ROCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 36, Number 5, 2006

A SUMMATION FORMULA FOR SEQUENCES INVOLVING FLOOR AND CEILING FUNCTIONS

M.A. NYBLOM

ABSTRACT. A closed form expression for the Nth partial sum of the pth powers of $\|\sqrt{n}\|$ is obtained, where $\|\cdot\|$ denotes the nearest integer function. As a consequence, a necessary and sufficient condition for the divisibility of n by $\|\sqrt{n}\|$ is derived together with a closed form expression for the least nonnegative residue of n modulo $\|\sqrt{n}\|$. In addition an identity involving the zeta function $\xi(s)$ and the infinite series $\sum_{n=1}^{\infty} 1/\|\sqrt{n}\|^{s+1}$ for real s > 1 is also obtained.

1. Introduction. In a recent paper, see [3], the author examined the problem of determining a closed form expression for those sequences $\langle b_m \rangle$ formed from an arbitrary sequence of real numbers $\langle a_n \rangle$ in the following manner. Let $d \in \mathbf{N}$ be fixed, and for each $m \in \mathbf{N}$ define b_m to be the *m*th term of the sequence consisting of *nd* occurrences in succession of the terms a_n , as follows:

(1)
$$\underbrace{a_1, \ldots, a_1}_{d, a_1 \text{ terms}}, \underbrace{a_2, \ldots, a_2}_{2d, a_2 \text{ terms}}, \underbrace{a_3, \ldots, a_3}_{3d, a_3 \text{ terms}}, \ldots$$

For example, if $a_n = n$ and d = 1 then the resulting sequence $\langle b_m \rangle$ would be

$$1, 2, 2, 3, 3, 3, 4, 4, 4, 4, \ldots$$

Specifically, the problem described above required the construction of a function $f : \mathbf{N} \to \mathbf{N}$ such that $b_m = a_{f(m)}$. As was shown in **[3]** the required function $f(\cdot)$ can easily be described in terms of a combination of floor and ceiling functions, that is the functions defined as $\lfloor x \rfloor = \max\{n \in \mathbf{Z} : n \leq x\}$ and $\lceil x \rceil = \min\{n \in \mathbf{Z} : x \leq n\}$ respectively. In particular, for the sequence in (1), we have that $b_m = a_{f(m)}$ where

(2)
$$f(m) = \left\lfloor \sqrt{\left\lceil \frac{2m}{d} \right\rceil} + \frac{1}{2} \right\rfloor.$$

Received by the editors on November 12, 2003.

Copyright ©2006 Rocky Mountain Mathematics Consortium

In this note we continue our examination of those sequences defined in (1) by deriving a summation formula for the Nth partial sum $S_N = \sum_{m=1}^N b_m$. Our goal here will be to deduce, as a consequence of the aforementioned formula, a closed form expression for the partial sum of the *p*th powers of $\|\sqrt{n}\|$, where $\|x\|$ denotes the nearest integer to *x*. In particular, as special cases it will be shown that

(3)
$$\sum_{n=1}^{N} \frac{1}{\|\sqrt{n}\|} = \frac{N}{\|\sqrt{N}\|} + \|\sqrt{N}\| - 1$$

(4)
$$\sum_{n=1}^{N} \|\sqrt{n}\| = \frac{\|\sqrt{N}\|}{3} (3N + 1 - \|\sqrt{N}\|^2).$$

As will be seen, the method used to establish (3) and (4) is quite different from that employed in establishing a closed form expression for $\sum_{n=1}^{N} \lfloor \sqrt{n} \rfloor$ as demonstrated in [1, p. 86]. In addition, as a consequence of (3), a necessary and sufficient condition will be derived for the divisibility of N by $\|\sqrt{N}\|$, together with a closed form expression for the least nonnegative residue of N modulo $\|\sqrt{N}\|$.

2. Main result. We begin with a technical result which will help facilitate the calculation of the *N*th partial sum of the sequences defined in (1).

Lemma 2.1. Suppose $\langle a_n \rangle$ is an arbitrary sequence of real numbers, and let $d \in \mathbf{N}$. Then, for the sequence $\langle b_m \rangle$ defined in (1), we have

(5)
$$S_N = \sum_{m=1}^N b_m = \left(N - \frac{d}{2}\left(f(N) - 1\right)f(N)\right)a_{f(N)} + d\sum_{n=1}^{f(N)-1} na_n,$$

where $f(\cdot)$ is the function in (2).

