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ON THE BEHAVIOR OF THE SOLUTIONS FOR
CERTAIN FIRST ORDER LINEAR AUTONOMOUS

FUNCTIONAL DIFFERENTIAL EQUATIONS

CH.G. PHILOS AND I.K. PURNARAS

ABSTRACT. Some results are given concerning the behav-
ior of the solutions for scalar first order linear autonomous
delay as well as neutral delay differential equations. These
results are obtained by the use of two distinct real roots of
the corresponding characteristic equation.

1. Introduction. This paper deals with the behavior of the solu-
tions of scalar first order linear autonomous delay differential equations
as well as neutral delay differential equations. Our results are obtained
via two distinct real roots of the corresponding characteristic equations
and are motivated by a result due to Driver [3, see Theorem 2]. The
case of delay differential equations is treated in Section 2, while Sec-
tion 3 is devoted to the case of neutral delay differential equations. Our
results for delay differential equations can be derived as a special case
from the results for the more general case of neutral delay differential
equations, under some additional restrictions. This is the reason for
which the case of delay differential equations is considered separately.

Some closely related asymptotic results for delay differential equa-
tions or neutral delay differential equations have been given by Driver
[3], Driver, Sasser and Slater [6], Graef and Qian [8], Kordonis,
Niyianni and Philos [12], Philos [13], and Philos and Purnaras [14,
15], see also Arino and Pituk [1], Driver [4] and Györi [9] for certain
related results. We must also refer here to the very recent interesting
article by Frasson and Verduyn Lunel [7] concerning the large time
behavior of linear functional differential equations.

It is an interesting problem to extend the results of this paper for the
more general case of periodic delay differential equations, such as in
[13], as well as of periodic neutral delay differential equations, cf. [14].
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It will be the subject of a future work to present an analogous
treatment for scalar first order linear autonomous delay or neutral delay
differential equations with distributed type delays.

For the general theory of delay differential equations as well as of
neutral delay differential equations, the reader is referred to the books
by Diekmann et al. [2], Driver [5], Hale [10] and Hale and Verduyn
Lunel [11].

2. Delay differential equations. Consider the delay differential
equation

(E) x′(t) = ax(t) +
∑
j∈J

bjx(t − τj),

where J is an initial segment of natural numbers, a and bj �= 0 for
j ∈ J are real constants, and τj for j ∈ J positive real numbers such
that τj1 �= τj2 for j1, j2 ∈ J with j1 �= j2.

Define
τ = max

j∈J
τj .

(τ is a positive real number.)

By a solution of the delay differential equation (E), we mean a
continuous real-valued function x defined on the interval [−τ,∞), which
is continuously differentiable on [0,∞) and satisfies (E) for all t ≥ 0.

Let C([−τ, 0],R) be the space of all continuous real-valued functions
on the interval [−τ, 0]. It is well known, see, for example, Diekmann
et al. [2], Driver [5], Hale [10] or Hale and Verduyn Lunel [11], that,
for any given initial function φ ∈ C([−τ, 0],R), there exists a unique
solution x of the differential equation (E) which satisfies the initial
condition

(C) x(t) = φ(t) for t ∈ [−τ, 0];

this solution x will be called the solution of the initial problem (E) (C)
or, more briefly, the solution of (E) (C).

The characteristic equation of (E) is

(∗) λ = a +
∑
j∈J

bje
−λτj .
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Theorem 2.0 below is a special case of some more general results
obtained by Philos [13] for periodic delay differential equations, by
Kordonis, Niyianni and Philos [12] for autonomous neutral delay dif-
ferential equations, and by Philos and Purnaras [14] for periodic neutral
delay differential equations. This theorem constitutes a fundamental
asymptotic criterion for the solutions of the delay differential equation
(E).

Theorem 2.0. Let λ0 be a real root of the characteristic equation
(∗) with the property ∑

j∈J

|bj | τje
−λ0τj < 1.

(Note that this property guarantees that 1 +
∑

j∈J bjτje
−λ0τj > 0.)

Then, for any φ ∈ C([−τ, 0],R), the solution x of (E) (C) satisfies

lim
t→∞

[
e−λ0tx(t)

]
=

Lλ0(φ)
1 +

∑
j∈J bjτje−λ0τj

,

where

Lλ0(φ) = φ(0) +
∑
j∈J

bje
−λ0τj

∫ 0

−τj

e−λ0sφ(s) ds.

Our main purpose in this section is to establish the following theorem.

