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NONLOCAL BOUNDARY VALUE PROBLEM
OF HIGHER ORDER ORDINARY
DIFFERENTIAL EQUATIONS AT RESONANCE

ZENGJI DU, XIAOJIE LIN AND WEIGAO GE

ABSTRACT. In this paper we consider the following nth
order nonlocal boundary value problem at resonance case

2™ (t) = f(t,(t),2'(t),..., 2"V (), te(0,1),
D0)y=0, i=0,1,...,n—2,

1
#=D(1) = / 201(5) dg(s),
0

where f : [0,1] x R™ — R is a continuous function, g : [0,1] —
[0,00) is a nondecreasing function with g(0) = 0. Under the
resonance condition g(1) = 1, by applying the coincidence
degree theory of Mawhin, we obtain some existence results
for the boundary value problems. We also give an example to
illustrate our results.

1. Introduction. In this paper, we consider the following nth order
nonlocal boundary value problem at resonance case

M) = f(t,z(t),2'(t),... 2"V (@), te(0,1),

where f:]0,1] x R® — R is a continuous function, g : [0,1] — [0, c0)
is a nondecreasing function with g(0) = 0. In boundary condition (3),
the integral is meant in the Rieman-Stieljes sense.

Similar to [4, 15], if the linear equation z(™(t) = 0, with boundary
conditions (2), (3) has only zero solution, and the differential operator
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defined in a suitable Banach space, with boundary conditions taken
into account, is invertible, the so-called nonresonance case; otherwise,
is noninvertible, than the so-called resonance case.

Nonlocal boundary value problems were first considered by Bitsadze
and Samarskii [1] and later by I'in and Moiseev [8, 9]. We refer the
reader to [2, 3, 10-12] for recent results of nonlocal boundary value
problems. Multi-point boundary value problems, as a special case of
this class of problems, were considered extensively by some authors. For
example, Feng [4, 5], Liu [13] and Gupta [6, 7] studied the existence
results for some second order multi-point boundary value problems at
resonance case. However to our best knowledge, there is no paper to
consider the higher order nonlocal boundary value problems (1)-(3) at
resonance case.

The purpose of this paper is to study the existence of solutions for
nonlocal BVP (1)—(3) at resonance case and establish some existence
results under nonlinear growth restriction of f. Our method is based
upon the coincidence degree theory of Mawhin [14].

2. Preliminary. In this section, we recall some notation and an
abstract existence result.

Let Y, Z be real Banach spaces, and let L : domL C Y — Z be a
linear operator which is a Fredholm map of index zero, that is, Im L,
the image of L, Ker L, the kernel of L is finite-dimensional with the
same dimension as Z/(ImL), and let P :' Y - Y, Q : Z — Z be
continuous projectors such that In P = KerL, Ker(Q = Im L and
Y=KerL®KerP, Z=ImL®ImQ. It follows that L|aom LAKer P :
dom L NKer P — Im L is invertible, we denote the inverse of that map
by Kp. Let €2 be an open bounded subset of Y such that dom LN} # &,
the map N : Y — Z is said to be L-compact on Q if the map QN () is
bounded and Kp(I —Q)N : Q — Y is compact. Let J : ImQ — Ker L
be a linear isomorphism.

The theorem we use in the following is Theorem IV.13 of [14].

Theorem 1. Let L be a Fredholm operator of index zero, and let N
be L-compact on Q). Assume that the following conditions are satisfied:

(i) Lz # ANz for every (x,\) € [(dom L\ Ker L) N 9Q] x (0,;1).
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(ii) N ¢ Im L for every x € Ker L N 0N).
(iil) deg (JQN|kerr, 2 N Ker L, 0) # 0;

where Q : Z — Z is a projection with Im L = Ker Q). Then the equation
Lx = Nx has at least one solution in dom L N 2.

