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LIONS-PEETRE’S INTERPOLATION METHODS
ASSOCIATED WITH QUASI-POWER FUNCTIONS

AND SOME APPLICATIONS

MING FAN

ABSTRACT. This paper concerns some properties of Lions-
Peetre’s interpolation methods of constants and means as-
sociated with quasi-power functions, and their applications
in harmonic analysis, martingale inequalities, and geomet-
ric properties of Banach spaces. We describe Besov-Orlicz
spaces and Triebel-Lizorkin-Orlicz spaces in terms of interpo-
lation and wavelet bases. We study the commutators of quasi-
logarithmic operators and singular integral operators, Hankel
operators in Schatten-Orlicz classes, martingale inequalities
for the ϕ-variation, and the stability of multi-dimensional uni-
form rotundity under interpolation.

Many problems in analysis can be formulated in terms of the action
of operators on function spaces. Interpolation theory is a very powerful
tool for obtaining new estimates from old ones. In [4], the author in-
vestigated Lions-Peetre’s interpolation methods of constants and means
associated with quasi-power functions, and established its connection
with the real interpolation methods in the sense of Brudnyi-Krugljak.
These kinds of interpolation methods are a natural generalization of the
classical real interpolation methods and may play an important role in
other fields of analysis [4, 5]. In the present paper, we will study some
properties of the above mentioned interpolation methods, and their ap-
plications in harmonic analysis, martingale inequalities and geometric
properties of Banach spaces. Some classical results can be carried over
in a more general context.

The plan of the paper is as follows. Section 1 includes preliminaries
about Brudnyi-Krugljak’s and Peetre-Gustavsson’s interpolation meth-
ods. In Section 2, we formulate some useful results for Lions-Peetre’s
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interpolation methods with quasi-power functions concerning equiva-
lence, duality, reiteration, interpolation type, compact interpolation
and local commutativity. In Section 3, we describe Besov-Orlicz spaces
and Triebel-Lizorkin-Orlicz spaces in terms of interpolation, and rep-
resent these spaces by using wavelet bases. In Section 4, we deal with
the commutators of quasi-logarithmic operators and singular integral
operators, as well as Hankel operators in Schatten-Orlicz classes. In
Section 5, we obtain some martingale inequalities for the ϕ-variation.
In Section 6, we study the stability of multi-dimensional rotundity un-
der interpolation.

1. Preliminaries. Throughout this paper, we will use the termi-
nology and notation of interpolation theory from [1, 2]. The notations
⊆ and = between Banach spaces stand for continuous inclusion and
isomorphic equivalence respectively. Let X = (X0, X1) be a Banach
couple with ΔX = X0∩X1 and ΣX = X0 +X1, and let X be an inter-
mediate space for Banach couple X = (X0, X1), we denote by X0 the
regularization for X, by X ′ the Banach space dual of X0, and write the
dual couple X

′
= (X ′

0, X
′
1). For Banach couples X and Y , we denote

B(X, Y ) for the space of all bounded linear operators from X to Y . We
simply write B(X) = B(X, X).

Let us assume that X = (X0, X1) is a Banach couple. For t > 0, the
J- and K-functionals on ΔX and ΣX, respectively, are given by

J(t, x; X) = ‖x‖0 ∨ (t‖x‖1) if x ∈ ΔX,

and

K(t, x; X) = inf
{
‖x0‖0 +t‖x1‖1

∣∣x = x0 +x1, xj ∈ Xj

}
if x ∈ ΣX.

The K- and J-methods of interpolation due to Brudnyi and Krugljak
are given as follows. Let Φ be a Banach function space over (R+, dt/t)
such that 1 ∧ t ∈ Φ and

∫∞
0

1 ∧ (1/t) |f(t)| dt/t < ∞ for all f ∈ Φ. We
define

KΦ(X) :=
{

x ∈ ΣX
∣∣ ‖x‖KΦ = ‖K(t, x; X)‖Φ < ∞

}
[2,(3.3.1)],

and define JΦ

(
X
)

as the space of all x ∈ ΣX, which permits a canonical
representation x =

∫∞
0

u(t) dt
/
t for a strongly measurable function
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u:R+ −→ ΔX, with the norm

‖x‖JΦ = inf
u

∥∥J(t, u(t); X)
∥∥

Φ
< ∞ [2, (3.4.3)].

The Banach function space Φ is said to be a quasi-power parameter if
the Calderón operator S, which is defined by

(Sf)(t) =
∫ ∞

0

1 ∧ (t/s)f(s)
ds

s

for f ∈ L0(R+, dt
/
t), is bounded on Φ. In this case, we have the

equivalence
JΦ(X) = KΦ(X).

In a given category, an object B is a retract of the object A, if there
are morphisms J : B → A and P: A → B in the category, such that
P ◦ J is the identity on B. The Banach couple Y is a subcouple of a
Banach couple X if Yj is a subspace of Xj (j = 0, 1). A subcouple Y
of X is a K-subcouple of X if, for some constant C,

K(t, y; Y ) ≤ C K(t, y; X) for t > 0 and y ∈ ΣY .

In the sequel, we need some properties of the KΦ methods.

Proposition 1.1. Let X and Y be Banach couples.

(i) If X is a retract of Y , then JΦ(X) is a retract of JΦ(Y ) and
KΦ(X) is a retract of KΦ(Y ).

(ii) If Y is a K-subcouple of X, then

KΦ(Y ) = KΦ(X) ∩ ΣY .

(iii) Assume that Φ is a reflexive Banach function space and a quasi-
power parameter. If X0 or X1 is a reflexive space, then JΦ(X) is a
reflexive space.

In fact, part (i) is a natural extension of [1, Theorem 6.4.2], part (ii)
follows from [9, Theorem 2.1] and part (iii) can be induced from [2,
Proposition 4.6.5 and Corollary 4.6.18].
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Let ρ:R+ → R+ be a concave function. We denote

ρ∗(t) = 1
/
ρ(1/t) and ρ̄(t) = sup

s>0

ρ(st)
ρ(s)

for t > 0.