Theorem 2.1. Suppose that

bj < 0 for j ∈ J,

and let λ0 and λ1, λ0 �= λ1, be two real roots of the characteristic
equation (∗).

Then, for any φ ∈ C([−τ, 0],R), the solution x of (E) (C) satisfies

M1(λ0, λ1; φ) ≤ e−λ1t

[
x(t) − Lλ0(φ)

1 +
∑

j∈J bjτje−λ0τj
eλ0t

]
≤ M2(λ0, λ1; φ) for all t ≥ 0,
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where Lλ0(φ) is defined as in Theorem 2.0 and:

M1(λ0, λ1; φ) = min
t∈[−τ,0]

{
e−λ1t

[
φ(t) − Lλ0(φ)

1 +
∑

j∈J bjτje−λ0τj
eλ0t

]}

and

M2(λ0, λ1; φ) = max
t∈[−τ,0]

{
e−λ1t

[
φ(t) − Lλ0(φ)

1 +
∑

j∈J bjτje−λ0τj
eλ0t

]}
.

Note. By Lemma 2.1 below, we always have

1 +
∑
j∈J

bjτje
−λ0τj �= 0.

We immediately observe that the double inequality in the conclusion
of Theorem 2.1 can equivalently be written as follows

M1(λ0, λ1; φ)e(λ1−λ0)t ≤ e−λ0tx(t) − Lλ0(φ)
1 +

∑
j∈J bjτje−λ0τj

≤ M2(λ0, λ1; φ)e(λ1−λ0)t for all t ≥ 0,

and consequently

lim
t→∞

[
e−λ0tx(t)

]
=

Lλ0(φ)
1 +

∑
j∈J bjτje−λ0τj

,

provided that λ1 < λ0.

Moreover, we see that an equivalent form of the double inequality in
the conclusion of Theorem 2.1 is the following one

M1(λ0, λ1; φ)eλ1t +
Lλ0(φ)

1 +
∑

j∈J bjτje−λ0τj
eλ0t ≤ x(t)

≤ M2(λ0, λ1; φ)eλ1t +
Lλ0(φ)

1 +
∑

j∈J bjτje−λ0τj
eλ0t for all t ≥ 0.
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Before we proceed to prove Theorem 2.1, we will give a lemma about
the real roots of the characteristic equation (∗).

Lemma 2.1. Suppose that

bj < 0 for j ∈ J.

(I) Let λ0 be a real root of the characteristic equation (∗). Then

1 +
∑
j∈J

bjτje
−λ0τj > 0

if (∗) has another real root less than λ0, and

1 +
∑
j∈J

bjτje
−λ0τj < 0

if (∗) has another real root greater than λ0.

(II) In the interval [a,∞), the characteristic equation (∗) has no
roots.

(III) Assume that

(H) τ
∑
j∈J

(−bj)e−(a−(1/τ))τj < 1.

Then

(i) λ = a − (1/τ ) is not a root of the characteristic equation (∗).
(ii) In the interval (a − (1/τ ), a), (∗) has a unique root.

(iii) In the interval (−∞, a − (1/τ )), (∗) has a unique root.

Proof. We first observe that, if μ is a real root of the characteristic
equation (∗), then

μ − a =
∑
j∈J

bje
−μτj < 0

and so μ < a. This shows Part (II).
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In order to prove Parts (I) and (III), we set

F (λ) = λ − a −
∑
j∈J

bje
−λτj for λ ∈ R.

We have
F ′(λ) = 1 +

∑
j∈J

bjτje
−λτj for λ ∈ R.

Furthermore, we obtain

F ′′(λ) =
∑
j∈J

(−bj)τ2
j e−λτj for λ ∈ R

and consequently

(2.1) F ′′(λ) > 0 for all λ ∈ R.

Now, we will show Part (I). To this end, let us consider a real root
λ0 of the characteristic equation (∗). We see that

1 +
∑
j∈J

bjτje
−λ0τj = F ′(λ0).

Assume that (∗) has another real root λ1 with λ1 < λ0 (respectively,
λ1 > λ0). Since F (λ0) = F (λ1) = 0, from Rolle’s theorem it follows
that there exists a point ξ with λ1 < ξ < λ0, respectively λ0 < ξ < λ1,
such that F ′(ξ) = 0. On the other hand, (2.1) implies that F ′ is strictly
increasing on R and hence, as F ′(ξ) = 0, it follows that F ′ is positive
on (ξ,∞), respectively F ′ is negative on (−∞, ξ). Thus, we always
have F ′(λ0) > 0, respectively F ′(λ0) < 0.

