ R such that a00 = f(x0, y0)

and

f(x0 + x, y0 + y) =
r∑

i,j=0

aijx
iyj + o((|x| + |y|)r),

where (x0 + x, y0 + y) ∈ K and (x, y) → (0, 0). Since R ⊂ R2, this
definition applies to functions R → R as well. Note that 0-analytic is
the same as continuous, 1-analytic for functions R → R is the same
as differentiable and r-analytic for functions R → R is approximately
(but not precisely) the same as Cr.

For a subset K of the plane (not necessarily open) a function f : K →
R is said to be analytic (or ω-analytic), if for each point (x0, y0) ∈ K
there exists

{aij}∞i,j=0 ⊂ R such that f(x0 + x, y0 + y) =
∞∑

i,j=0

aijx
iyj

for (x0 + x, y0 + y) belonging to some neighborhood of (x0, y0) in K.

A compactum K ⊂ R2 is said to be Cr-basic, 1 ≤ r ≤ ω, if for
each r-analytic function f : K → R there exist r-analytic functions
g, h:R → R such that f(x, y) = g(x) + h(y) for each point (x, y) ∈ K.

Theorem 1.1. Given any integer k ≥ 0, there is a subset of the
plane which is Cr-basic for each 0 ≤ r ≤ k but not Cr-basic for each
k < r ≤ ω.
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In Theorem 1.1 we can take the graph Vk of the function y = |x|k,
x ∈ [−1, 1] for k odd, and Wk+1 = (Vk+1 − (2, 0)) � (Vk+1 + (2, 0)) for
k even.

The main result of this paper is the following.

Theorem 1.2. If a finite graph K is C0-basically embeddable into
the plane, then K is C1-basically embeddable into the plane.

Theorem 1.2 is nontrivial because the plane contains graphs which
are C1-basic but not C0-basic and graphs which are C1-basic but not
C0-basic [3].

In the proof of Theorem 1.2 we use the following result, answering
the Sternfeld problem [13].

Theorem 1.3 [11], cf. [7, 8], [10, Section 5]. For any finite graph
K the following conditions are equivalent:

(C) K is C0-basically embeddable in R2;

(G) K does not contain any of the following three graphs: a circle S,
a pentod P or a cross C with branched ends;

(R) K can be embedded in Rn for some n.

Definition of the graphs Rn is given in Section 2. Our proof of
Theorem 1.2 is based on a construction of a C1-basic embedding
Rn ⊂ R2 (Section 2). We prove elementary that this embedding is also
C0-basic, which yields an elementary proof of Theorem 1.3 as explained
in Section 3.

2. Proofs.

Proof of Theorem 1.1 for k odd. First we prove that V = V1 is C1-
basic. Take a 1-analytic function f : V → R. Since f is 1-analytic at
(0, 0), it follows that there exist a, b ∈ R such that

f(x, |x|) = f(0, 0) + ax + b|x| + o(|x| + |x|), where x → 0.
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Take h(y) = by and g(x) = f(x, |x|) − h(|x|). Clearly, h is 1-
analytic, i.e. differentiable, and g is 1-analytic outside 0. Since g(x) =
f(0, 0)+ax+ o(x) when x → 0, it follows that g is 1-analytic also at 0.

Now we prove that Vk is Cr-basic for each 0 ≤ r ≤ k. Take an r-
analytic function f : Vk → R. Since f is r-analytic at (0, 0), it follows
that there exists {aij}r

i,j=0 ⊂ R such that

a00 = f(0, 0) and f(x, |x|k) =
r∑

i,j=0

aijx
i|x|kj + o((|x| + |x|r)r),

where x → 0. Since

o((|x| + |x|r)r) = o1(xr),

we have

f(x, |x|k) = a00 + a01|x|k + a10x + · · · + ar0x
r + o2(xr).

Take h(y) = a01y and g(x) = f(x, |x|k)−h(|x|k). Clearly, h is r-analytic
and g is r-analytic outside 0. We also have g(x) = a00 + a10x + · · · +
ar0x

r + o2(xr) when x → 0. So g is r-analytic also at 0.

Next we prove that V = V1 is not Cr-basic for each 1 < r ≤ ω. Define
an analytic function f : V → R by f(x, y) = xy, where y = |x|. If V is
Cr-basic for some r ≥ 2, then there are r-analytic functions

g, h:R → R such that f(x, |x|) = x|x| = g(x) + h(|x|)

for each x ∈ [0, 1]. Hence g(x) − g(−x) = 2x2. But this is impossible
because g is 2-analytic, hence

g(x) = g(0)+ax+bx2+o(x2) and so g(−x) = g(0)−ax+bx2+o(x2)

for x → +0.