Throughout this paper, we use the classical spaces C[0, 1], C1[0,1], ... ,
C"=10,1] and L'[0,1]. For x € C"1[0,1], we use the norm ||z =
maxicio ) [#(0)] and 2] = max{[z]o 4 oo - » |2 o}, and
denote the norm in L'[0,1] by || - [|1. We will use the Sobolev space
W™1(0,1) which may be defined by

wm(0,1) ={z : [0,1] — Rz, a',... 2"
are absolutely continuous on [0, 1] with z(™ e L'[0,1]}.

Let Y = C"710,1], Z = L'[0,1], L is the linear operator from
dom L C Y to Z with

dom L = {x e W™0,1): 29(0) =0, i =0,1,... ,n— 2,
1
20 = [0 dgts) |
0

and Lz = (", z € dom L. We define N : Y — Z by setting
Nz = f(t,z(t),z'(t),... , 2" D)), te(0,1).

Then BVP (1)—(3) can be written as Lz = Nzx.
It is clear that

KerL={zr€domL:z=ct"' ce€R, tec|01]}.

3. Main results.

Theorem 2. Let f:[0,1] Xx R™ — R be a continuous function and
assume that
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(H1) There exist functions ay(t),az(t),. .. ,an(t), b(t),r(t) € L]0,
and constant 0 € [0,1) such that for all (x1,22,... ,2,) € R™, t € [0,
satisfying

4) |ft,z1,22,... ,20)| < <§;ai(t)xi> +b(t)<§;|xi|9> +r(t).

1],
1,

]

(H2) There exists a constant M > 0 such that, for x [ dom L, if
|z =V(t)| > M, for all t € [0,1], then

(5) ‘/0 f(S,x(s)wa-/(S)’“. 7‘,L,(n—l)(s)) ds
_ /0 /OS flo,z(v), :E/(v), .. ,x(”fl)(v)) dvdg(s) # 0.

(H3) There exists a constant M* > 0 such that, for any |c| > M*,
either

6) c- [/Olf(s,csnl,c(n— Ds" 2 ... ,c-(n—1))ds

_/01 /Osf(v,cvnl,c(n_1)vn2,... ,c-(n_l)!)dvdg(s)} <0,

or else
(7) c- [/01 f(s,es" Le(n—1)s""2,... c-(n—1))ds
- /01 /03 fo,cv™ te(n— 1" 2. e (n—1)) dvdg(s)} > 0.

Then BVP (1)—(3) with g(1) = 1, folsdg(s) # 1 has at least one
solution in C™~1[0,1] provided that

- 1
(8) leai\ll <3
i=1

We will show Theorem 2 via the following lemmas.
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Lemma 1. If g(1) =1, fol sdg(s) # 1, then L:domL CY — Z is
a Fredholm operator of index zero. Furthermore, the linear continuous
projector operator Q : Z — Z can be defined by

0 Qu= 1_f018dg [ vsras— [ [ uravagts)

and the linear operator Kp : Im L — dom L N Ker P can be written by

t Sn So
(10) pr:/ / / y(s1)dsy - dsy,
0 Jo 0

Furthermore

IKpy| <llyll1, forevery yé&ImlL.

Proof. Obviously, the problem
(1) 2 =y

has a solution z(t) satisfying 2 (0)=0 (i=0,1,... ,n—2), z(*~ V(1) =
fol ("= (s)dg(s), if and only if

(12) / ds—// v)dvdg(s) =0,

which implies

(13) ImLz{yeZ:/ ds—// o) du dg(s } 0.

In fact, if (11) has solution z(t) satisfied 2 (0) = 0 (i = 0,1,... ,n—2),
(=1 (1) = fol ("1 (s) dg(s), then from (11), we have

1 t Sn So
— (n—1) n—1 ... e
z(t) (n—1)! x (0)t +/0 /0 /0 y(s1)dsy - - dsp.
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According to (1D (1) = fol (=D (s)dg(s), g(0) = 0, g(1) = 1, we

obtain
() =) + [ or:
-/ () de)
[ <"-”<o>+/s (o) ag(e)
— 4 (0 / / o) dodg(s
then

[fros | [romans-o

On the other hand, if (12) holds, setting

t Sn S2
zt):ct”fl—k/ / / y(s1)dsy - dsp,
o Jo 0

where ¢ is an arbitrary constant, then x(t) is a solution of (11), and
z@(0)=0(i=0,1,... ,n—2), and from (12) and g(1) = 1, we have