Next, we shall prove Part (III). For this purpose, let us assume that
(H) holds. Assumption (H) means that

(2.2) F

(
a − 1

τ

)
< 0.

This, in particular, implies that λ = a − (1/τ ) is not a root of the
characteristic equation (∗). We immediately observe that

(2.3) F (a) > 0.



THE BEHAVIOR OF SOLUTIONS FOR CERTAIN FDES 2005

Furthermore, it is not difficult to verify that

(2.4) F (−∞) = ∞.

From (2.1), (2.2) and (2.3) it follows that, in the interval (a − (1/τ ), a),
(∗) has a unique root. Moreover, (2.1), (2.2) and (2.4) guarantee that,
in the interval (−∞, a − (1/τ )), (∗) has also a unique root.

The proof of the lemma is complete.

Proof of Theorem 2.1. Let φ be an arbitrary initial function in
C([−τ, 0],R) and consider the solution x of (E) (C). Set

y(t) = e−λ0tx(t) for t ≥ −τ.

Furthermore, let us define

z(t) = y(t) − Lλ0(φ)
1 +

∑
j∈J bjτje−λ0τj

for t ≥ −τ.

Following the procedure applied by Philos [13] for periodic delay differ-
ential equations, by Kordonis, Niyianni and Philos [12] for autonomous
neutral delay differential equations as well as by Philos and Purnaras
[14] for the more general case of periodic neutral delay differential
equations, we can verify that the fact that x satisfies (E) for t ≥ 0 is
equivalent to the fact that z satisfies

(2.5) z(t) = −
∑
j∈J

bje
−λ0τj

∫ t

t−τj

z(s) ds for t ≥ 0.

Next, consider the function w defined by

w(t) = e(λ0−λ1)tz(t) for t ≥ −τ.

Then it is easy to see that (2.5) can equivalently be written in the form

(2.6) w(t) = −
∑
j∈J

bje
−λ0τj

∫ t

t−τj

e(λ0−λ1)(t−s)w(s) ds for t ≥ 0.
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From the definitions of y, z and w it follows immediately that

w(t) = e−λ1t

[
x(t) − Lλ0(φ)

1 +
∑

j∈J bjτje−λ0τj
eλ0t

]
for t ≥ −τ.

Hence, by taking into account the initial condition (C) as well as the
way of definition of M1(λ0, λ1; φ) and M2(λ0, λ1; φ), we can conclude
that all we have to prove is that w satisfies

min
s∈[−τ,0]

w(s) ≤ w(t) ≤ max
s∈[−τ,0]

w(s) for all t ≥ 0.

We restrict ourselves to show that

(2.7) w(t) ≥ min
s∈[−τ,0]

w(s) for all t ≥ 0.

By an analogous procedure, one can establish that

w(t) ≤ max
s∈[−τ,0]

w(s) for every t ≥ 0.

It remains to prove (2.7). To this end, let us consider an arbitrary
real number M with M < mins∈[−τ,0] w(s). Then

(2.8) w(t) > M for t ∈ [−τ, 0].

We claim that

(2.9) w(t) > M for all t ≥ 0.

Otherwise, in view of (2.8), there exists a point t0 > 0 so that

w(t) > M for t ∈ [−τ, t0), and w(t0) = M.
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Then, by using the assumption that bj < 0 for j ∈ J , from (2.6) we
obtain

M = w(t0) = −
∑
j∈J

bje
−λ0τj

∫ t0

t0−τj

e(λ0−λ1)(t0−s)w(s) ds

> −M
∑
j∈J

bje
−λ0τj

∫ t0

t0−τj

e(λ0−λ1)(t0−s) ds

=
M

λ0 − λ1

∑
j∈J

bje
−λ0τj

[
1 − e(λ0−λ1)τj

]
=

M

λ0 − λ1

∑
j∈J

bj

(
e−λ0τj − e−λ1τj

)
=

M

λ0 − λ1

(∑
j∈J

bje
−λ0τj −

∑
j∈J

bje
−λ1τj

)

=
M

λ0 − λ1
[(λ0 − a) − (λ1 − a)] = M.

We have thus arrived at a contradiction. This contradiction establishes
our claim, i.e., (2.9) holds true. Finally, since (2.9) is satisfied for all
real numbers M with M < mins∈[−τ,0] w(s), it follows that (2.7) is
always fulfilled. So, the proof of our theorem is complete.