At last we prove that Vk is not Cr-basic for k odd and each k < r ≤ ω.
Define an analytic function f : Vk → R by f(x, y) = xy, where y = |x|k.
If V is Cr-basic for some r > k, then there are r-analytic functions

g, h:R → R such that f(x, |x|k) = x|x|k = g(x) + h(|x|k)
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for each x ∈ [0, 1]. Hence g(x)−g(−x) = 2x|x|k. But this is impossible
for k odd because g is (k + 1)-analytic, hence

g(x) = g0 + g1x + · · · + gk+1x
k+1 + o(xk+1)

and so

g(−x) = g0 − g1x + · · · + gk+1x
k+1 + o(xk+1)

for x → +0.

Note that a function f(x, y) on the graph V is 1-analytic if and only
if p(t) = f(t, |t|) is differentiable on [−1, 0] and on [0, 1].

Proof of Theorem 1.1 for k even. Let us prove that Wk+1 is Cr-basic
for each 0 ≤ r ≤ k. Given an r-analytic function f : Wk+1 → R, take
functions h(y) = 0 and g(x) = f(x, |x − 2sign x|k+1). Clearly, h is
r-analytic and f(x, y) = g(x) + h(y) for each (x, y) ∈ Wk+1. Since
the function p(t) = |t|k+1 is k-analytic and r ≤ k, it follows that g is
r-analytic.

Let us prove that Wk+1 is not Cr-basic for k even and each k < r ≤
∞. Define an analytic function f : Wk+1 → R by f(x, y) = ysign x. If
Wk+1 is Cr-basic, then there are r-analytic functions g and h such that
f(x, y) = g(x) + h(y).

For x ∈ [−1, 1] we have

g(x − 2) + h(|x|k+1) = f(x − 2, |x|k+1) = −|x|k+1

and

g(x + 2) + h(|x|k+1) = f(x + 2, |x|k+1) = |x|k+1.

Hence g(2 − x) = g(2 + x) and g(−x − 2) = g(x − 2) for x ∈
[−1, 1]. Now dk+1g/dxk+1|x=2 = dk+1g/dxk+1|x=−2 = 0. This leads
to a contradiction since g is (k + 1)-analytic, k + 1 is odd, and
g(x + 2) − g(x − 2) = 2|x|k+1.

Let us define inductively the graphs Rn together with an embedding
Rn → R2. We embed R1 into [−10, 10]×[−10, 10] as shown in Figure 1.
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A

B

C

R1 R2

�

T

FIGURE 1.

Then we repeat the procedure by embedding copies of R1 into squares
A, B and C shown in Figure 1 to get R2. Note that the embedded R1

into B was mirrored over � to get a connected R2.

In general, the graph Rn is constructed by embedding Rn−1 into
appropriate small squares A, B, C attached to R1. The squares A,
B and C have to be chosen carefully. Let p1:R × R → R and
p2:R × R → R denote projections onto x and y axes. We require
that p1(A), p1(B), p1(C), p1(T ) are disjoint and p2(A), p2(B), p2(C),
p2(T ) are disjoint.

Proof of Theorem 1.2. The boundary in Rn of any subgraph K ⊂ Rn

consists of a finite number of points. Hence any 1-analytic mapping
K → R can be extended to a 1-analytic mapping Rn → R. So it
suffices to prove that Rn is C1-basic. We prove this by induction.
Given a mapping f : Rn → R we shall find functions g, h:R → R such
that f(x, y) = g(x) + h(y). Then we shall show that we can obtain g
and h to be 1-analytic, i.e. differentiable, when f is 1-analytic.

Put h(0) = 0 and define g(x) = f(x, 0) for every x ∈ [0, 2]. Extend g
to a function g: [0, 10] → R.

Note that for every y ∈ [−10, 6] there exists an unique xy = |y| ∈
[0, 10] such that (xy, y) ∈ R1. (See Figure 2 for details.) Therefore,
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FIGURE 2.

using g and f for x ∈ [0, 10] we can define h: [−10, 6] → R as
h(y) = f(|y|, y) − g(|y|). Extend h to h: [−10, 10] → R.

Note that for every x ∈ [−10, 0] there exists a unique yx = −x such
that (x, yx) ∈ R1. Therefore using h we can define g: [−10, 0] → R as
g(x) = f(x,−x) − h(−x). Finally, we extend g and h to g, h:R → R.

Now let f : Rn → R, n > 1, be given. We put h(0) = 0 and
define g(x) = f(x, 0) for every x ∈ [0, 2]. As Rn is constructed by
embedding Rn−1 into appropriate small squares A, B, C attached to
R1, by inductive hypothesis there exist functions g′, h′:R → R such
that f(x, y) = g′(x) + h′(y) on (x, y) ∈ (A ∪ B ∪ C) ∩ Rn. Hence
we can extend g smoothly onto [0, 10] so that g = g′ on p1(B ∪ C).
Using functions g and f for x ∈ [0, 10] we can define h: [−10, 6] → R
as h(y) = f(|y|, y) − g(|y|). Then we extend h onto [−10, 10] so
that h = h′ on [7, 10]. Using h we finally define g: [−10, 0] → R as
g(x) = f(x,−x) − h(−x).