#0(1) - / v D(s) dg(s)

—(n—l)!c—l—/ol y(w )dv—/1 {(n—l)'c—k/s (v )dv} dg(s)
~ (n—1)e[l — g(1)] + / ds—// o) dv dg(s

=0

Hence (13) is valid.
For y € Z, define

Qy = 1_f1$dg [/ ds—// v) dvdg(s ] 0<t<l.
0
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Letting y; = vy — Qy, we obtain

[1— / 1sdg<s)} on
_/1<y_Qy)<s)ds_/l [ - anwavagts
/ s)ds — Qy — / / v) dv dg(s +Qy/olsdg(s)
:/ ds—/ / v) dvdg(s Qy{l—/olsdg(s)]

thus, y; € ImL. Hence Z = Im L + Z;, where Z; = {z(t) = c:t €
[0,1], c € R}, also ImL N Z; = {0}. So we have Z =Im L & Z;, and

dimKer L =dimZ; = codimIm L = 1.

Thus L is a Fredholm operator of index zero.

We define a projector P : Y — Ker L by
(14) (Pz)(t) = 2™~V (0)t" L.

Then we show that Kp defined in (10) is a generalized inverse of
L:domLNY — Z. In fact, for y € Im L, we have

(LKp)y(t) = [(Kpy) (1) ™ = y(1),

and for x € dom L N Ker P, we know

(KpL)x / / / 51 Ydsy - dsy,
=x

= alt) ~ 2(0) ~ 1Ot — -~

in view of # € dom L N Ker P, z()(0) = 0 (i = 0,1,... ,n — 2) and
Px =0, thus
(KpL)z(t) = x(t).
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This shows that Kp = (L|qom LKer P) ' Also we have

1 1
1Kyl < [ oo [ lytooldsn - ds, = Lyl
0 0
and from
) t Sn—i S2
(pr)(z)(t) :/ / / y(sl)dsl"'dsnfi, 121723 777'_1'
0 0 0

Then we obtain

ICEPY) llso < Myl - 1Py " Plloo < llylla,

then | Kpy|l < ||ly|l1. This completes the proof of Lemma 1. O

Lemma 2. Under condition (4), there are nonnegative functions a;,
i=1,2,...,n, ¥ € L0,1] satisfying

lf(t,x1,20,... ,2p)| < a;(t)|z;| | +r(1).
(S ate)

Proof. Without loss of generality, we suppose that ||b]|; = fol |b(t)| dt
B > 0. Take v € (0,(8/n)((1/2) = 31, [laill1)); then there exists
M > 0 such that
(15) 2| < ylwg| + M, i=1,2,...,n.

Let

ai(t) = a;(t) +9b(t), i=1,2,...,n,
7(t) = r(t) + nMb(t).

Obviously, a;, i = 1,2,... ,n, 7 € L*[0,1] and

laillr < llaills +~lboll1, i=1,2,...,m
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then
n - n 1
Sl < 3 llalh +nfy < 5.
i=1 i=1

From (4) and (15), we have

[f(t 21,22,y 2n)[ < ) lai(t) +b(8)] 2| + ndb(t) +7(2)

M:

i=1

3
3

a;(t) || +7(t).

=1

Hence we can take a;, (¢ = 1,2,...,n),0,7 to replace a;, (i =
1,2,...,n), b,r, respectively in ( ) and for convenience omit the bar
above a;, (i=1,2,...,n) and r, i.e.,

n
(16) |f(t,z1,Ta,. .. ,x,)] SZai(tﬂxi\—i—r(t).

i=1

Lemma 3. Let O = {z € domL \ KerL : Lv = ANz for some
A €[0,1]}. Then Qy is a bounded subset of Y.

