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THE COMPLETE CONTINUITY PROPERTY
IN BANACH SPACES

SHANGQUAN BU AND EERO SAKSMAN

ABSTRACT. Let X be a complex Banach space. We show
that the following are equivalent: (i) X has the complete
continuity property, (ii) for every, or equivalently for some,
1 < p < ∞, for f ∈ hp(D, X) and rn ↑ 1, the sequence frn

is p-Pettis-Cauchy, where frn is defined by frn(t) = f(rneit)
for t ∈ [0, 2π], (iii) for every, or equivalently for some, 1 <
p < ∞, for every μ ∈ V p(X), the bounded linear operator

T : Lq(0, 2π) → X defined by Tφ =
∫ 2π

0
φ dμ is compact,

where 1/q + 1/p = 1, (iv) for every, or equivalently for some,
1 < p < ∞, each μ ∈ V p(X) has a relatively compact range.

Before stating our results we overview the involved concepts and
notations of vector-valued harmonic analysis. Throughout this note
(X, ‖ · ‖) denotes a complex Banach space, D denotes the open unit
disc in the complex plane, and λ is the normalized Lebesgue measure
on [0, 2π]. For a Banach space Y , we denote by BY the closed unit ball
of Y . Given 1 < p < ∞ the space hp(D, X) consists of all X-valued
harmonic functions f on D such that

‖f‖p = sup
0<r<1

(∫ 2π

0

‖f(reit)‖p dλ(t)
)1/p

< ∞.

Accordingly, h∞(D, X) is the space of all X-valued bounded harmonic
functions on D equipped with the norm ‖f‖∞ = supz∈D ‖f(z)‖. For
f ∈ hp(D, X) and n ∈ Z, the Fourier coefficient f̂(n) is computed as

f̂(n) = r−|n|
∫ 2π

0

f(reit)e−int dλ(t).
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Above r ∈ (0, 1) is arbitrary, since it is clear that f̂(n) is independent
from the choice of 0 < r < 1. We define for Λ ⊂ Z and 1 < p ≤ ∞

hp
Λ(D, X) = {f ∈ hp(D, X) : f̂(n) = 0 for n /∈ Λ}.

Let B be the collection of all Borel subsets of [0, 2π]. If μ is a countably
additive X-valued measure on [0, 2π], 1 < p < ∞, the p-variation of μ
is defined as

‖μ‖p = sup
( ∑

E∈π

‖μ(E)‖p

λ(E)p−1

)1/p

,

where the supremum is taken over all finite partitions of [0, 2π], and
one applies the usual convention: λ/0 is 0 or ∞ provided λ = 0 or
λ > 0, respectively. For p = ∞, we set

‖μ‖∞ = inf{C ≥ 0 : ‖μ(E)‖ ≤ Cλ(E) for all E ∈ B}.

We denote by V p(X) the space of all countably additive X-valued
measures μ on [0, 2π] such that ‖μ‖p < ∞. For μ ∈ V p(X), the range
of μ is defined as the set {μ(E) : E ∈ B}. Given μ ∈ V p(X) and let
n ∈ Z, its Fourier coefficients μ̂(n) are defined through

μ̂(n) =
∫ 2π

0

e−int dμ(t).

We let
V p

Λ (X) = {μ ∈ V p(X) : μ̂(n) = 0 for n /∈ Λ}.

If μ ∈ V p(X), 1 < p < ∞, one can give sense to
∫ 2π

0
φ(t) dμ(t) for

any φ ∈ Lq(0, 2π) (first for simple functions, then by extending on
Lq(0, 2π) using density), where 1/p + 1/q = 1. Furthermore we have
‖∫ 2π

0
φ dμ‖ ≤ ‖μ‖p‖φ‖q, see [1]. In particular, for z ∈ D, z = reiθ, it is

possible to define

P (μ)(z) =
∫ 2π

0

Pr(t − θ) dμ(t),

where Pr(t) = (1 − r2)/(1 − 2r cos(t) + r2) is the Poisson kernel. It
is known that P (μ) ∈ hp(D, X) and, moreover, the correspondence



THE COMPLETE CONTINUITY PROPERTY 1429

μ �→ P (μ) yields an isomorphism between V p
Λ (X) and hp

Λ(D, X) for
Λ ⊂ Z, see [1, Theorem 1.1] and [4].