Proof. For the sequence defined in (1), we have $b_m = a_n$, whenever $n(n-1)d/2 < m \le n(n+1)d/2$, that is, f(m) = n when

$$m \in I_n = \left[\frac{n(n-1)}{2} d + 1 \frac{n(n+1)}{2} d\right].$$

Now defining the mapping $S : \mathbf{N} \to \mathbf{N}$ by $S(N) = \max\{n \in \mathbf{N} : N \notin \bigcup_{r=1}^{n} I_r\}$ and noting that each interval I_n contains nd integers, observe the following

(6)
$$S_{N} = \sum_{n=1}^{S(N)} \sum_{r \in I_{n}} a_{f(r)} + \sum_{\substack{r \in I_{S(N)+1} \\ r \leq N}} a_{f(r)} \\ = \sum_{n=1}^{S(N)} n \, da_{n} + \sum_{\substack{r \in I_{S(N)+1} \\ r \leq N}} a_{S(N)+1}.$$

Our task is thus reduced to determine a closed form expression for S(N) in terms of N and so evaluate the second summation in (6). Suppose $N \in I_n$ for some $n \in \mathbf{N}$, then by definition of I_n ,

(7)
$$\frac{n(n-1)}{2} d < N \le \frac{n(n+1)}{2} d.$$

Now if, for some $x \in \mathbf{R}^+$ we have $n_1 < x \le n_2$ for $n_1, n_2 \in \mathbf{N}$, then $n_1 + 1 \le \lceil x \rceil \le n_2$. Consequently, from the inequality in (7) we have $n(n-1) + 1 \le \lceil 2N/d \rceil \le n(n+1)$. However, as $\sqrt{n(n+1)} < n + 1/2$ and $n - 1/2 < \sqrt{n(n-1) + 1}$, one in turn deduces that

$$n < \sqrt{\left\lceil \frac{2N}{d} \right\rceil} + \frac{1}{2} < n+1.$$

Thus, we have n = f(N) and so S(N) = f(N) - 1. Finally as the number of integers $r \in I_{S(N)+1} = I_{f(N)}$ with $r \leq N$ is given by

$$N - f(N)(f(N) - 1)\frac{d}{2} - 1 + 1,$$

one sees that the second summation in (6) is equal to

$$\sum_{\substack{r \in I_{f(N)} \\ r \leq N}} a_{f(N)} = \left(N - \frac{d}{2} \left(f(N) - 1\right) f(N)\right) a_{f(N)}.$$

Hence (6) yields (5) as required. \Box

Before establishing the main result it should be noted that the mapping $x \mapsto ||x||$ is strictly, by definition, multi-valued at x = (2n+1)/2, where $n \in \mathbf{N}$, since (2n+1)/2 lies a distance of 1/2 units from n and n+1. In such cases the convention, as in [2, p. 78], is to set ||(2n+1)/2|| = n+1. However this ambiguity does not arise for the mapping $N \mapsto ||\sqrt{N}||$, where $N \in \mathbf{N}$, as $\sqrt{N} \neq (2n+1)/2$ for any $n \in \mathbf{N}$. We now prove our main result for summing the *p*th powers of $||\sqrt{n}||$, from which (3) and (4) will follow as a corollary.

Theorem 2.1. Suppose $p \in \mathbf{R}$, then

(8)
$$\sum_{n=1}^{N} \|\sqrt{n}\|^{p} = \left(N - \left(\|\sqrt{N}\| - 1\right)\|\sqrt{N}\|\right) \|\sqrt{N}\|^{p} + 2\sum_{n=1}^{\|\sqrt{N}\| - 1} n^{p+1}.$$

In particular, when $p \in \mathbf{N}$, then

$$\sum_{n=1}^{N} \|\sqrt{n}\|^{p} = \left(N - \left(\|\sqrt{N}\| - 1\right)\|\sqrt{N}\|\right)\|\sqrt{N}\|^{p} + \frac{2}{p+2}\sum_{k=0}^{p+2} {p+2 \choose k} B_{k}\|\sqrt{N}\|^{p+2-k},$$

where B_k denotes the kth Bernoulli number.