3. Neutral delay differential equations. Let us consider the
neutral delay differential equation

(Ê)

[
x(t) +

∑
i∈I

cix(t − σi)

]′
= ax(t) +

∑
j∈J

bjx(t − τj),

where I and J are initial segments of natural numbers, ci for i ∈ I, a
and bj �= 0 for j ∈ J are real constants, and σi for i ∈ I and τj for
j ∈ J are positive real numbers such that σi1 �= σi2 for i1, i2 ∈ I with
i1 �= i2 and τj1 �= τj2 for j1, j2 ∈ J with j1 �= j2.

Define

σ = max
i∈I

σi, τ = max
j∈J

τj , and r = max{σ, τ}.

(Clearly, σ, τ and r are positive real numbers.)
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As usual, a continuous real-valued function x defined on the inter-
val [−r,∞) will be called a solution of the neutral delay differential
equation (Ê) if the function x(t) +

∑
i∈I cix(t − σi) is continuously

differentiable for t ≥ 0 and x satisfies (Ê) for all t ≥ 0.

In the sequel, by C([−r, 0],R) we will denote the set of all continuous
real-valued functions on the interval [−r, 0]. It is well known, see, for
example, Diekmann et al. [2], Hale [10] or Hale and Verduyn Lunel [11],
that, for any initial function φ in C([−r, 0],R), the differential equation
(Ê) has a unique solution x which satisfies the initial condition

(Ĉ) x(t) = φ(t) for t ∈ [−r, 0];

we shall call this function x the solution of the initial problem (Ê) (Ĉ)
or, more briefly, the solution of (Ê) (Ĉ).

With the neutral delay differential equation (Ê) we associate its
characteristic equation

(∗̂) λ

(
1 +

∑
i∈I

cie
−λσi

)
= a +

∑
j∈J

bje
−λτj .

We will now present a known asymptotic result for the solutions of
(Ê), i.e., Theorem 3.0 below. This theorem has been established by
Kordonis, Niyianni and Philos [12]. Note that Theorem 3.0 can also
be obtained as a special case from a more general asymptotic criterion
(for periodic neutral delay differential equations) due to Philos and
Purnaras [14].

Theorem 3.0. Let λ0 be a real root of the characteristic equation
(∗̂) with the property∑

i∈I

|ci| (1 + |λ0|σi) e−λ0σi +
∑
j∈J

|bj | τje
−λ0τj < 1

and set
γλ0 =

∑
i∈I

ci (1 − λ0σi) e−λ0σi +
∑
j∈J

bjτje
−λ0τj .

(Note that the property of λ0 guarantees that 1 + γλ0 > 0.)
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Then, for any φ ∈ C([−r, 0],R), the solution x of (Ê) (Ĉ) satisfies

lim
t→∞

[
e−λ0tx(t)

]
=

L̂λ0(φ)
1 + γλ0

,

where

L̂λ0(φ) = φ(0) +
∑
i∈I

ci

[
φ(−σi) − λ0e

−λ0σi

∫ 0

−σi

e−λ0sφ(s) ds

]

+
∑
j∈J

bje
−λ0τj

∫ 0

−τj

e−λ0sφ(s) ds.

The main result in this section is the following theorem.

Theorem 3.1. Suppose that

ci ≤ 0 for i ∈ I, and bj < 0 for j ∈ J.

Let λ0 be a nonpositive real root of the characteristic equation (∗̂) with

1 + γλ0 �= 0,

where γλ0 is defined as in Theorem 3.0. Let also λ1 be a real root of
(∗̂) with λ1 �= λ0.

Then, for any φ ∈ C([−r, 0],R), the solution x of (Ê) (Ĉ) satisfies

M̂1(λ0, λ1; φ) ≤ e−λ1t

[
x(t) − L̂λ0(φ)

1 + γλ0

eλ0t

]
≤ M̂2(λ0, λ1; φ)

for all t ≥ 0,

where L̂λ0(φ) is defined as in Theorem 3.0 and:

M̂1(λ0, λ1; φ) = min
t∈[−r,0]

{
e−λ1t

[
φ(t) − L̂λ0(φ)

1 + γλ0

eλ0t

]}
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and

M̂2(λ0, λ1; φ) = max
t∈[−r,0]

{
e−λ1t

[
φ(t) − L̂λ0(φ)

1 + γλ0

eλ0t

]}
.