A corresponding homogeneous function of two variables, again denoted
by ρ, is defined by

ρ(t0, t1) = t0ρ(t1/t0) for t0, t1 > 0.

Let now ρ be quasi-power in the sense that there exist C > 0 and
0 < β < 1 for which ρ̄(t) ≤ C (tβ ∨ t(1−β)) for all t > 0. Throughout
the paper, we always assume that

ρ̄(t) ≤ tβ ∨ t(1−β) for all t > 0.

Recall the ± method G0
ρ introduced by Peetre [15] as below: G0

ρ(X)
is the space of all x ∈ ΣX such that x =

∑∞
ν=−∞ xν converges in ΣX

for an admissible sequence (xν)ν in ΔX, and there is a constant C
satisfying ∥∥∥∥

∞∑
ν=−∞

λν2jνxν/ρ(2ν)
∥∥∥∥

j

≤ C sup
ν

|λν |, j = 0, 1

for any (λν)ν ∈ l∞. This space is equipped with the norm ‖x‖G0
ρ

=
inf C.

2. Lions-Peetre’s interpolation methods associated with
quasi-power functions. Let ρ:R+ → R+ be a quasi-power function,
and let 1 ≤ p0, p1 ≤ ∞. We define Kρ,p0,p1 and Jρ,p0,p1 as Lions-
Peetre’s interpolation methods of constants and means associated with
the function parameter ρ. More precisely, for a Banach couple X =
(X0, X1), the space Kρ,p0,p1(X) consists of all those x ∈ ΣX such
that there exist strongly measurable functions xj :R+ → Xj (j = 0, 1)
satisfying x = x0 + x1 and tj‖xj(t)‖j/ρ(t) ∈ Lpj (R+, dt/t) with the
norm

‖x‖Kρ,p0,p1
= inf

{
max
j=0,1

∥∥tj‖xj(t)‖j

/
ρ(t)
∥∥

Lpj (dt/t)

}
;

and the space Jρ,p0,p1(X) consists of all those x ∈ ΣX such that
there exists a strongly measurable function u:R+ → ΔX satisfying
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x =
∫∞
0

u(t) dt/t and tj‖u(t)‖j/ρ(t) ∈ Lpj (R+, dt/t) (j = 0, 1) with
the norm

‖x‖Jρ,p0,p1
= inf

{
max
j=0,1

∥∥tj‖u(t)‖j/ρ(t)
∥∥

Lpj (dt/t)

}
.

Furthermore, we define ϕ:R+ −→ R+ by

(2.1) ϕ−1(t) = t1/p0ρ(t−1/q),

where 1/q = 1/p0−1/p1. Then ϕ is a Young function satisfying both Δ2

and ∇2 conditions. Let Φ be the weighted Orlicz space of all measurable
functions f :R+ −→ C such that

∫∞
0

ϕ(t−q/p0 |f(t)|)tq dt/t < ∞, which
is equipped with the Luxemberg norm. Observe that Φ is a reflexive
Banach function space and a quasi-power parameter.

We now summarize some properties of these interpolation methods
obtained by the author in [4, 5].

Proposition 2.1. Let X be a Banach couple.

(i) Equivalence [4, Theorem 1.1]. If p0 
= p1, then

KΦ(X) = Kρ,p0,p1(X) = Jρ,p0,p1(X) = JΦ(X).

If p0 = p1 = p, then

Kρ,p,p(X) = Jρ,p,p(X) = Jp
ρ (X) = Kp

ρ(X),

where Jp
ρ = JLp

ρ
and Kp

ρ = KLp
ρ
, for which f ∈ Lp

ρ if and only if
f/ρ ∈ Lp(R+, dt/t).

(ii) Duality [4, Lemma 3.2].

Jρ,p0,p1(X)′ = Kρ∗,p′
0,p′

1
(X

′
),

where 1/p′j = 1 − 1/pj, j = 0, 1.

(iii) Reiteration [5, Lemma 4.6]. For 0 < θ0 < 1 and θ1 = 1 − θ0, let

1
rj

=
1 − θj

p0
+

θj

p1
, j = 0, 1, and

1
r

=
1
r0

− 1
r1

.
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Then
Jρ,p0,p1 = G0

η

(
Jr0

θ0
, Jr1

θ1

)
,

where η(t) = t−rθ0/qρ(tr/q).

We invoke the following auxiliary result which could be of interest in
their own right.

Proposition 2.2. Let X and Y be Banach couples, and let X =
Jρ,p0,p1(X) and Y = Jρ,p0,p1(Y ).

(i) Assume that x1, . . . , xk ∈ X with the canonical representations

xi =
∫ ∞

0

ui(t) dt/t, 1 ≤ i ≤ k.

If we set vj
i (t) = tjui(t)/ρ(t) and

‖vj
i ‖j =

∥∥ ‖vj
i (t)‖j

∥∥
Lpj (dt/t)

, 1 ≤ i ≤ k, j = 0, 1,

then

‖x1‖X · · · ‖xk‖X ≤ ρ̄
((

‖v0
1‖0 · · · ‖v0

k‖0

)1/k
,
(
‖v1

1‖1 · · · ‖v1
k‖1

)1/k
)k

.

(ii) If T is a bounded linear operator from X to Y , then

‖T‖X,Y ≤ ρ̄
(
‖T‖0, ‖T‖1

)
,

which means that Jρ,p0,p1 is an exact interpolation method of type ρ̄.

Proof. Let

Mj =
(
‖vj

1‖j · · · ‖vj
k‖j

)1/k
, j = 0, 1,

and let a = M1/M0. Then xi =
∫∞
0

ui(at) dt/t for which

(∫ ∞

0

(
tj‖ui(at)‖j

ρ(t)

)pj dt

t

)1/pj

=
1
aj

(∫ ∞

0

(
tj‖ui(t)‖j

ρ(t/a)

)pj dt

t

)1/pj

≤ ρ̄(a)
aj

‖vj
i ‖j .
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It turns out

‖x1‖X · · · ‖xk‖X ≤ ρ̄
((

‖v0
1‖0 · · · ‖v0

k‖0

)1/k
,
(
‖v1

1‖1 · · · ‖v1
k‖1

)1/k
)k

,

which gives part (i). Part (ii) is an easy consequence of this inequality
when k = 1.