Proof. We first show that $||x|| = \lfloor x + 1/2 \rfloor$ for every $x \in \mathbf{R}^+$. Indeed suppose ||x|| = n, taking the largest if two are equally distant. Setting $n = x + \theta$ with $-1/2 < \theta \le 1/2$, observe $\lfloor x + 1/2 \rfloor = n + \lfloor -\theta + 1/2 \rfloor = n$ since $0 \le -\theta + 1/2 < 1$. Consequently, $||\sqrt{m}|| = \lfloor \sqrt{m} + 1/2 \rfloor$ and so from (2) we deduce that the sequence $\langle ||\sqrt{m}||^p \rangle$ corresponds to the sequence $\langle b_m \rangle$ defined in (1), with $a_n = n^p$ and d = 2. Hence, in this instance, we see that (5) reduces to (8) as required. Finally if $p \in \mathbf{N}$, then the second equality follows immediately from the identity

$$\sum_{k=0}^{n-1} k^m = \frac{1}{m+1} \sum_{k=0}^m \binom{m+1}{k} B_k n^{m+1-k}.$$

We now examine (8) in the case when $p = \pm 1$.

Corollary 2.1.

$$\sum_{n=1}^{N} \|\sqrt{n}\|^{p} = \begin{cases} N\|\sqrt{N}\|^{-1} + \|\sqrt{N}\| - 1 & \text{for } p = -1\\ (\|\sqrt{N}\|/3)(3N + 1 - \|\sqrt{N}\|^{2}) & \text{for } p = 1. \end{cases}$$

Proof. Setting p = -1 in (8), observe that

$$\sum_{n=1}^{N} \|\sqrt{n}\|^{-1} = \left(N - \left(\|\sqrt{N}\| - 1\right)\|\sqrt{N}\|\right) \|\sqrt{N}\|^{-1} + 2\sum_{n=1}^{\|\sqrt{N}\|^{-1}} 1$$
$$= N\|\sqrt{N}\|^{-1} + \|\sqrt{N}\| - 1.$$

Similarly, setting p = 1 in (8) and recalling $\sum_{r=1}^{n} r^2 = n(n+1)(2n+1)/6$, one arrives, after some simplification, at the second formula.

Using the summation formula in (3) we can deduce the following divisibility property.

Corollary 2.2. Suppose $N \in \mathbf{N}$. Then $\|\sqrt{N}\|$ divides N if and only if either $N = \|\sqrt{N}\|^2$ or $N = \|\sqrt{N}\|(\|\sqrt{N}\| + 1)$. Moreover, the least nonnegative residue of N modulo $\|\sqrt{N}\|$ is given by

$$N - \|\sqrt{N}\|^{2} + \frac{\|\sqrt{N}\|}{2} \left((-1)^{\lfloor (N/\|\sqrt{N}\|) - \|\sqrt{N}\| + 1 \rfloor} + 2(-1)^{\lfloor 1/2 \left((N/\|\sqrt{N}\|) - \|\sqrt{N}\| + 1 \right) \rfloor} - 1 \right).$$

Proof. From the summation formula in (3) it is immediate that $\|\sqrt{N}\|$ divides N if and only if $\sum_{n=1}^{N} 1/\|\sqrt{n}\|$ is an integer. Recalling that $\|\sqrt{m}\| = \lfloor\sqrt{m} + 1/2\rfloor$, we deduce that the sequence $\langle \|\sqrt{m}\|^{-1} \rangle$ corresponds to the sequence $\langle b_m \rangle$ defined in (1), with $a_n = 1/n$ and d = 2. Consequently, from (6) we find that

(9)
$$\sum_{n=1}^{N} \frac{1}{\|\sqrt{n}\|} = 2\left(\|\sqrt{N}\| - 1\right) + \sum_{\substack{r \in I_{\|\sqrt{N}\|} \\ r \le N}} \frac{1}{\|\sqrt{N}\|},$$

and so our task is reduced to determining those $N \in I_{\|\sqrt{N}\|}$ for which the summation on the righthand side of (9) is integer valued. Now since the interval $I_{\|\sqrt{N}\|}$ contains $2\|\sqrt{N}\|$ integers we see that

$$\frac{1}{\|\sqrt{N}\|} \le \sum_{\substack{r \in I_{\|\sqrt{N}\|} \\ r \le N}} \frac{1}{\|\sqrt{N}\|} \le 2$$

Furthermore, as the number of integers $r \in I_{\|\sqrt{N}\|}$ with $r \leq N$ is equal to $N - \|\sqrt{N}\|(\|\sqrt{N}\| - 1)$, we conclude that the summation in question assumes the integer values of 1 and 2 if and only if $N - \|\sqrt{N}\|(\|\sqrt{N}\| - 1) = \|\sqrt{N}\|$ and $2\|\sqrt{N}\|$, respectively. Hence, $\|\sqrt{N}\|$ divides N if and only if either $N = \|\sqrt{N}\|^2$ or $N = \|\sqrt{N}\|(\|\sqrt{N}\| + 1)$.

