THE FUNDAMENTAL THEOREM OF PROJECTIVE GEOMETRY FOR AN ARBITRARY LENGTH TWO MODULE

MARCEL WILD

Abstract

Let V be an arbitrary R-module of length 2 with $n \geq 3$ submodules of length 1 . Then every permutation of the length 1 submodules is induced by an isomorphism $V \xrightarrow{\sim} V$ if and only if $n=3$ or 4 .

1. Introduction. In this note all rings R have an identity and all R modules V are unital. We write $\mathcal{L}(V)$ for the lattice of all submodules of V. Every module isomorphism $f: V \xrightarrow{\sim} V$ clearly induces a lattice isomorphism $F: \mathcal{L}(V) \xrightarrow{\sim} \mathcal{L}(V)$ where $F(W):=f(W)$. Call V linearly induced if conversely for each lattice isomorphism $F: \mathcal{L}(V) \xrightarrow{\sim} \mathcal{L}(V)$ there is a module isomorphism $f: V \xrightarrow{\sim} V$ such that $F(W)=f(W)$ for all $W \in \mathcal{L}(V)$. A variant of the fundamental theorem of projective geometry can be phrased as follows:

Theorem 1 [1, p. 62]. Let K be a division ring such that every automorphism is inner. Then each K-vector space of finite dimension ≥ 3 is linearly induced.
(In the classic fundamental theorem of projective geometry [1, p. 44] there is no restriction on the division ring but then the lattice isomorphism $F: \mathcal{L}(V) \xrightarrow{\sim} \mathcal{L}(V)$ perhaps is only induced by a semilinear bijection $f: V \rightarrow V$. We do not wish to bother about semilinearity in this article.)

In particular, in Theorem 1 division rings without proper automorphisms, such as $K=\mathbf{R}$, comply. The lattice $\mathcal{L}(V)$ of subspaces of the K-vector space V is often called the projective geometry associated with K. The dimension 1, 2, 3 subspaces are the points, lines, planes of the projective geometry. Lattice isomorphisms $\mathcal{L}(V) \xrightarrow{\sim} \mathcal{L}(V)$ are called

[^0]projectivities in [1] (but in modern texts the meaning of collineation and projectivity may be switched).

Theorem 1 fails for two-dimensional vector spaces. In this case von Staudt type theorems take over. They essentially assert that it works for permutations of the points that preserve cross ratios as defined in [$\mathbf{1}, \mathrm{p} .71]$. This condition is necessary in the sense that each K-linear isomorphism $K^{2} \xrightarrow{\sim} K^{2}$ induces a cross ratio preserving permutation $\mathcal{L}\left(K^{2}\right) \rightarrow \mathcal{L}\left(K^{2}\right)$. Here is an example of a von Staudt type theorem:

Theorem $2[1, ~ p .87]$. The division ring K is commutative if and only if the identity is the only permutation of the K-projective line which preserves cross ratios and possesses three fixed points.

As a consequence, note the following: Suppose K is commutative and the K-projective line $\mathcal{L}(V)$ has $n \geq 5$ points (this amounts to $|K| \geq 4$). Then obviously there is a non-identity permutation F of $\mathcal{L}(V)$ that fixes three points. By Theorem 2 each linear isomorphism $f: V \xrightarrow{\sim} V$ fixing three proper subspaces must be the identity. Therefore V cannot be linearly induced.

Theorem 1 has been generalized in many ways in order to accommodate rings R other than K. For instance, the m-dimensional "projective geometry" associated with a ring R is often defined as the set of all direct summands of the module R^{m+1}. Theorem 2 has been generalized to a lesser extent; usually the concept of cross ratio is somehow adapted to the relevant ring.

Rather than looking at R-modules R^{2}, which have length bigger than two unless R is a field, in this paper we let V be any R-module of length two. Also, as opposed to the usual generalizations of Theorem 2, we do not focus on special types of permutations $F: \mathcal{L}(V) \rightarrow \mathcal{L}(V)$, but focus on those numbers $n:=|\mathcal{L}(V)|-2$ for which Theorem 1 holds unconditionally.