If 1 ≤ p < ∞, f ∈ Lp(0, 2π; X), the p-Pettis-norm of f is defined by

‖|f‖|p = sup
η∈BX′

(∫ 2π

0

|〈η, f(t)〉|p dλ(t)
)1/p

,

A sequence fn in Lp((0, 2π), X) is said to be p-Pettis-Cauchy, if fn is
a Cauchy sequence for the norm ‖| · ‖|p.

We arrive at a central notion of this work. If Y is another Banach
space, a bounded linear operator T : X → Y is said to be completely
continuous, or Dunford-Pettis, if it maps weakly convergent sequences
in X into norm convergent sequences in Y . Recall that X is said to
have the complete continuity property, CCP in short, if each bounded
linear operator T : L1(0, 2π) → X is completely continuous. The CCP
was introduced in [8], we refer to [6, 9, 10] for more information about
this property. It is, e.g., known [8] that every space with the weak
Radon-Nikodym property, see [7] for this notion, has the CCP . The
simplest examples of Banach spaces with the CCP are separable dual
spaces, since it is well known that they have the RNP .

Let Λ ⊂ Z, X is said to have the type I-Λ-complete continuity prop-
erty, I-Λ-CCP in short, if every μ ∈ V ∞

Λ (X) has a relatively compact
range [10]. X is said to have the type II-Λ-complete continuity prop-
erty, II-Λ-CCP in short, if every μ ∈ V 1

Λ (X) which is λ-continuous,
has a relatively compact range [10]. It is clear from the definitions
that type II-Λ-CCP implies the type I-Λ-CCP , the type I-Λ-RNP ,
respectively II-Λ-RNP , implies the type I-Λ-CCP , II-Λ-CCP , [3,
5]. For f ∈ hp(D, X) and rn ↑ 1, we denote by frn

the function in
Lp(0, 2π) defined by frn

(t) = f(rneit) for t ∈ [0, 2π]. The following
characterization of the type I-Λ-CCP has been given by Robdera and
Saab [10, Theorem 3.3].

Theorem 1. Let Λ ⊂ Z. Then X has the type I-Λ-CCP if and only
if for every f ∈ h∞

Λ (D, X), rn ↑ 1, the sequence frn
in L∞(0, 2π; X) is

1-Pettis-Cauchy.

The following result is key to all other results of this note.



1430 S. BU AND E. SAKSMAN

Theorem 2. Let Λ ⊂ Z and assume that X has the type II-Λ-CCP .
Then, for 1 < p < ∞, f ∈ hp

Λ(D, X) and rn ↑ 1, the sequence frn
is

p-Pettis-Cauchy.

It is well known that when Λ = Z, the type I-Λ-CCP and type II-
Λ-CCP coincide with the CCP [10]. This fact, in combination with
Theorems 1 and 2, gives the following characterization of the CCP
which, together with Theorem 5 below, is our main result.

Theorem 3. X has the CCP if and only if for every, or equivalently
for some, 1 < p < ∞, f ∈ hp(D, X) and rn ↑ 1, the sequence frn

is
p-Pettis-Cauchy.

Proof. The condition is clearly necessary by Theorem 2 as the type
II-Z-CCP and the CCP are equivalent. Assume next that for some
1 < p < ∞, for every f ∈ hp(D, X) and rn ↑ 1, the sequence frn

is
p-Pettis-Cauchy. Then in particular for every f ∈ h∞(D, X), rn ↑ 1,
the sequence frn

is p-Pettis-Cauchy. Hence frn
is 1-Pettis-Cauchy. By

Theorem 1 this implies that X has the type I-Z-CCP , i.e., the CCP .
This finishes the proof.

One should compare Theorem 3 with the following well-known char-
acterization of the RNP : a complex Banach space X has the RNP
if and only if for every, equivalently for some, 1 < p < ∞, for every
f ∈ hp(D, X) and rn ↑ 1, the sequence frn

is convergent in Lp(0, 2π; X).

In the proof of Theorem 2 we will use the following lemma, which is
essentially known, but we include a proof for the sake of completeness.