For n = 1, if f is 1-analytic, then it is clear that at each step the
constructed functions g and h are differentiable except maybe at 0.
So all the extensions can be chosen to be differentiable. Since f is
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1-analytic at (0, 0), it follows that there exist a, b ∈ R such that

f(x, y) = f(0, 0) + ax + by + o(|x| + |y|),
where (x, y) ∈ R1 and (x, y) → (0, 0).

We may assume that f(0, 0) = g(0) = h(0) = 0. Then according to the
structure of R1 one can write

⎧⎪⎪⎨
⎪⎪⎩

f(x, x) = g(x) + h(x)
f(x,−x) = g(x) + h(−x)
f(x, 0) = g(x)
f(−x, x) = g(−x) + h(x),

so ⎧⎪⎪⎨
⎪⎪⎩

g(x) = f(x, 0)
h(x) = f(x, x) − f(x, 0)
h(−x) = f(x,−x) − f(x, 0)
g(−x) = f(−x, x) − f(x, x) + f(x, 0)

for small x ≥ 0. Hence

g(x) = ax + o(x)

and

g(−x) = −ax + bx − ax − bx + ax + o(x) = −ax + o(x)

when x → +0. So g is differentiable at 0. Also,

h(x) = ax + bx − ax + o(x) = bx + o(x)

and

h(−x) = ax − bx − ax + o(x) = −bx + o(x)

when x → +0. So h is differentiable at 0.

Hence, for n > 1, if f is 1-analytic, then it is clear that at each step
the constructed functions g and h are differentiable everywhere. So all
the extensions can be chosen to be differentiable and thus the resulting
functions are differentiable.
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An elementary proof of (R) ⇒ (C) in Theorem 1.3. Analogously to
the proof of Theorem 1.2 above. The reduction from K to Rn follows
also by the Tietze-Uryhson extension theorem. We construct g and h
from f as above. From the construction it is clear that at each step
the constructed functions g and h are continuous. So all the extensions
can be chosen to be continuous and thus the resulting functions are
continuous.

Note that for each function f : R1 → R the functions g, h:R → R such
that f(x, y) = g(x)+h(y) are uniquely defined by f in a neighborhood
of 0. Hence any such functions g and h are 0- or 1-analytic in a
neighborhood of 0, if f is 0- or 1-analytic. Surprisingly, this is false
for r-analytic functions with 1 < r ≤ ω: the subset R1 ⊂ R2 is C1-
basic but not Cr-basic for each 1 < r ≤ ω. This is proved analogously
to Theorem 1.1 for k odd.

3. The Sternfeld criterion. The proof of Theorem 1.3 in [11]
was based on the solution of the Arnold problem [2]: find conditions
on a compactum K ⊂ R2, under which K is C-basic. This problem
was solved by Sternfeld [12, 13] (who was apparently unaware of [2]).
In order to formulate the Sternfeld criterion, let us introduce some
definitions. Let p1 and p2 be projections onto the coordinate axes in
R2. For Z ⊂ R2, let

E(Z) = {z ∈ Z : |Z ∩ p−1
1 (p1(z))| ≥ 2 and |Z ∩ p−1

2 (p2(z))| ≥ 2}.

Set E2(Z) = E(E(Z)), E3(Z) = E(E(E(Z))), etc. An ordered
sequence {a1, . . . , an} ⊂ R2 is called an array if, for each i, we have
p1(ai) = p1(ai+1) for i even and p2(ai) = p2(ai+1) for i odd (ai �= ai+1,
but it is not required that all the points of an array should be distinct).

Theorem 3.1 [12, 13]. For any compactum K ⊂ R2 the following
conditions are equivalent:

(B) the embedding K ⊂ R2 is basic;

(E) En(K) = ∅ for some n;

(A) K does not contain any array of n points for some n.
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In this paper we prove Theorem 3.1 following [13] (we believe our
exposition is clearer). One can see that the proof of Theorem 3.1 is
non-elementary in a sense that it used the Banach inverse operator
theorem.

The proof of (R) ⇔ (G) in Theorem 1.3 is elementary, cf. [4].
The proof of (C) ⇒ (G) in Theorem 1.3 is elementary modulo the
implication (B) ⇒ (A) of Theorem 3.1 [11]. The latter implication has
an elementary proof by [9]. The proof of (R) ⇒ (C) in Theorem 1.3
used the non-elementary implication (E) ⇒ (B) of Theorem 3.1 [11].
In this paper we give an elementary proof of (R) ⇒ (C) in Theorem 1.3,
which yields an elementary proof of the whole Theorem 1.3.