So let V be an arbitrary length two module. Then the lattice $\mathcal{L}(V)$ is isomorphic to the length two modular lattice M_{n} completely characterized by the number $n=n(V)$ of atoms. When n is infinite we write $n=\infty$ rather than distinguishing between infinite cardinals. For $n(V)=1$ the only lattice isomorphism $\mathcal{L}(V) \xrightarrow{\sim} \mathcal{L}(V)$ is the identity, which is induced by the identity $V \xrightarrow{\sim} V$. Let $n(V)=2$,
so $\mathcal{L}(V)=\left\{\langle 0\rangle, U_{1}, U_{2}, V\right\}$. Such a V is necessarily cyclic. The only nontrivial lattice isomorphism F switches U_{1} and U_{2}. Clearly F is induced by a module isomorphism $f: V \xrightarrow{\sim} V$ if and only if $U_{1} \simeq U_{2}$. Things get more interesting for $n(V) \geq 3$; here is our (not so fundamental) theorem of projective lines.

Theorem 3. Let R be an arbitrary ring and let V be an R-module of length two with $n(V) \geq 3$. Then V is linearly induced if and only if $n(V) \leq 4$.

Proof. The following fact will be crucial.
(1) Let $\mathcal{L}(V)=\left\{\langle 0\rangle, U_{1}, U_{2}, U_{3}, \ldots, U_{n}, V\right\}$. Then the map T which sends ϕ to $\left\{u+\phi(u) \mid u \in U_{1}\right\}$ is a bijection between the set of isomorphisms $\phi: U_{1} \xrightarrow{\sim} U_{2}$ and the set $\left\{U_{3}, \ldots, U_{n}\right\}$.
We omit the straightforward verification; notice that for given $U_{i}(3 \leq$ $i \leq n)$ the ϕ with $T(\phi)=U_{i}$ is the map which sends $u \in U_{1}$ to the unique $u^{\prime} \in U_{2}$ with $u+u^{\prime} \in U_{i}$. It follows from (1) that

$$
\begin{equation*}
\left|\operatorname{Aut}\left(U_{1}\right)\right|=\left|\left\{\phi: U_{1} \xrightarrow{\sim} U_{2}\right\}\right|=n-2 \quad(\text { note } \infty-2=\infty) \tag{2}
\end{equation*}
$$

By Schur's lemma End $\left(U_{1}\right)=\operatorname{Aut}\left(U_{1}\right) \cup\{0\}$ is a division ring. Thus, if $\left|\operatorname{End}\left(U_{1}\right)\right|<\infty$, then Wedderburn's theorem yields $\operatorname{End}\left(U_{1}\right) \simeq G F(q)$ where the latter is the Galois field of cardinality q (= power of a prime). Summarizing, either $n=\infty$ or $q-1=n-2$. So $n=q+1$.

$$
\begin{equation*}
|\operatorname{Aut}(V)|=n(n-1)(n-2)^{2} \tag{3}
\end{equation*}
$$

Indeed, the module automorphisms $f: V \xrightarrow{\sim} V \underset{\sim}{\sim}$ are exactly the maps $f_{1} \oplus f_{2}: U_{1} \oplus U_{2} \rightarrow U_{i} \oplus U_{j}, i \neq j$, where $f_{1}: U_{1} \xrightarrow{\sim} U_{i}$ and $f_{2}: U_{2} \xrightarrow{\sim} U_{j}$ are module isomorphisms. The number of pairs (i, j) is $n(n-1)$ and by (2) the number of f_{1} 's, respectively f_{2} 's, is $n-2$.