Lemma 4. Let 1 < p < ∞ and μ ∈ V p(X). Then the range of μ is
relatively compact if and only if the operator T : Lq(0, 2π) → X defined
by Tφ =

∫ 2π

0
φ(t) dμ(t) is compact, where 1/q + 1/p = 1.

Proof. Assume first that the range of μ ∈ V p(X) is relatively
compact. It is clear that the operator T is well defined and bounded
on Lq(0, 2π) [1, p. 349]. We claim that, for any ε > 0, there exists
δ > 0 such that for each φ ∈ Lq(0, 2π) satisfying λ(supp (φ)) ≤ δ with
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‖φ‖q ≤ 1 we have ‖Tφ‖ ≤ ε. Here supp (φ) = {x : φ(x) 
= 0} is the
support of φ.

By [1, Proposition 1.1], there exists a positive function g ∈ Lp(0, 2π)
such that, for all φ ∈ Lq(0, 2π), one has

∥∥∥∥
∫ 2π

0

φ(t) dμ(t)
∥∥∥∥ ≤

∫ 2π

0

g(t)|φ(t)| dλ(t).

Therefore

‖Tφ‖ ≤
∫ 2π

0

g(t)|φ(t)| dλ(t) ≤ ‖φ‖q

( ∫
supp (φ)

|g(t)|p dλ(t)
)1/p

.

Then the claim follows easily from the absolute continuity of the
Lebesgue integrals.

Now since the range of μ is relatively compact, the set T (BL∞(0,2π)) is
also relatively compact as BL∞(0,2π) is the closed absolute convex hull
of {χA : A ∈ B}, where we denote by χA the characteristic function of
A.

Let ε > 0 be fixed, and let 0 < δ < 1 be the positive number
according to the claim. Let φ ∈ Lq(0, 2π) be such that ‖φ‖q ≤ 1.
We let φ = φ1 + φ2, where φ1(t) = φ(t) if |φ(t)| ≤ 1/δ and φ1(t) = 0
otherwise. Then

λ(supp (φ2))/δ ≤
∫

supp (φ2)

dλ(t)
δq

≤
∫

supp (φ2)

|φ2(t)|q dλ(t) ≤ 1.

Therefore λ(supp (φ2)) ≤ δ. One obtains that ‖Tφ2‖ ≤ ε by the claim.
Moreover Tφ1 ∈ Mδ := T (δ−1BL∞(0,2π)). Hence dist (Tφ, Mδ) ≤ ε
for all φ ∈ Lq(0, 2π) with ‖φ‖q ≤ 1. This implies that the set
{Tφ : φ ∈ Lq(0, 2π), ‖φ‖q ≤ 1} is relatively compact as Mδ is relatively
compact and ε > 0 is arbitrary.

Conversely, assume that the operator T is compact. Then T (BL∞(0,2π))
is relatively compact as we have BL∞(0,2π) ⊂ BLq(0,2π). We deduce
that the range of μ being a subset of T (BL∞(0,2π)), is also relatively
compact, which ends the proof.
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Proof of Theorem 2. Assume that X has the type II-Λ-CCP ,
1 < p < ∞, f ∈ hp

Λ(D, X) and rn ↑ 1. For any η ∈ X ′, the function
〈η, f〉 belongs to hp

Λ(D,C). Therefore, by the classical result, there
exists fη ∈ Lp(0, 2π) with f̂η(n) = 0 for n /∈ Λ satisfying

〈η, f(reiθ)〉 =
∫ 2π

0

Pr(θ − t)fη(t) dλ(t),

for θ ∈ [0, 2π] and 0 ≤ r < 1. Now, for E ∈ B we can define μ(E) ∈ X ′′

by

〈μ(E), η〉 =
∫

E

fη(t) dλ(t).

Since fη(t) = limr↑1〈η, f(reit)〉 almost everywhere for t ∈ [0, 2π], we
get by Fatou’s lemma

|〈μ(E), η〉| ≤
∫

E

lim
r↑1

|〈η, f(reit)〉| dλ(t)

≤ ‖η‖ lim inf
r↑1

∫
E

‖f(reit)‖ dλ(t).

It follows that

‖μ(E)‖ ≤ lim inf
r↑1

∫
E

‖f(reit)‖ dλ(t).