The Sternfeld proof of Theorem 3.1. First we prove the easy assertion
(A) ⇒ (E). Suppose to the contrary that En(K) �= ∅. Take a
point a0 ∈ En(K). Then there exist points a−1, a1 ∈ En−1(K) such
that p1(a−1) = p1(a0) and p2(a1) = p2(a0). Analogously, there exist
points a−2, a2 ∈ En−2(K) such that {a−2, a−1, a0, a1, a2} is an array.
Analogously we construct an array of 2n + 1 points in K.

The proof of (E) ⇒ (Φ) ⇒ (A) is based on a reformulation of (B)
terms of linear operators in functional spaces. Denote by C(X) the
space of continuous functions on X with the norm |f | = sup{|f(x)| :
x ∈ X}. For a subset K ⊂ I2 define the linear superposition operator

φ: C(I) ⊕ C(I) → C(K) by φ(g, h)(x, y) = g(x) + h(y).

Clearly, the embedding K ⊂ I2 is basic if and only if φ = φK is
epimorphic. Denote by C∗(X) the space of bounded linear functionals
on C(X) with the norm |μ| = sup{|μ(f)| : f ∈ C(X), |f | = 1}. For
a subset K ⊂ I2 define the dual linear superposition operator

φ∗: C∗(K) → C∗(I) ⊕ C∗(I) by φ∗μ(g, h) = (μ(g ◦ p1), μ(h ◦ p2)).

Since |φ∗μ| ≤ 2|μ|, it follows that φ∗ is bounded. By duality, φK is
epimorphic if and only if φ∗ = φ∗

K is monomorphic. By the Banach
inverse operator theorem, φ∗ is monomorphic if and only if

(Φ) there exists ε > 0 such that |φ∗μ| > ε|μ| for each μ ∈ C∗(K)

(because this condition ensures that imφ∗ is closed). Thus (B) ⇔ (Φ).
So it remains to prove (E) ⇒ (Φ) ⇒ (A).
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First we prove (Φ) ⇒ (A). If (A) is false, then for each n there exists
an array {a1, . . . , an} ⊂ K. Define a linear functional μ ∈ C∗(K) by
μ(f) =

∑n
i=1(−1)if(ai). Then |μ| = n and |φ∗μ| ≤ 4. Hence (Φ) is

false.

Now we prove (E) ⇒ (Φ). We use the fact that C∗(X) is the space
of σ-additive regular real valued Borel measures (in the sequel simply
‘measures’) on X. We have

φ∗μ = (μx, μy), where μx(U) = μ(p−1
1 U) and μy(U) = μ(p−1

2 U).

If μ = μ+ −μ− is the decomposition of a measure μ to its positive and
negative parts, then |μ| = μ̄(X), where μ̄ = μ+ + μ− is the absolute
value of μ. Let Dx (Dy) be the set of points of K which are not
shadowed by some other point of K in x- (y-) direction. Take any
measure μ on K of the norm 1.

If

E(K) = ∅, then Dx ∪ Dy = K, so 1 = μ̄(K) ≤ μ̄(Dx) + μ̄(Dy).

Therefore without loss of generality, μ̄(Dx) ≥ 1/2. Since p1 is injective
over Dx, it follows that |μx| ≥ 1/2, thus (Φ) holds.

If

E(E(K)) = ∅, then Dx∪Dy = K−E(K), so E(Dx∪Dy) = ∅.

Therefore in the case when μ̄(E(K)) < 3/4 we have μ̄(Dx ∪Dy) > 1/4
and without loss of generality μ̄(Dx) > 1/8. Then as above |μx| > 1/8,
thus (Φ) holds. In the case when μ̄(E(K)) ≥ 3/4 we have μ̄(K −
E(K)) ≤ 1/4. By the case E(K) = ∅ above without loss of generality
μ̄x(p1(E(K))) ≥ μ̄(E(K))/2. Hence |μx| ≥ 1/2 · 3/4 − 1/4 = 1/8, thus
(Φ) holds. The case of arbitrary n is proved analogously.

We remark that not only some linear relation on imφK can force it
to be strictly less than C(K). Or, in other words, ϕ∗

K can be injective
but not monomorphic. If an embedding K ⊂ R2 is basic, then we can
prove that φ∗ is monomorphic without use of φ as follows. Define a
linear operator

Ψ: C∗(I) ⊕ C∗(I) → C∗(K) by Ψ(μx, μy)(f) = μx(g) + μy(h),
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where g, h ∈ C(I) are such that g(0) = 0 and f(x, y) = g(x) + h(y)
for (x, y) ∈ K. Clearly, ΨΦ = id and Ψ is bounded, hence Φ is
monomorphic.
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