Denote the number of integers $r \in I_{\|\sqrt{N}\|}$ with $r \leq N$ by R(N). After equating (3) with (9) and solving for $N/\|\sqrt{N}\|$, observe from the argument above that the least nonnegative residue of N modulo $\|\sqrt{N}\|$ is equal to R(N), when $1 \leq R(N) < \|\sqrt{N}\|$ and $R(N) - \|\sqrt{N}\|$, when $\|\sqrt{N}\| \leq R(N) < 2\|\sqrt{N}\|$, while zero, when $R(N) = 2\|\sqrt{N}\|$. Thus the desired residue can be calculated from the following formula

(10)
$$R(N) - \sigma(N) \|\sqrt{N}\| - 2\phi(N) \|\sqrt{N}\|,$$

where

$$\sigma(N) = \begin{cases} 0 & 1 \le R(N) < \|\sqrt{N}\| \\ 1 & \|\sqrt{N}\| \le R(N) < 2\|\sqrt{N}\| \\ 0 & R(N) = 2\|\sqrt{N}\| \end{cases}$$

and

$$\phi(N) = \begin{cases} 0 & 1 \le R(N) < 2 \|\sqrt{N}\| \\ 1 & R(N) = 2 \|\sqrt{N}\|. \end{cases}$$

Via a simple application of the floor function, we see from inspection that the functions $\sigma(N)$ and $\phi(N)$ are given by

$$\sigma(N) = -\frac{1}{2} \left((-1)^{\lfloor R(N)/\|\sqrt{N}\|\rfloor} - 1 \right)$$

and

$$\phi(N) = -\frac{1}{2} \left((-1)^{\lfloor R(N)/2 \Vert \sqrt{N} \Vert \rfloor} - 1 \right).$$

Finally substituting the previous expressions for $\sigma(N)$ and $\phi(N)$ into (10) produces, after some simplification, the desired residue formula.

Remark 2.1. If $N = s^2$ or N = s(s + 1) for some $s \in \mathbf{N}$, then in either case $s = \|\sqrt{N}\|$. Thus, the previous corollary implies that $\|\sqrt{N}\|$ divides N if and only if N is either a square or a product of two consecutive integers.

To close, we establish a curious connection between the zeta function $\zeta(s)$, for real s > 1, and the infinite series involving terms of the form $\|\sqrt{n}\|^{-(s+1)}$.

Corollary 2.3. Suppose s > 1. Then

$$\sum_{n=1}^{\infty} \frac{1}{\|\sqrt{n}\|^{s+1}} = 2\,\zeta(s).$$

Proof. After setting p = -(s+1) in (8) we need only show that

$$\left(N - \left(\|\sqrt{N}\| - 1\right)\|\sqrt{N}\|\right)\|\sqrt{N}\|^{-(s+1)} = o(1)$$

as $N \to \infty$. Now, by definition of the floor and ceiling functions, observe that

$$\|\sqrt{N}\| = \left\lfloor\sqrt{N} + \frac{1}{2}\right\rfloor = \left\lceil\sqrt{N} + \frac{1}{2}\right\rceil - 1 \ge \sqrt{N} + \frac{1}{2} - 1 = \sqrt{N} - \frac{1}{2}.$$

Consequently, $(\|\sqrt{N}\| - 1)\|\sqrt{N}\| \ge (\sqrt{N} - 3/2)(\sqrt{N} - 1/2) = N - 2\sqrt{N} + 3/4$, and so $N - (\|\sqrt{N}\| - 1)\|\sqrt{N}\| \le 2\sqrt{N} - 3/4$. Thus,

$$0 < \left(N - \left(\|\sqrt{N}\| - 1\right)\|\sqrt{N}\|\right)\|\sqrt{N}\|^{-(s+1)} \le \frac{2\sqrt{N} - (3/4)}{(\sqrt{N} - (1/2))^{s+1}} \longrightarrow 0,$$

as $N \to \infty$ since s > 1.

REFERENCES

1. R.L. Graham, D.E. Knuth and O. Patashnik, *Concrete mathematics*, Addison-Wesley, New York, 1989.

2. I. Niven and H. Zuckerman, An introduction to the theory of numbers, 3rd ed., John Wiley and Sons, Inc., New York, 1972.

3. M.A. Nyblom, Some curious sequences involving floor and ceiling functions, Amer. Math. Monthly **109** (2002), 559–564.

RMIT UNIVERSITY, GPO Box 2467V, Melbourne, Victoria 3001, Australia E-mail address: michael.nyblom@rmit.edu.au