Note. By Lemma 3.1 below, we always have 1 + γλ0 �= 0 if λ1 is also
nonpositive.

We see that the double inequality in the conclusion of the above
theorem is equivalent to

M̂1(λ0, λ1; φ)e(λ1−λ0)t ≤ e−λ0tx(t) − L̂λ0(φ)
1 + γλ0

≤ M̂2(λ0, λ1; φ)e(λ1−λ0)t

for all t ≥ 0

and so

lim
t→∞

[
e−λ0tx(t)

]
=

L̂λ0(φ)
1 + γλ0

,

provided that λ1 < λ0. Moreover, we immediately observe that this
double inequality can equivalently be written in the form

M̂1(λ0, λ1; φ)eλ1t +
L̂λ0(φ)
1 + γλ0

eλ0t

≤ x(t) ≤ M̂2(λ0, λ1; φ)eλ1t +
L̂λ0(φ)
1 + γλ0

eλ0t for all t ≥ 0.

Proof of Theorem 3.1. Let φ ∈ C([−r, 0],R) and x be the solution of
( Ê) (Ĉ). Furthermore, let y and z be defined by

y(t) = e−λ0tx(t) for t ≥ −r, and z(t) = y(t) − L̂λ0(φ)
1 + γλ0

for t ≥ −r.

As it has been shown by Kordonis, Niyianni and Philos [12], see, also,
Philos and Purnaras [14] for the more general case of periodic delay
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differential equations, the fact that x satisfies (Ê) for t ≥ 0 is equivalent
to

(3.1)

z(t) +
∑
i∈I

cie
−λ0σiz(t − σi)

= λ0

∑
i∈I

cie
−λ0σi

∫ t

t−σi

z(s) ds −
∑
j∈J

bje
−λ0τj

∫ t

t−τj

z(s) ds

for t ≥ 0.

Next, let us define

w(t) = e(λ0−λ1)tz(t) for t ≥ −r.

By the use of the function w, (3.1) becomes

(3.2)

w(t) +
∑
i∈I

cie
−λ1σiw(t − σi)

= λ0

∑
i∈I

cie
−λ0σi

∫ t

t−σi

e(λ0−λ1)(t−s)w(s) ds

−
∑
j∈J

bje
−λ0τj

∫ t

t−τj

e(λ0−λ1)(t−s)w(s) ds for t ≥ 0.

By way of the definition of y, z and w, we have

w(t) = e−λ1t

[
x(t) − L̂λ0(φ)

1 + γλ0

eλ0t

]
for t ≥ −r.

Thus, from the initial condition (Ĉ) and the definitions of the constants
M̂1(λ0, λ1; φ) and M̂2(λ0, λ1; φ), it follows that the double inequality
in the conclusion of our theorem can equivalently be written as follows

min
s∈[−r,0]

w(s) ≤ w(t) ≤ max
s∈[−r,0]

w(s) for all t ≥ 0.

The proof of the theorem will be accomplished by proving this double
inequality.
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We will confine our attention to establish that

(3.3) w(t) ≥ min
s∈[−r,0]

w(s) for every t ≥ 0.

In a similar way, it can be shown that

w(t) ≤ max
s∈[−r,0]

w(s) for every t ≥ 0.

To prove (3.3), we consider an arbitrary real number M such that
M < mins∈[−r,0] w(s). Clearly,

(3.4) w(t) > M for t ∈ [−r, 0].

We will show that

(3.5) w(t) > M for all t ≥ 0.

To this end, let us assume that (3.5) fails to hold. Then, because of
(3.4), there exists a point t0 > 0 so that

w(t) > M for t ∈ [−r, t0), and w(t0) = M.

Thus, by using the hypothesis that ci ≤ 0 for i ∈ I and bj < 0 for j ∈ J
and taking into account the fact that λ0 ≤ 0, from (3.2) we derive

M = w(t0)

= −
∑
i∈I

cie
−λ1σiw(t0 − σi) + λ0

∑
i∈I

cie
−λ0σi

×
∫ t0

t0−σi

e(λ0−λ1)(t0−s)w(s) ds

−
∑
j∈J

bje
−λ0τj

∫ t0

t0−τj

e(λ0−λ1)(t0−s)w(s) ds

> M

[
−
∑
i∈I

cie
−λ1σi + λ0

∑
i∈I

cie
−λ0σi

∫ t0

t0−σi

e(λ0−λ1)(t0−s) ds

−
∑
j∈J

bje
−λ0τj

∫ t0

t0−τj

e(λ0−λ1)(t0−s) ds

]
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= M

{
−
∑
i∈I

cie
−λ1σi + λ0

∑
i∈I

cie
−λ0σi

(
− 1

λ0 −λ1

)[
1−e(λ0−λ1)σi

]
−
∑
j∈J

bje
−λ0τj

(
− 1

λ0 − λ1

)[
1 − e(λ0−λ1)τj

]}

=
M

λ0−λ1

[
− (λ0 − λ1)