Combing Proposition 2.1 (iii) with [3, Theorem 1.1] and [13, Theorem
3.6], we obtain

Proposition 2.3. If T is a bounded linear operator from X to Y ,
and if

T : X0 → Y0

is compact, then T : Jρ,p0,p1(X) → Jρ,p0,p1(Y ) is compact.

If Φ is a Banach function space over some complete σ-finite measure
space (Ω, μ), and if X is a Banach space, we denote by Φ[X] the space
of all X-valued strongly measurable functions f such that ‖f‖X ∈ Φ
almost everywhere and define the norm ‖f‖Φ[X] =

∥∥ ‖f‖X

∥∥
Φ
. For a

Young function ϕ:R+ → R+, let Lϕ = Lϕ(Ω, μ), and in particular, let
Lp = Lp(Ω, μ) for 1 ≤ p ≤ ∞.

Example. If the function ϕ is given by (2.1), then we have

(2.2) Jρ,p0,p1

(
Lp0 , Lp1

)
= Lϕ

by Proposition 2.1 (iii) and [14, Example 5.3]. Furthermore, we have
the following results.

(i) If X is a Banach sequence space possessing the Fatou property,
then

Jρ,p0,p1

(
X[Lp0 ], X[Lp1 ]

)
= X
[
Lϕ
]

(2.3)

and

Jρ,p0,p1

(
Lp0 [X], Lp1 [X]

)
= Lϕ[X].(2.4)
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(ii) Let ϕ̄:R+ → R+ defined by ϕ̄−1(t) = t1/p0 ρ̄(t−1/q), and let X

be a Banach couple. Then Lϕ̄
[
Jρ,p0,p1(X)

]0 is an exact interpolation
space for the couple

(
Lp0 [X0], Lp1 [X1]

)
, and the inclusion

(2.5) Jρ,p0,p1

(
Lp0 [X0], Lp1 [X1]

)
⊆ Lϕ̄

[
Jρ,p0,p1(X)

]0
holds.

In fact, these results can be obtained by (2.2), together with [5, Propo-
sition 3.2] for (2.3), the simple calculation for (2.4), and Proposition
2.2 (i) for (2.5).

We conclude this section by a result on the local commutativity for
Lions-Peetre’s methods.

Proposition 2.4. If 1 < p < ∞, then

Jρ,p0,p1

(
lp[X0], lp[X1]

)
= lp
[
Jρ,p0,p1(X)

]

Proof. Observe first that

(2.6) lp
[
G0

ρ(X)
]
⊆ G0

ρ

(
lp[X0], lp[X1]

)
by a simple calculation. If we choose θj , rj , j = 0, 1, and η as in
Proposition 2.1 (iii), then the inclusion

lp
[
Jρ,p0,p1(X)

]
⊆ G0

η

(
lp[Jr0

θ0
(X)], lp[Jr1

θ1
(X)]
)

= G0
η

(
Jr0

θ0
(lp[X0], lp[X1]), Jr1

θ1
(lp[X0], lp[X1])

)
= Jρ,p0,p1

(
lp[X0], lp[X1]

)
holds by (2.6) and reiteration. Similarly, we have

(2.7) lp
′[

Jρ∗,p′
0,p′

1
(X

′
)
]
⊆ Jρ∗,p′

0,p′
1

(
lp

′
[X ′

0], l
p′

[X ′
1]
)
.

Let X be a Banach space, and let x = (xν)ν ∈ lp[X]. Observe that

‖x‖lp[X] = sup
{
|〈x′, x〉|

∣∣x′ ∈ lp
′
[X ′] with ‖x′‖lp′ [X′] = 1

}
.
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This, together with (2.7) and Proposition 2.1, gives the converse
inclusion

Jρ,p0,p1

(
lp[X0], lp[X1]

)
⊆ lp

[
Jρ,p0,p1(X)

]
,

which completes the proof.

3. Besov-Orlicz and Triebel-Lizorkin-Orlicz spaces, and
wavelet base. Let T (Rn) be the Schwartz class of test functions
on Rn, and let T ′(Rn) be the space of tempered distributions, which
is the dual space of T (Rn). According to [1, Lemma 6.1.7], we can
choose φ ∈ T (Rn) for which

(3.1) supp φ =
{

ξ
∣∣ 2−1 ≤ |ξ| ≤ 2

}
, φ(ξ) > 0 for 2−1 < |ξ| < 2

and

(3.2)
∞∑

ν=−∞
φ(2−νξ) = 1 for ξ 
= 0.

Now we define functions φν in T (Rn) by

Fφν(ξ) = φ(2−νξ), ν = 0,±1,±2, . . . .

Here F denotes the Fourier transform.

For s ∈ R and 1 ≤ r ≤ ∞, the space l̇rs consists of all sequences
λ = (λν)ν∈Z for which

∥∥λ∥∥
l̇rs

=
( ∞∑

ν=−∞
(2νs|λν | )r

)1/r

< ∞.