Proof. Suppose that x € ©; and Lr = ANz. Thus, A # 0 and
QNz = 0, so that

[ros | [romane o

thus, from (H2), there exists ¢y € [0, 1] such that |2~V (ty)| < M. In
view of

to
2D(0) = 2D (1) — / 2™ (1) dt;
0
then
(17) [|[Pa| =21 (©0) < M+ |||y = M + || L]y < M + || Na||,.

Again for x € Qy, x € dom L \ Ker L, then (I — P)x € dom L N Ker P,
LPzx = 0; thus, from Lemma 1, we know

(18) [[(I=P)z| = [[KpL(I=P)x|| < [[L(I=P)z[ly = [[ L[]y < [Nz
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From (17) and (18), we have
(19) [zl < [[Pz|| + (I = P)x|| < 2[[Nxl|y + M.
From (4), (16) and (19), we obtain

- ; M
@) el <2 (X hallle ) + Il + |
i=1

Thus, from ||z||c < ||z]| and (20), we have

2 - M
21 [ . — ; =1y —.
@0 el = gy | (el + 1k + 5

From ||2']|e < ||z||, (20) and (21), one has

2
2/l < llall < 2[1 n %}

1 —2lax]lx
n - M
x KZWHNC(Z 1)||c>o> + [|7[lx + 7}
=2
2 - ; M
- . (i—1) -
- aill 2 oo + Il + & |,
gty (el e+ +
then
(22)

9 n . M
2o < E ail |z Vo ) + 7l + = |
|| || = 1—2(HCL1||1+||CL2||1) |:(i_3 || HIH || || Hl 2

Similarly, we get

(23)
. 2 & ' M
1290 < - K ||ai|1||;v(2—1)||oo> +|Irlls + —],
1= 257 aiy ; 2
ji=2,...,n—2
and
2 M/2
(24) e < 2t QD) _

=230 il
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Similarly, from (23), (22) and (21), there exist M; >0 (i = 2,... ,n),
such that

(25) 2o < My, i=2,.... 0
hence,
2] = max{[|zlco, 2|0 - - - » 2" [loo} < max{My, Ma, ..., My}

Again from (4), (24) and (25), we have
2™y < [laglli Mo + -+ + lan—1ll1| M2 + [|anlls M1 + 7|1

Then we show that 27 is bounded.
Lemma 4. The set Qo = {x € KerL: Nz € Im L} is bounded.

Proof. Let x € Qg; then x € Ker L = {x € dom L : & = ct" !, c €
R, t €[0,1]}, and QNz = 0. Therefore

1
/ f(s,es™ e(n—1)s""2 ... ,c-(n—1))ds
0

—/1 /S flo,cv™ e(n—1)w" "2 ... e (n— 1)) dvdg(s) = 0.
0o Jo

From (H2), there exists ¢y € [0,1] such that |2~V (ty)| < M. Then
we have [|z(" V||, = [z V| = |(n — 1)!¢| < M, then

lz]| = max{l|z]loc, ... , 2"V e} = l2" V| < M.

Thus Q5 is bounded. ]

Lemma 5. If the condition (H3) holds, i.e., there exists M* > 0
such that

_ 1 s, z(s), 2’ (s "V (s)) ds
(26) 1_f018dg(8)[/0 Fls2(3).2/(s). ... .2 D(s))d

_/0 / f(v,z(v),2'(),... 2" V() dvdg(s)| <0

0
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v 1 s,z(s),z'(s 2V (s)) ds
(27) 1_f018dg(8)[/0 Fls.2(s),2'(5). ... "D () d

1 s
- / / f(v,z(),2'(),... 2" V() dvdg(s)| >0
0o Jo

for all |c| > M*. If (26) holds, let
Qy={zeKerL: -dx+(1-NJQN, =0, A €[0,1]};

here J : ImQ — Ker L is the linear isomorphism given by J(c) =
ct" 1 forallce R, t €[0,1].

