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THE FUNDAMENTAL THEOREM OF
PROJECTIVE GEOMETRY FOR

AN ARBITRARY LENGTH TWO MODULE

MARCEL WILD

ABSTRACT. Let V be an arbitrary R-module of length 2
with n ≥ 3 submodules of length 1. Then every permutation
of the length 1 submodules is induced by an isomorphism

V
∼→ V if and only if n = 3 or 4.

1. Introduction. In this note all rings R have an identity and all R-
modules V are unital. We write L(V ) for the lattice of all submodules
of V . Every module isomorphism f : V ∼→ V clearly induces a lattice
isomorphism F : L(V ) ∼→ L(V ) where F (W ) := f(W ). Call V linearly
induced if conversely for each lattice isomorphism F : L(V ) ∼→ L(V )
there is a module isomorphism f : V ∼→ V such that F (W ) = f(W )
for all W ∈ L(V ). A variant of the fundamental theorem of projective
geometry can be phrased as follows:

Theorem 1 [1, p. 62]. Let K be a division ring such that every
automorphism is inner. Then each K-vector space of finite dimension
≥ 3 is linearly induced.

(In the classic fundamental theorem of projective geometry [1, p.
44] there is no restriction on the division ring but then the lattice
isomorphism F : L(V ) ∼→ L(V ) perhaps is only induced by a semilinear
bijection f : V → V . We do not wish to bother about semilinearity in
this article.)

In particular, in Theorem 1 division rings without proper automor-
phisms, such as K = R, comply. The lattice L(V ) of subspaces of
the K-vector space V is often called the projective geometry associated
with K. The dimension 1, 2, 3 subspaces are the points, lines, planes of
the projective geometry. Lattice isomorphisms L(V ) ∼→ L(V ) are called
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projectivities in [1] (but in modern texts the meaning of collineation
and projectivity may be switched).

Theorem 1 fails for two-dimensional vector spaces. In this case von
Staudt type theorems take over. They essentially assert that it works
for permutations of the points that preserve cross ratios as defined in
[1, p. 71]. This condition is necessary in the sense that each K-linear
isomorphism K2 ∼→ K2 induces a cross ratio preserving permutation
L(K2) → L(K2). Here is an example of a von Staudt type theorem:

Theorem 2 [1, p. 87]. The division ring K is commutative if and
only if the identity is the only permutation of the K-projective line
which preserves cross ratios and possesses three fixed points.

As a consequence, note the following: Suppose K is commutative and
the K-projective line L(V ) has n ≥ 5 points (this amounts to |K| ≥ 4).
Then obviously there is a non-identity permutation F of L(V ) that
fixes three points. By Theorem 2 each linear isomorphism f : V ∼→ V
fixing three proper subspaces must be the identity. Therefore V cannot
be linearly induced.

Theorem 1 has been generalized in many ways in order to accommo-
date rings R other thanK. For instance, them-dimensional “projective
geometry” associated with a ring R is often defined as the set of all
direct summands of the module Rm+1. Theorem 2 has been general-
ized to a lesser extent; usually the concept of cross ratio is somehow
adapted to the relevant ring.

Rather than looking at R-modules R2, which have length bigger than
two unless R is a field, in this paper we let V be any R-module of length
two. Also, as opposed to the usual generalizations of Theorem 2, we
do not focus on special types of permutations F : L(V ) → L(V ), but
focus on those numbers n := |L(V )| − 2 for which Theorem 1 holds
unconditionally.

So let V be an arbitrary length two module. Then the lattice
L(V ) is isomorphic to the length two modular lattice Mn completely
characterized by the number n = n(V ) of atoms. When n is infinite
we write n = ∞ rather than distinguishing between infinite cardinals.
For n(V ) = 1 the only lattice isomorphism L(V ) ∼→ L(V ) is the
identity, which is induced by the identity V

∼→ V . Let n(V ) = 2,
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so L(V ) = {〈0〉, U1, U2, V }. Such a V is necessarily cyclic. The
only nontrivial lattice isomorphism F switches U1 and U2. Clearly
F is induced by a module isomorphism f : V ∼→ V if and only if
U1 � U2. Things get more interesting for n(V ) ≥ 3; here is our (not so
fundamental) theorem of projective lines.

Theorem 3. Let R be an arbitrary ring and let V be an R-module
of length two with n(V ) ≥ 3. Then V is linearly induced if and only if
n(V ) ≤ 4.

Proof. The following fact will be crucial.

(1) Let L(V ) = {〈0〉, U1, U2, U3, . . . , Un, V }. Then the map T which
sends φ to {u + φ(u) | u ∈ U1} is a bijection between the set of
isomorphisms φ : U1

∼→ U2 and the set {U3, . . . , Un}.
We omit the straightforward verification; notice that for given Ui (3 ≤

i ≤ n) the φ with T (φ) = Ui is the map which sends u ∈ U1 to the
unique u′ ∈ U2 with u+ u′ ∈ Ui. It follows from (1) that

(2) |Aut (U1)| = |{φ : U1
∼→ U2}| = n− 2 (note ∞− 2 = ∞).

By Schur’s lemma End (U1) = Aut (U1)∪{0} is a division ring. Thus, if
|End (U1)| <∞, then Wedderburn’s theorem yields End (U1) � GF (q)
where the latter is the Galois field of cardinality q (= power of a prime).
Summarizing, either n = ∞ or q − 1 = n− 2. So n = q + 1.

(3) |Aut (V )| = n(n− 1)(n− 2)2

Indeed, the module automorphisms f : V ∼→ V are exactly the maps
f1⊕f2 : U1⊕U2 → Ui⊕Uj , i �= j, where f1 : U1

∼→ Ui and f2 : U2
∼→ Uj

are module isomorphisms. The number of pairs (i, j) is n(n − 1) and
by (2) the number of f1’s, respectively f2’s, is n− 2.