Let ϕ be a Young function satisfying both Δ2 and ∇2 conditions,
and let Lϕ = Lϕ(Rn) in this section. We define the homogeneous,
respectively inhomogeneous, Orlicz-Besove space and Orlicz-Triebel-
Lipzorkin space Ḃs

ϕ,r and Ḟ s
ϕ,r, respectively F s

ϕ,r and Bs
ϕ,r, in the

following way:

Ḃs
ϕ,r = Ḃs

ϕ,r(R
n) =

{
f ∈ T ′(Rn) | (φν ∗ f)ν ∈ l̇rs [L

ϕ]
}
,

Ḟ s
ϕ,r = Ḟ s

ϕ,r(R
n) =

{
f ∈ T ′(Rn) | (φν ∗ f)ν ∈ Lϕ[l̇rs]

}
,

Bs
ϕ,r = Bs

ϕ,r(R
n) = Ḃs

ϕ,r(R
n) ∩ Lϕ,

F s
ϕ,r = F s

ϕ,r(R
n) = Ḟ s

ϕ,r(R
n) ∩ Lϕ
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with the norms

∥∥f∥∥
Ḃs

ϕ,r
= ‖(φν ∗ f)ν‖l̇rs(Lϕ),∥∥f∥∥

Ḟ s
ϕ,r

= ‖(φν ∗ f)ν‖Lϕ(l̇rs),∥∥f∥∥
Bs

ϕ,r
=
∥∥f∥∥

Ḃs
ϕ,r

+ ‖f‖Lϕ ,∥∥f∥∥
F s

ϕ,r
=
∥∥f∥∥

Ḟ s
ϕ,r

+ ‖f‖Lϕ .

We make calculus modulo polynomials when dealing with homogeneous
spaces. The definition of those spaces does not depend on the choice
of the test function φ. Some of those spaces are studied in [1, 7, 8]. If
p(t) = tp (1 < p < ∞), we write Ḃs

p,r = Ḃs
ϕ,r, Bs

p,r = Bs
ϕ,r, Ḟ s

p,r = Ḟ s
ϕ,r

and F s
p,r = F s

ϕ,r. In fact, those spaces can even be defined for 0 < p ≤ 1
or p = ∞. Now we can extend [1, Theorem 6.4.5] as below.

Proposition 3.1. Let ρ:R+ → R+ be a quasi-power function, let
s ∈ R, let 1 ≤ p0, p1, r ≤ ∞, and let ϕ be the function given by (2.1).
Then we have

Jρ,p0,p1

(
Ḃs

p0,r, Ḃ
s
p1,r

)
= Ḃs

ϕ,r,

Jρ,p0,p1

(
Ḟ s

p0,r, Ḟ
s
p1,r

)
= Ḟ s

ϕ,r,

Jρ,p0,p1

(
Bs

p0,r, B
s
p1,r

)
= Bs

ϕ,r,

Jρ,p0,p1

(
F s

p0,r, F
s
p1,r

)
= F s

ϕ,r.

Proof. Following (2.2) (2.4), we have

Jρ,p0,p1

(
l̇rs[L

p0 ], l̇rs[L
p1 ]
)

= l̇rs [L
ϕ],

Jρ,p0,p1

(
Lp0 [l̇rs ], L

p1 [l̇rs ]
)

= Lϕ[l̇rs ].

Observe that Ḃs
ϕ,r is a retract of l̇rs

[
Lϕ
]
, and Ḟ s

ϕ,r is a retract of Lϕ
[
l̇rs
]

by [7, Theorem 5.5]. This, together with Proposition 1.1 (i) gives that

Jρ,p0,p1

(
Ḃs

p0,r, Ḃ
s
p1,r

)
= Ḃs

ϕ,r,

Jρ,p0,p1

(
Ḟ s

p0,r, Ḟ
s
p1,r

)
= Ḟ s

ϕ,r.
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It is easy to adapt the proof so that the interpolation result is also valid
for the homogeneous spaces.

Now we define the Orlicz sequence space lϕ to consist of all sequences,
and the weighted Orlicz sequence space l̇ϕ∗ as follows:

lϕ =
{

λ = (λn)n≥1

∣∣∣∣
∞∑

n=1

ϕ(|λn|) < ∞
}

,

l̇ϕ∗ =
{

λ = (λn)n∈Z

∣∣∣∣
∞∑

ν=−∞
2−νϕ(|λν |) < ∞

}
.

Both spaces are equipped with the Luxemberg norms. For the test
function φ ∈ T (Rn) satisfying (3.1) and (3.2), we define the spaces Ḃϕ

∗
and Bϕ

∗ by

Ḃϕ
∗ = Ḃϕ

∗ (Rn) =
{

f ∈ T ′(Rn) | (φν ∗ f)ν ∈ l̇ϕ∗
}

and Bϕ
∗ = Ḃϕ

∗ ∩ Lϕ with the norms∥∥f∥∥
Ḃϕ

∗
=
∥∥(φν ∗ f)ν

∥∥
l̇ϕ∗

and
∥∥f∥∥

Bϕ
∗

=
∥∥(φν ∗ f)ν

∥∥
l̇ϕ∗

+
∥∥f∥∥

Lϕ .

Proposition 3.2. Let ρ:R+ → R+ be a quasi-power function, let
1 ≤ p0, p1 ≤ ∞ and let ϕ be the function given by (2.1). Then we have

Jρ,p0,p1

(
Ḃ1/p0

p0,p0
, Ḃ1/p1

p1,p1

)
= Ḃϕ

∗ ,

Jρ,p0,p1

(
B1/p0

p0,p0
, B1/p1

p1,p1

)
= Bϕ

∗ .

Proof. As in Proposition 3.1, it is enough to show the first identity.
If we choose θj , rj (j = 0, 1) and η as in Proposition 2.1 (iii), then

Jρ,p0,p1

(
l̇p0
1/p0

[Lp0 ], l̇p1
1/p1

[Lp1 ]
)

= G0
η

(
Jr0

θ0

(
l̇p0
1/p0

[Lp0 ], l̇p1
1/p1

[Lp1 ]
)
, Jr1

θ1

(
l̇p0
1/p0

[Lp0 ], l̇p1
1/p1

[Lp1 ]
))

= G0
η

(
l̇r0
1/r0

[Lr0 ], l̇r1
1/r1

[Lr1 ]
)
.
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Let ωj(t) = 1/t1/rj , j = 0, 1, and 1/r = 1/r0 − 1/r1. Then(
ω0(t)
ω1(t)

)r

=
1
t

and
(

ω1(t)1/r0

ω0(t)1/r1

)r

= 1

and hence
G0

η

(
l̇r0
1/r0

[Lr0 ], l̇r1
1/r1

[Lr1 ]
)

= l̇ϕ∗ [Lϕ]

by [14, Example 5.3]. Observe that Ḃ
1/pj
pj ,pj is a retract of l̇

pj

1/pj
[Lpj ],

j = 0, 1, and Ḃϕ
∗ is a retract of l̇ϕ∗ [Lϕ]. Thus, the identity

Jρ,p0,p1

(
Ḃ1/p0

p0,p0
, Ḃ1/p1

p1,p1

)
= Ḃϕ

∗

holds by Proposition 1.1 (i).