Proof. Suppose that o = cot" ™! € 23; then we obtain

Acot™ !

n—1
= 1 f 37;9 {/ f(s,c08™" 1 co(nl)s" 2, ... co(n —1)!)ds
—Jo

//fvcov “Loeo(n — D" 2, .. co(n— 1)) dvdg(s) |,

or equivalently

If A =1, then ¢y = 0. Otherwise, if |¢o| > M™, in view of (26), one has
A2 = {/ f(s,co8™ Y co(n —1)s" 72 ... co(n —1)!)ds
1- fo sdg

//fvcov ~Lco(n — 1" 2,...,co(n—1)!)dvdg(s)}<O,



NONLOCAL BOUNDARY VALUE PROBLEM 1483

which contradicts Ac3 > 0. Then we obtain Q3 C {z € Ker L : |jz|| <
(n—1)IM*} is bounded.

Then the proof of Theorem 2 is now an easy consequence of the above
lemmas and Theorem 1.

Proof of Theorem 2. Let @ = {z € Y : |jz| < d} such that
Uf’zlﬁi C Q. By the Ascoli-Arzela theorem, it can be shown that
Kp(I — Q)N : Q — Y is compact, thus N is L-compact on . Then
by the above lemmas, we have

(i) Lz # ANz for every (x,y) € [(dom L \ Ker L) N 99 x (0, 1).
(ii) Nz ¢ Im L for every x € Ker L N 99).

(iii) Let H(z,A\) = =Xz + (1 — X\)JQNz, with J as in Lemma 5. We
know H(x,\) # 0, for x € Ker LNOS. Thus, by the homotopy property
of degree, we get

deg (JQN|ker 1, XN Ker L, 0) = deg (H(-,0), 2N Ker L, 0)
=deg(H(-,1),Q2NKerL,0)
=deg (—I,Q2NKerL,0).

According to the definition of degree on a space which is isomorphic to
R™, m < oo, and

QNKer L= {ct" " :|c| <d},
we have

deg (—I,QNKer L,0) = deg (—J *1J,J (2N Ker L), J*{0})
= deg (_Ia (_d7 d),O) =-1 7é 07

and then
deg (JQN|ker 1, 2N Ker L,0) # 0.

Then, by Theorem 1, Lz = Nz has at least one solution in dom L N,
so that the BVP (1)—(3) has at least one solution in C"~*[0,1]. The
proof is completed. O

Remark 3. If the inequality (27) holds in Lemma 5, then we take

Qy={zxeKerL: x4+ (1-)N)JQN, =0, X €[0,1]}.
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Let H(xz,A\) = Az + (1 — A)JQNz, with J as in Lemma 5, and, exactly
as there, we can prove that 3 is bounded. Then, in the proof of
Theorem 2, we have

deg (JOQN|ker1,, 2N Ker L,0) = deg (I, Q2N Ker L,0) = 1,
since 0 € Q2N Ker L. The remainder of the proof is the same.

4. An example.

Consider the following fourth-order nonlocal boundary value problem:
(28)

. 1
() = 2% 4 5 4 sin(z)? 4 arctan 2’ 4 cos(z”)Y® + = (12 + 1)z,

5
€ (0,1),
(29) £(0) = 2/(0) = 2 (0) =0,
" o lx/// s s
(30) z <1>f/0 (s) dg(s),

where
f(t,$1,$2,$3,l'4)
1
= 26+ 5 + sin(z)?+ arctan x5 + cos(z3) /3 + R (124 1)z,
€ (0,1),

and g(s) = s? satisfying g(0) = 0, g(1) = 1 and f01 sdg(s) =2/3 # 1.
Then we can choose a1 (t) = az(t) = as(t) =0, as(t) = 2/5, r(t) = 11,
for t € [0,1]; thus,

IN

U N O] N
B
il
—_
H

|f(t, 1, 2, x5, 24)|

AN
N).I =

lally + llallz + [lalls + llalls =

Since

/1f<s,x<s ds—//fvx (v)) dv dg(s)
//fvac ) dvdg(s //fvx (v)) dvdg(s)
//fm (v)) do dg(s),
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and f has the same sign as 2" (¢) when |2"”(¢)| > 55, we may choose
M = M* = 55, and then the conditions (H1)-(H3) of Theorem 2 are
satisfied. Theorem 2 implies that the BVP (28)—(30) has at least one
solution z € C3[0, 1].
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