One checks that n(n − 1)(n − 2)2 < n! for all n ≥ 6. This includes
infinite cardinals n since then n(n − 1)(n − 2)2 = n < 2n ≤ n!.
Thus, for n ≥ 6, the mere cardinality argument (3) guarantees lattice
automorphisms F : L(V ) ∼→ L(V ) which are not induced by any
f ∈ Aut (V ). Can one explicitly pinpoint such an F? Provided the
division ring End (U1) has a nontrivial center and n ≥ 5 we shall
manage to do so. In particular this will settle the case n = 5 since



2078 M. WILD

then End (U1) � GF (4). So suppose n ≥ 5 and let F : L(V ) ∼→ L(V )
be any fixed lattice isomorphism such that F (Ui) = Ui, 1 ≤ i ≤ 3,
F (Ui) �= Ui, 4 ≤ i ≤ n. Such an F exists because n ≥ 5. (Recall
that for the very special case of a two-dimensional vector space V over
a commutative division ring this F does the job due to Theorem 2.)
Suppose f : V ∼→ V is a module isomorphism that induces F . We want
to derive a contradiction. According to (1) we have

(4) U3 = {u+ φ(u) | u ∈ U1}

for some unique isomorphism φ : U1
∼→ U2. Because by assumption

f(U1) = U1, we have

(5) U3 = {f(u) + φ(f(u)) | u ∈ U1}.

Using (4), one derives

(6) U3 = f(U3) = {f(u) + f(φ(u)) | u ∈ U1}.

Because of f ◦ φ : U1
∼→ U2

∼→ U2, both (5) and (6) are representations
of U3 of type (1). Hence

(7) φ ◦ f(u) = f ◦ φ(u) (u ∈ U1)

by the uniqueness of this representation. By assumption End (U1)
contains a central element ψ �= 0, 1. By (1) we have

(8) {u+ φ ◦ ψ(u) | u ∈ U1} = Uj

for some j ∈ {4, . . . , n}. Now

f(Uj)
(8)
= {f(u) + f ◦ φ ◦ ψ(u) | u ∈ U1}
(7)
= {f(u) + φ ◦ f ◦ ψ(u) | u ∈ U1}
= {f(u) + φ ◦ ψ ◦ f(u) | u ∈ U1} (8)

= Uj

which contradicts F (Uj) �= Uj .

Now we show that V is linearly induced when n = 3 or 4. The
case n = 3 being analogous, we only do n = 4, so L(V ) =
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{0, U1, U2, U3, U4, V }. Then End (U1) � GF (3), so Aut (U1) = {id, ψ}.
Analogous to (4) and (8) above we have

U3 = {u+ φ(u)| u ∈ U1}
U4 = {u+ φ ◦ ψ(u)| u ∈ U1}

where φ : U1
∼→ U2 is a unique isomorphism. Since the symmetric

group of degree 4 is generated by 2-cycles, it suffices to show that the
lattice isomorphisms L(V ) ∼→ L(V ) determined by the permutation

U1 �−→ U1, U2 �−→ U2, U3 �−→ U4 �−→ U3

is linearly induced. Put f := ψ ⊕ id : U1 ⊕ U2
∼→ U1 ⊕ U2. Using

ψ ◦ ψ = id we get

f(U3) = {ψ(u) + φ(u) | u ∈ U1} = {ψ(u) + φ ◦ψ(ψ(u)) | u ∈ U1} = U4.

Because f induces a bijection L(V ) ∼→ L(V ), this forces f(U4) = U3.

What else can be said about an arbitrary length two module V ? As to
its endomorphism ring, if n(V ) ≥ 3 then V � U1 ⊕ U1, and so End (V )
is isomorphic to the ring M2(End (U1)) of 2 × 2 matrices with entries
from the division ring End (U1). In particular, when n = n(V ) < ∞,
then n = q + 1 and End (V ) � M2(GF (q)). The reader may check
that the number of invertible 2 × 2 matrices over GF (q) is indeed
n(n − 1)(n − 2)2 in accordance with (3). What can be said about
the Abelian group (V,+)? Not much, but if n(V ) < ∞ and V = RV
is noncyclic, then (V,+) turns out to be (GF (q)2,+). This does not
imply that R � GF (q). Whether V is cyclic or not, n(V ) <∞ always
implies that n = q+1 for some prime power q. Now 7 is the first integer
≥ 3 not of type q + 1, and so there cannot be a length two module V
with n(V ) = 7.

This relates to a major unsolved problem of universal algebra: Which
finite lattices occur as congruence lattices of a finite algebra? A
breakthrough was made in [3] where the problem is reduced to intervals
in subgroup lattices of finite groups. In particular, which lattices Mn

occur as such an interval? It has, e.g., been shown in [2] that the
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answer is affirmative for n = q + 2. Thus, n = 7 works, but not with
modules.

When is a module V of length at least three linearly induced?
Theorem 3 suggests that this is unlikely, unless either L(V ) has no
interval sublattice M5 or the identity is the only lattice isomorphism
of L(V ). As mentioned in the introduction, a module isomorphism
V

∼→ V trivially induces a lattice isomorphism L(V ) ∼→ L(V ). But
what if f : V → V is merely a homogeneous bijection, i.e., satisfying
f(λx) = λf(x) but not necessarily f(x + y) = f(x) + f(y)? Call V
hom-proj if such a f nevertheless always induces a lattice isomorphism
L(V ) ∼→ L(V ). It is easy to see that every length two module is hom-
proj, but many others are as well [4].
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