For a Young function ϕ, let

pϕ = inf
t>0

tϕ′(t)
ϕ(t)

and qϕ = sup
t>0

tϕ′(t)
ϕ(t)

.

Recall that ϕ satisfies both Δ2- and ∇2-conditions if and only if
1 < pϕ ≤ qϕ < ∞. We can choose p0, p1 such that 1 < p0 < pϕ ≤ qϕ <
p1 < ∞ and define ρ:R+ → R+ by

(3.3) ρ(t) = tq/p0 ϕ−1(t−q).

Observe that

1 < p0 < pϕ ≤ tϕ′(t)
ϕ(t)

≤ qϕ < p1 < ∞,

and

tρ′(t)
ρ(t)

= q

(
1
p0

− t−q(ϕ−1)′(t−q)
ϕ−1(t−q)

)
= q

(
1
p0

− ϕ(s)
sϕ′(s)

)
,

where s = ϕ−1(t−q). This implies that

0 < q

(
1
p0

− 1
pϕ

)
≤ tρ′(t)

ρ(t)
≤ q

(
1
p0

− 1
qϕ

)
< 1.

Thus, ρ is quasi-power and ϕ satisfies (2.1).
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According to [8, Theorem (7.20)], there is a wavelet characterization
for the spaces Ḟ s

p,r = Ḟ s
p,r(R) and Ḃs

p,r = Ḃs
p,r(R). Let w ∈ T (R) be a

wavelet function satisfying

supp ŵ ⊆ [− 8π/3, − 2π/3] ∪ [8π/3, 2π/3],

and hence
∫∞
−∞ xkw(t)dt = 0, k = 0, 1, 2, . . . , cf. [8, Theorem (7.11)],

let
wν,k(t) = 2ν/2 w(2νt − k), ν, k ∈ N,

be the reduced orthonormal wavelet basis of L2(R) in terms of di-
lation and translation, and let χν,k be the characteristic function of
[2−νk, 2−ν(k + 1)]. For 1 ≤ p, r < ∞, there are positive constants A
and B such that

(3.4)
A
∥∥f∥∥

Ḟ s
p,r

≤
∥∥∥∥
( ∞∑

ν,k=−∞

(∣∣〈f, wν,k〉
∣∣2ν(s+1/2) χν,k

)r)1/r∥∥∥∥
Lp

≤ B
∥∥f∥∥

Ḟ s
p,r

for all f ∈ Ḟ s
p,r, and

(3.5)
A
∥∥f∥∥

Ḃs
p,r

≤
( ∞∑

ν=−∞
2rν(s+1/2−1/p)

( ∞∑
k=−∞

∣∣〈f, wν,k〉
∣∣p)r/p)1/r

≤ B
∥∥f∥∥

Ḃs
p,r

for all f ∈ Ḃs
p,r. We extend now (3.4) to spaces Ḟ s

ϕ,r.

Proposition 3.3. Let s ∈ R, 1 ≤ r ≤ ∞, and let ϕ be a Young
function satisfying both Δ2 and ∇2 conditions. Then there are positive
constants A and B such that

A
∥∥f∥∥

Ḟ s
ϕ,r

≤
∥∥∥∥
( ∞∑

ν,k=−∞

(∣∣〈f, wν,k〉
∣∣2ν(s+1/2) χν,k

)r)1/r∥∥∥∥
Lϕ

≤ B
∥∥f∥∥

Ḟ s
ϕ,r

,

for all f ∈ Ḟ s
ϕ,r.
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Proof. Assume that 1 < p0 < pϕ ≤ qϕ < p1 < ∞ and ρ as in (3.3).
Let ḟs

ϕ,r be the space of all sequences λ = (λν,k)ν,k∈Z, for which

∥∥λ∥∥
ḟs

ϕ,r
=
∥∥∥∥
( ∞∑

ν,k=−∞

(∣∣λν,k

∣∣2ν(s+1/2) χν,k

)r)1/r∥∥∥∥
Lϕ

;

and let Uw and Vw be the operators defined by

(3.6) Uwf =
(
〈f, wν,k〉

)
ν,k

for f ∈ Ḟ s
pj ,r, and

(3.7) Vwλ =
∞∑

ν,k=−∞
λν,kwν,k

for λ = (λν,k)ν,k ∈ ḟs
pj ,r. Observe that

Jρ,p0,p1

(
ḟs

p0,r, ḟ
s
p1,r

)
= ḟs

ϕ,r,

and Uw is a bounded isomorphism from Ḟ s
pj ,r to ḟs

pj ,r, with the bounded
inverse Vw. The results can be obtained by Proposition 3.1 (i) and (3.4).

Remark. If we denote by ḃϕ
∗ the space of all sequences λ = (λν,k)ν,k∈Z,

for which
∑∞

ν,k=−∞ ϕ(2ν/2|λν,k|) < ∞, equipped with the Luxemberg
norm, then

(3.8) Jρ,p0,p1

(
ḃp0∗ , ḃp1∗

)
= ḃϕ

∗ .

By choosing r = p = pj , s = 1/pj , j = 0, 1, in (3.5), and by using
Proposition 3.2, we can obtain that

A
∥∥f∥∥

ḃϕ
∗
≤
∥∥(〈f, wν,k〉

)∥∥
Ḃϕ

∗
≤ B

∥∥f∥∥
ḃϕ
∗

for some constants A, B, and for all f ∈ Ḃϕ
∗ .