Let π be a finite partition of [0, 2π]. We may estimate

∑
E∈π

‖μ(E)‖p

λ(E)p
λ(E) ≤

∑
E∈π

lim inf
r↑1

( ∫
E

‖f(reit)‖dλ(t)
λ(E)

)p

λ(E)

≤
∑
E∈π

lim inf
r↑1

∫
E

‖f(reit)‖p dλ(t)

≤ lim inf
r↑1

∑
E∈π

∫
E

‖f(reit)‖p dλ(t)

= lim
r↑1

∫ 2π

0

‖f(reit)‖p dλ(t) = ‖f‖p
p < ∞

by Jensen’s inequality. Consequently, μ ∈ V p(X ′′). The same proof as
[1, Theorem 1.1] shows that the range of μ is actually contained in X.
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It follows easily from the definition of μ that μ̂(n) = 0 whenever n /∈ Λ,
i.e., μ ∈ V p

Λ (X).

The measure μ is λ-continuous as μ ∈ V p(X). It follows from the
definition of the type II-Λ-CCP that the range of μ is relatively
compact. By Lemma 4 the operator T : Lq(0, 2π) → X defined by
Tφ =

∫ 2π

0
φ(t) dμ(t) is compact. Hence the adjoint operator T ∗ : X ′ →

Lp(0, 2π) is also compact.

For η ∈ X ′ and φ ∈ Lq(0, 2π), one has

〈T ∗η, φ〉 = 〈η, Tφ〉 =
〈
η,

∫ 2π

0

φ(t) dμ(t)
〉

=
∫ 2π

0

φ(t)fη(t) dλ(t).

Therefore T ∗η = fη. For each η ∈ BX′ , the function fη belongs to
Lp(0, 2π), so we can identify fη with its harmonic extension via the
Poisson kernel in D. By the classical result

lim
n,m↑∞

‖fη(rm·) − fη(rn·)‖p = 0.

We deduce that

lim
n,m↑∞

sup
η∈BX′

‖fη(rm·) − fη(rn·)‖p = 0

as the set {fη : η ∈ BX′} = T ∗(BX′) is relatively compact in Lp(0, 2π).
The proof is complete.

From the proof of Theorem 3 and the isomorphism between hp(D, X)
and V p(X), it is clear that we have the following characterizations of
the CCP .

Theorem 5. The following statements are equivalent:

(i) X has the CCP .

(ii) For every 1 < p < ∞, every μ ∈ V p(X) has a relatively compact
range.

(iii) For some 1 < p < ∞, every μ ∈ V p(X) has a relatively compact
range.

(iv) For every 1 < p < ∞, for every μ ∈ V p(X), the corresponding
operator T on Lq(0, 2π) is compact, where 1/p + 1/q = 1.
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(v) For some 1 < p < ∞, for every μ ∈ V p(X), the corresponding
operator T on Lq(0, 2π) is compact, where 1/p + 1/q = 1.

Remarks. (i) It was shown in [2] that a complex Banach space X has
the type I-N-CCP , or equivalently the type II-N-CCP , called the
analytic CCP , if and only if for each 1 ≤ p < ∞, f ∈ hp

N(D, X) and
rn ↑ 1, the sequence frn

in Lp(0, 2π) is p-Pettis-Cauchy, see also [11].
One can easily use the argument used in the proof of Theorem 3 to give
another proof of this result. We should also notice that the method used
in [2] does not work in the CCP -case. The reason is that in [2] one
uses the fact that, for every f ∈ hp

N(D, X), there exist g ∈ h∞
N (D, X)

and h ∈ h∞
N (D,C) such that f = g/h. This is no longer true for

functions in hp(D, X). One should also compare our Theorem 2 with
[10, Theorem 3.4], which deals only with the case p = 1 and assumes
that Λ is a Riesz-set.

(ii) We can also formulate a similar result as Theorem 5 for the
analytic CCP , but in this case we use μ ∈ V p

N(X) for 1 ≤ p < ∞.
p = 1 is allowed as for f ∈ h1

N(D, X), the corresponding measure μ in
the proof of Theorem 2 is in V 1

N(X), hence μ is λ-continuous by the
vector-valued Riesz theorem.
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