One checks that $n(n-1)(n-2)^{2}<n$! for all $n \geq 6$. This includes infinite cardinals n since then $n(n-1)(n-2)^{2}=n<2^{n} \leq n$!. Thus, for $n \geq 6$, the mere cardinality argument (3) guarantees lattice automorphisms $F: \mathcal{L}(V) \xrightarrow{\sim} \mathcal{L}(V)$ which are not induced by any $f \in \operatorname{Aut}(V)$. Can one explicitly pinpoint such an F ? Provided the division ring End $\left(U_{1}\right)$ has a nontrivial center and $n \geq 5$ we shall manage to do so. In particular this will settle the case $n=5$ since
then $\operatorname{End}\left(U_{1}\right) \simeq G F(4)$. So suppose $n \geq 5$ and let $F: \mathcal{L}(V) \xrightarrow{\sim} \mathcal{L}(V)$ be any fixed lattice isomorphism such that $F\left(U_{i}\right)=U_{i}, 1 \leq i \leq 3$, $F\left(U_{i}\right) \neq U_{i}, 4 \leq i \leq n$. Such an F exists because $n \geq 5$. (Recall that for the very special case of a two-dimensional vector space V over a commutative division ring this F does the job due to Theorem 2.) Suppose $f: V \xrightarrow{\sim} V$ is a module isomorphism that induces F. We want to derive a contradiction. According to (1) we have

$$
\begin{equation*}
U_{3}=\left\{u+\phi(u) \mid u \in U_{1}\right\} \tag{4}
\end{equation*}
$$

for some unique isomorphism $\phi: U_{1} \xrightarrow{\sim} U_{2}$. Because by assumption $f\left(U_{1}\right)=U_{1}$, we have

$$
\begin{equation*}
U_{3}=\left\{f(u)+\phi(f(u)) \mid u \in U_{1}\right\} . \tag{5}
\end{equation*}
$$

Using (4), one derives

$$
\begin{equation*}
U_{3}=f\left(U_{3}\right)=\left\{f(u)+f(\phi(u)) \mid u \in U_{1}\right\} \tag{6}
\end{equation*}
$$

Because of $f \circ \phi: U_{1} \xrightarrow{\sim} U_{2} \xrightarrow{\sim} U_{2}$, both (5) and (6) are representations of U_{3} of type (1). Hence

$$
\begin{equation*}
\phi \circ f(u)=f \circ \phi(u) \quad\left(u \in U_{1}\right) \tag{7}
\end{equation*}
$$

by the uniqueness of this representation. By assumption End $\left(U_{1}\right)$ contains a central element $\psi \neq 0,1$. By (1) we have

$$
\begin{equation*}
\left\{u+\phi \circ \psi(u) \mid u \in U_{1}\right\}=U_{j} \tag{8}
\end{equation*}
$$

for some $j \in\{4, \ldots, n\}$. Now

$$
\begin{aligned}
f\left(U_{j}\right) & \stackrel{(8)}{=}\left\{f(u)+f \circ \phi \circ \psi(u) \mid u \in U_{1}\right\} \\
& \stackrel{(7)}{=}\left\{f(u)+\phi \circ f \circ \psi(u) \mid u \in U_{1}\right\} \\
& =\left\{f(u)+\phi \circ \psi \circ f(u) \mid u \in U_{1}\right\} \stackrel{(8)}{=} U_{j}
\end{aligned}
$$

which contradicts $F\left(U_{j}\right) \neq U_{j}$.
Now we show that V is linearly induced when $n=3$ or 4 . The case $n=3$ being analogous, we only do $n=4$, so $\mathcal{L}(V)=$
$\left\{0, U_{1}, U_{2}, U_{3}, U_{4}, V\right\}$. Then End $\left(U_{1}\right) \simeq G F(3)$, so Aut $\left(U_{1}\right)=\{\mathrm{id}, \psi\}$. Analogous to (4) and (8) above we have

$$
\begin{aligned}
& U_{3}=\left\{u+\phi(u) \mid u \in U_{1}\right\} \\
& U_{4}=\left\{u+\phi \circ \psi(u) \mid u \in U_{1}\right\}
\end{aligned}
$$

where $\phi: U_{1} \xrightarrow{\sim} U_{2}$ is a unique isomorphism. Since the symmetric group of degree 4 is generated by 2 -cycles, it suffices to show that the lattice isomorphisms $\mathcal{L}(V) \xrightarrow{\sim} \mathcal{L}(V)$ determined by the permutation