4. Commutators, Hankel operators and Schatten-Orlicz
classes. In this section, we begin with commutator estimates of quasi-
logarithmic operators on spaces Bϕ

∗ . Let X be a Banach couple, and let
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c > 1 be a constant. For x ∈ ΣX, the decomposition x = x0(t)+x1(t),
t > 0, is (c-)almost optimal for the K-methods if

K(t, x) ≤ ‖x0(t)‖0 + t‖x1(t)‖1 ≤ c K(t, x).

A (c-)almost optimal projection for the K-methods is a, usually non-
linear, operator DK(t): ΣX → X0 defined by

DK(t)x = DK(t, X)x = x0(t)

for some almost optimal decomposition. We can define the correspond-
ing quasi-logarithmic operator ΩX by

ΩX =
∫ ∞

0

(
I · χ(1,∞)(t) − DK(t)

)
x

dt

t

for x ∈ ΣX. We refer to [11] for further details. Let X and Y be
Banach couples. If Y is a retract of X with the morphisms J : Y → X
and P: X → Y , then it is clear that

(4.1) ΩY = JΩX P.

Let X = (ḃp0∗ , ḃp1∗ ) and Y = (B1/p0
p0,p0 , B

1/p1
p1,p1). Then Y is a retract of

X with the morphisms Uw: Y → X and Vw: X → Y , where Uw and Vw

are given in (3.6) and (3.7). Observe that ḃ
pj∗ (j = 0, 1) is a weighted

lpj space consisting of all sequences λ = (λν,k)ν,k∈Z for which

∥∥λ∥∥
ḃ

pj
∗

=
( ∞∑

ν,k=−∞

(
2ν/2 |λν,k|

)pj

)1/pj

< ∞.

By [11, Section 4.3], we have (ΩXλ)ν,k = λν,k log |rλ(ν, k)|1/q for
λ ∈ ΣX, where rλ(ν, k) = |{(ν′, k′)| |λν,k| > |λν′,k′ |}|. Consequently,

Ωf = ΩY f =
∞∑

ν,k=−∞
ν〈f, wν,k〉

(
log |rλ(ν, k)|1/q

)
wν,k

for all f ∈ ΣY by (4.1). Combining Proposition 3.2, (3.8) and [6,
Theorem 4.3], we obtain
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Proposition 4.1. Assume 1 < p0, p1 < ∞. For f ∈ B
1/p0
p0,p0 +B

1/p1
p1,p1 ,

let λ = Uw(f), and let

Ωf =
∞∑

ν,k=−∞
ν〈f, wν,k〉

(
log |rλ(ν, k)|1/q

)
wν,k.

If T is a bounded linear operator on B
1/pj
pj ,pj , j = 0, 1, then ΩT − TΩ is

a bounded nonlinear operator on Bϕ
∗ .

Next we deal with commutators of singular integral operators in
Schatten-Orlicz classes. Consider a Hilbert space H and a Young
function ϕ:R+ → R+. For a compact operator T on H, let (sn(T ))n≥1

be the sequence of eigenvalues of |T |, counted according to multiplicity.
We say that T ∈ Sϕ, the Schatten-Orlicz ϕ-class if (sn(T ))n ∈ lϕ. The
norm on Sϕ is given by ‖T‖Sϕ = ‖(sn(T ))n‖lϕ < ∞. In particular, we
denote Sp (1 ≤ p < ∞) the Schatten p-class, S∞ = B(H) and S0 the
space of all finite rank operators on H with norm ‖T‖S0 = rank (T ).

Let T be a Calderón-Zygmund transform, a singular integral operator
with kernel K(t− s), where K is a nonzero C∞ function on Rn except
at the origin, and is homogeneous of degree −n with mean value zero on
spheres centered at the origin. For f ∈ L2(Rn), let Mf be the pointwise
multiplication by f , and let Cf = MfT − TMf be the commutator for
the operator T on L2(Rn). In fact,

Cfx(t) =
∫ ∞

−∞
K(t − s)

(
f(t) − f(s)

)
x(s) ds.

According to [17] and [10], if f ∈ B∗
p(R), or f ∈ B∗

p(Rn) for n ≥ 2
and pϕ > n, then Cf ∈ Sp. In terms of Proposition 3.2, we can obtain
the following result:

Proposition 4.2. Let ϕ:R+ → R+ be a Young function satisfying
both Δ2 and ∇2 conditions.

(i) If f ∈ B∗
ϕ(R), then Cf ∈ Sϕ.

(ii) If f ∈ B∗
ϕ(Rn) for n ≥ 2 and pϕ > n, then Cf ∈ Sϕ.
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Let us now turn our attention to Hankel operators in Schatten-Orlicz
classes. Consider the operator U : Kρ,p0,p1(S

p0 , Sp1) → lϕ, defined by

U(T ) = (sn(T ))n.

Thus we have Kρ,p0,p1(S
p0 , Sp1) ⊆ Sϕ by (2.2) and interpolation. By

using the duality argument, we obtain

(4.2) Kρ,p0,p1(S
p0 , Sp1) = Sϕ.

If H = l2, then each bounded operator on l2 can be presented by
a matrix (ai,j)∞i,j=1. Let Γϕ denote the subspace of Sϕ consisting of
Hankel matrices, i.e., matrices of the form (ai+j)∞i,j=1.

Proposition 4.3. Let ϕj :R+ → R+ (j = 0, 1) be Young functions
satisfying both Δ2 and ∇2 conditions. Then (Γϕ0 , Γϕ1) is a K-subcouple
of (Sϕ0 , Sϕ1).

Proof. Let us choose p0, p1 satisfying

1 < p0 < pϕ0 ∧ pϕ1 ≤ qϕ0 ∨ qϕ1 < p1 < ∞,

and define ρj :R+ → R+ as ρj(t) = t−q/p0ϕ−1
j (t−q), j = 0, 1. Let Φj

be the weighted Orlicz space corresponding to the indices p0, p1 and
the function ϕj . Observe that

Sϕj = Kρj ,p0,p1(S
p0 , Sp1) = KΦj

(Sp0 , Sp1)

by (4.2), and (Γp0 , Γp1) is a K-couple of (Sp0 , Sp1) by [9, Theorem 8.2].
Thus,

Γϕj = KΦj
(Γp0 , Γp1)

by [9, Theorem 2.1] and hence (Γϕ0 , Γϕ1) is a K-couple of (Sϕ0 , Sϕ1)
by [9, Theorem 2.2 (i)].

Remark. As a consequence of Proposition 4.3, each bounded operator
on l2 has a simultaneous good Hankel approximation with respect to
all Schatten-Orlicz classes Sϕ. That is, if T ∈ B(l2), then there is a
Hankel operator K on l2 such that

‖T − K‖Sϕ ≤ Cϕ inf
{
‖T − R‖Sϕ

∣∣R ∈ Sϕ
}
,

where the constant Cϕ depends only on ϕ.
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5. Martingale inequalities for the strong ϕ-variation. Let
ϕ:R+ → R+ be a Young function. The strong ϕ-variation of a sequence
λ = (λn)n≥0, denoted by Wϕ(x), is defined as follows

Wϕ(λ) = sup
{
‖(λnk

− λnk−1)k‖lϕ | 0 ≤ n0 ≤ n1 ≤ · · ·
}
.

The corresponding Banach space Vϕ is defined by

Vϕ =
{

λ ∈ RN
∣∣ ‖λ‖Vϕ

= Wϕ(λ) < ∞
}
.

We refer to [12, Section 2.3] for more information about this space.

Let (Ω,F , P ) be a complete probability space with the filtration
{Fn}n≥0 for which F = ∨n≥0Fn. The conditional expectation op-
erators relative to Fn are denoted by E = E0 and En for n ≥ 1. For
each random variable f ∈ L1(Ω,F , P ) with Ef = 0, we consider the
corresponding martingale f = (fn)n≥0, where fn = Enf . Moreover,
we define f∗ = supn≥0 |fn|, and define the martingale differences of f
by

d0 = d0(f) = 0 and dn = dn(f) = fn − fn−1, n ≥ 1.

By using the classical real interpolation method, Pisier and Xu [16]
proved the following inequalities concerning the strong p-variation of
martingales: There exists a constant Cp depending on p such that

‖Wp(f)‖lp ≤ Cp ‖(dn)n‖lp , 1 ≤ p < 2,(5.1)

and

‖Wp(f)‖lp ≤ Cp ‖f∗‖lp , 2 < p < ∞,(5.2)

for all martingales f . In this section, we extend (5.1) (5.2) to the strong
ϕ-variation.

In terms of the reiteration in Proposition 2.1 (iii) and the similar
arguments as in the proof of [16, (1.9) and Theorem 2.1], we have

Lemma 5.1. Let ρ:R+ → R+ be quasi-power, and let ϕ given in
(2.1).

(i) Jρ,p0,p1(Vp0 , Vp1) ⊆ Vϕ.
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(ii) If Dϕ is the subset of Lϕ(Ω × N) formed of all sequences u =
(un)n≥0 such that un is Fn-measurable for all n ≥ 0 and En−1(un) = 0
for all n ≥ 1, then

Dϕ = Jρ,p0,p1(Dp0 , Dp1).

Proposition 5.1. Assume that ϕ:R+ → R+ is a super-multiplicative
Young function for which 1 < pϕ ≤ qϕ < 2 or 2 < pϕ ≤ qϕ < ∞. Then
there is a constant Cϕ depending only on ϕ such that the inequalities

‖Wϕ(f)‖lϕ ≤ Cϕ ‖(dn)n‖lϕ , 1 < pϕ ≤ qϕ < 2,

and
‖Wϕ(f)‖lϕ ≤ Cϕ ‖f∗‖lϕ , 2 < pϕ ≤ qϕ < ∞,

hold for all martingales f .

Proof. Assume that 1 < p0 < pϕ ≤ qϕ < p1 < 2 and ρ as in (3.3).
Then ρ is quasi-power with ρ̄ = ρ, and ϕ satisfies (2.1). As in the proof
of [16, Theorem 2.1], let T be the operator which maps any u in D1

to the martingale f = (fn)n≥0 defined by fn =
∑n

k=0 uk. It is known
that T is bounded from Dp to lp[Vp] for 1 ≤ p < 2. This, combined
with Lemma 5.1, (2.2) and (2.5), implies that

T : Dϕ = Jρ,p0,p1(Dp0 , Dp1) −→ Jρ,p0,p1

(
lp0 [Vp0 ], l

p1 [Vp1 ]
)
,

and

Jρ,p0,p1

(
lp0 [Vp0 ], l

p1 [Vp1 ]
)
⊆ lϕ

[
Jρ,p0,p1(Vp0 , Vp1)

]
⊆ lϕ [Vϕ].

Thus, ‖T (u)‖lϕ(Vϕ) ≤ Cϕ ‖u‖Dϕ
. This gives the inequality

‖Wϕ(f)‖lϕ ≤ Cϕ ‖(dn)n‖lϕ .

For 2 < p0 < pϕ ≤ qϕ < ∞, the inequality ‖Wϕ(f)‖lϕ ≤ Cϕ ‖f∗‖lϕ can
be obtained by a similar argument as above and in the proof of [16,
Theorem 2.4].

6. On multi-dimensional uniform rotundity. Like the clas-
sical real methods, many important geometric properties of Banach
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spaces are stable under Lions-Peetre’s methods associated with quasi-
power functions. For instance, if X0 or X1 is a reflexive space, then
Jρ,p0,p1(X) is also a reflexive space. This is an immediate consequence
of Proposition 1.1 (iii) and Proposition 2.1 (i). Another example is the
uniform convexity [5, Proposition 4.5]. In this final section, we consider
the multi-dimensional uniform rotundity.