$$
U_{1} \longmapsto U_{1}, \quad U_{2} \longmapsto U_{2}, \quad U_{3} \longmapsto U_{4} \longmapsto U_{3}
$$

is linearly induced. Put $f:=\psi \oplus i d: U_{1} \oplus U_{2} \xrightarrow{\sim} U_{1} \oplus U_{2}$. Using $\psi \circ \psi=i d$ we get
$f\left(U_{3}\right)=\left\{\psi(u)+\phi(u) \mid u \in U_{1}\right\}=\left\{\psi(u)+\phi \circ \psi(\psi(u)) \mid u \in U_{1}\right\}=U_{4}$.
Because f induces a bijection $\mathcal{L}(V) \xrightarrow{\sim} \mathcal{L}(V)$, this forces $f\left(U_{4}\right)=U_{3}$. -

What else can be said about an arbitrary length two module V ? As to its endomorphism ring, if $n(V) \geq 3$ then $V \simeq U_{1} \oplus U_{1}$, and so End (V) is isomorphic to the ring $M_{2}\left(\operatorname{End}\left(U_{1}\right)\right)$ of 2×2 matrices with entries from the division ring End $\left(U_{1}\right)$. In particular, when $n=n(V)<\infty$, then $n=q+1$ and $\operatorname{End}(V) \simeq M_{2}(G F(q))$. The reader may check that the number of invertible 2×2 matrices over $G F(q)$ is indeed $n(n-1)(n-2)^{2}$ in accordance with (3). What can be said about the Abelian group $(V,+)$? Not much, but if $n(V)<\infty$ and $V={ }_{R} V$ is noncyclic, then $(V,+)$ turns out to be $\left(G F(q)^{2},+\right)$. This does not imply that $R \simeq G F(q)$. Whether V is cyclic or not, $n(V)<\infty$ always implies that $n=q+1$ for some prime power q. Now 7 is the first integer ≥ 3 not of type $q+1$, and so there cannot be a length two module V with $n(V)=7$.

This relates to a major unsolved problem of universal algebra: Which finite lattices occur as congruence lattices of a finite algebra? A breakthrough was made in [3] where the problem is reduced to intervals in subgroup lattices of finite groups. In particular, which lattices M_{n} occur as such an interval? It has, e.g., been shown in $[\mathbf{2}]$ that the
answer is affirmative for $n=q+2$. Thus, $n=7$ works, but not with modules.
When is a module V of length at least three linearly induced? Theorem 3 suggests that this is unlikely, unless either $\mathcal{L}(V)$ has no interval sublattice M_{5} or the identity is the only lattice isomorphism of $\mathcal{L}(V)$. As mentioned in the introduction, a module isomorphism $V \xrightarrow{\sim} V$ trivially induces a lattice isomorphism $\mathcal{L}(V) \xrightarrow{\sim} \mathcal{L}(V)$. But what if $f: V \rightarrow V$ is merely a homogeneous bijection, i.e., satisfying $f(\lambda x)=\lambda f(x)$ but not necessarily $f(x+y)=f(x)+f(y)$? Call V hom-proj if such a f nevertheless always induces a lattice isomorphism $\mathcal{L}(V) \xrightarrow{\sim} \mathcal{L}(V)$. It is easy to see that every length two module is homproj, but many others are as well [4].

Acknowledgment. I am grateful to Peter Pálfy for helpful comments.

REFERENCES

1. R. Baer, Linear algebra and projective geometry, Academic Press, New York, 1952.
2. A. Lucchini, Representations of certain lattices as intervals in subgroup lattices, J. Algebra 164 (1994), 85-90.
3. P.P. Pálfy and P. Pudlák, Congruence lattices of finite algebras and intervals in subgroup lattices of finite groups, Algebra Univ. 11 (1980), 22-27.
4. M. Wild, Homogeneous bijections that induce automorphisms of the submodule lattice, Comm. Algebra 33 (2005), 2649-2661.

[^0]: Received by the editors on January 23, 2004, and in revised form on June 1, 2004.