Let X be a Banach space, and let xi ∈ X for 0 ≤ i ≤ k. The
k-dimensional volume enclosed by x0, x1, . . . , xk is defined by

AX({xi}i) = sup
x∗

l
∈X′,‖x∗

l
‖X′≤1

⎧⎪⎪⎨
⎪⎪⎩

∣∣∣∣∣∣∣∣
1 · · · 1

〈x∗
1, x0〉 · · · 〈x∗

1, xk〉
...

. . .
...

〈x∗
k, x0〉 · · · 〈x∗

k, xk〉

∣∣∣∣∣∣∣∣

⎫⎪⎪⎬
⎪⎪⎭ .

The modulus of k-rotundity of X is defined by

δ
(k)
X (ε) = inf

{
1 −
∥∥∥∥x0 + x1 + · · · + xk

k + 1

∥∥∥∥
X

∣∣∣∣ ‖xi‖X ≤ 1, A
(
{xi}
)
≥ ε

}

for 0 ≤ ε ≤ (k + 1)(k+1)/2. The space X is k-uniformly rotund (k-UR
in short)), or equivalently k-uniformly convex, if δ

(k)
X (ε) > 0 for ε > 0.

If X is a k-UR Banach space and if 1 < p < ∞, then Lp[X] is also
k-UR [18]. Let us begin with an extension of [18, Proposition 8].

Proposition 6.1. Suppose that 1 < p0, p1 < ∞, and ρ:R+ → R+

is quasi-power. For a Banach couple X, let

X = Jρ,p0,p1(X).

If xi ∈ X, 0 ≤ i ≤ k, for which xi =
∫∞
0

ui(t) dt/t, then

AX({xi}i) ≤ kk/2 ρ̄

(
ALp0 [X0]

({
ui(t)
ρ(t)

}
i

)1/k

,

ALp1 [X1]

({
ui(t)
ρ(t)

}
i

)1/k
)k

.

Proof. For 0 ≤ i ≤ k − 1, let di be the distance between xi and the
affine [xi+1, . . . , xk] span of xi+1, . . . , xk. Then

d0 · d1 · · · dk−1 ≤ AX({xi}i) ≤ kk/2d0 · d1 · · · dk−1.
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Without loss of generality, we may assume that k = 2. For a strongly
measurable function u:R+ → ΔX, we denote

vj(t) = tju(t)
/
ρ(t) and ‖vj‖j =

∥∥‖vj(t)‖j

∥∥
Lpj (dt/t)

, j = 0, 1.

Now we have

AX(x0, x1, x2)
≤ 2 inf

z∈[x1,x2]

(
‖x1 − x2‖X‖z − x0‖X

)
≤ 2 inf

u∈[u1,u2]
ρ̄
(√

‖v0
2 − v0

1‖0‖v0 − v0
0‖0,
√
‖v1

2 − v1
1‖1‖v1 − v1

0‖1

)2

by Proposition 2.2 (i). This implies that

AX(x0, x1, x2)

≤ 2 inf
u0,u1,u2

inf
u∈[u1,u2]

ρ̄
(√

‖v0
2−v0

1‖0‖v0−v0
0‖0,
√
‖v1

2−v1
1‖1‖v1−v1

0‖1

)2

.

Since

ALpj [Xj ](v
j
0, v

j
1, v

j
2) ≥ ‖vj

2 − vj
1‖j inf

uj
‖vj − vj

0‖j , j = 0, 1,

it follows that

AX(x0, x1, x2) ≤ 2ρ̄
(
ALp0 [X0](v

0
0 , v

0
1 , v0

2)
1/2, ALp1 [X1](v

1
0 , v

1
1 , v1

2)1/2
)2

,

which completes the proof.

The following result is a generalization of [18, Theorem 10] and [5,
Proposition 4.5].

Proposition 6.2. If X0 or X1 is k-UR, then X = Jρ,p0,p1(X) is
also k-UR. Moreover, if we denote δ = δ

(k)
X , δpj ,j = δ

(k)

Lpj (Xj)
(j = 0, 1),

then

δ(ε) ≥ 1 − ρ̄
(
1 − δp0,0(C ε1−β ∧ εβ), 1 − δp1,1(C ε1−β ∧ εβ)

)
for a positive constant C and for ε > 0 small enough.
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Proof. Let xi ∈ X with ‖xi‖X ≤ 1 (0 ≤ i ≤ k) and A({xi}i) ≥ ε > 0.
For η > 0, by Proposition 6.1, we have

ε

(1 + η)k
≤ AX

({
xi

1 + η

}
i

)

≤ kk/2 ρ̄
(
ALp0 (X0)({v0

i }i)1/k, ALp1 (X1)({v1
i }i)1/k

)k
≤ C max

j=0,1

{
ALpj (Xj)({v

j
i }i)1−βALp1−j (X1−j)({v

1−j
i }i)β

}
.

This, together with the inequality ALpj (Xj)({v
j
i }i) ≤ (k + 1)(k+1)/2,

implies that

ALpj (Xj)

(
{vj

i }i

)
≥ C

(
ε

(1 + η)k

)1/(1−β)

∧
(

ε

(1 + η)k

)1/β

,

and hence∥∥∥∥
∑k

i=1 vj
i

k + 1

∥∥∥∥
Lpj (Xj)

≤ 1− δpj ,j

(
C((1 + η)−kε)1/(1−β) ∧ ((1 + η)−kε)1/β

)
.

Consequently,

1
(1 + η)

∥∥∥∥
∑k

i=1 xi

k + 1

∥∥∥∥
X

≤ ρ̄

(∥∥∥∥
∑k

i=1 v0
i

k + 1

∥∥∥∥
Lp0 [X0]

,

∥∥∥∥
∑k

i=1 v1
i

k + 1

∥∥∥∥
Lp1 [X1]

)

≤ ρ̄

(
1 − δp0,0

(
C

(
ε

(1 + η)k

)1/(1−β)

∧
(

ε

(1 + η)k

)1/β)
,

1 − δp1,1

(
C

(
ε

(1 + η)k

)1/(1−β)

∧
(

ε

(1 + η)k

)1/β))
.

Therefore, X is also k-UR, and the estimate for δ is obtained by letting
η → 0.
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