∑
i∈I

cie
−λ1σi − λ0

∑
i∈I

ci

(
e−λ0σi − e−λ1σi

)
+
∑
j∈J

bj

(
e−λ0τj − e−λ1τj

)]

=
M

λ0−λ1

(
λ1

∑
i∈I

cie
−λ1σi − λ0

∑
i∈I

cie
−λ0σi

+
∑
j∈J

bje
−λ0τj −

∑
j∈J

bje
−λ1τj

)

=
M

λ0 − λ1

[(
− λ0

∑
i∈I

cie
−λ0σi +

∑
j∈J

bje
−λ0τj

)

−
(
− λ1

∑
i∈I

cie
−λ1σi +

∑
j∈J

bje
−λ1τj

)]
=

M

λ0−λ1
[(λ0 − a) − (λ1 − a)] = M.

This is a contradiction and hence (3.5) is always satisfied. We have
thus proved that (3.5) holds true for all real numbers M with M <
mins∈[−r,0] w(s). This guarantees that (3.3) is fulfilled and so the proof
of our theorem is complete.

Now, we will give a lemma which is concerned with the real roots of
the characteristic equation (∗̂).

Lemma 3.1. Suppose that

ci ≤ 0 for i ∈ I, and bj < 0 for j ∈ J.

(I) Let λ0 be a nonpositive real root of the characteristic equation
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(∗̂) and let γλ0 be defined as in Theorem 3.0. Then

1 + γλ0 > 0

if (∗̂) has another real root less than λ0, and

1 + γλ0 < 0

if (∗̂) has another nonpositive real root greater than λ0.

(II) If a = 0, then λ = 0 is not a root of the characteristic equation
(∗̂).

(III) Assume that a = 0 and that

(H1)
∑
i∈I

(−ci) ≤ 1.

Then the characteristic equation (∗̂) has no positive real roots.

(IV) Assume that

(H2)
∑
j∈J

(−bj) ≥ a

and

(H3)
∑
i∈I

(−ci) +
∑
j∈J

(−bj)τj ≤ 1.

Then the characteristic equation (∗̂) has no positive real roots.

(V) Assume that (H2) holds, and that

(H4) ar < 1

and

(H5) (1 − ar)
∑
i∈I

(−ci)e−(a−(1/r))σi + r
∑
j∈J

(−bj)e−(a−(1/r))τj < 1.

Then

(i) λ = a − (1/r) is not a root of the characteristic equation (∗̂).
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(ii) In the interval (a − (1/r), 0], (∗̂) has a unique root.

(iii) In the interval (−∞, a − (1/r)), (∗̂) has a unique root.

Proof. We first consider the particular case where a = 0. In this case,
the characteristic equation (∗̂) becomes

(∗̂)0 λ

(
1 +

∑
i∈I

cie
−λσi

)
=
∑
j∈J

bje
−λτj .

It follows immediately that λ = 0 is not a real root of (∗̂)0, which
establishes Part (II). Furthermore, let us assume that (H1) is satisfied
and suppose, for the sake of contradiction, that (∗̂)0 has a positive real
root μ. We obtain

1 +
∑
i∈I

cie
−μσi ≥ 1 +

∑
i∈I

ci = 1 −
∑
i∈I

(−ci) ≥ 0

and consequently

μ

(
1 +

∑
i∈I

cie
−μσi

)
≥ 0.

But, we obviously have ∑
j∈J

bje
−μτj < 0.

We have thus arrived at a contradiction, which proves Part (III).

Now, for the rest of the proof, we define

F (λ) = λ

(
1 +

∑
i∈I

cie
−λσi

)
− a −

∑
j∈J

bje
−λτj for λ ∈ R.

We have

F ′(λ) = 1 −
∑
i∈I

(−ci)e−λσi + λ
∑
i∈I

(−ci)σie
−λσi

−
∑
j∈J

(−bj)τje
−λτj for λ ∈ R.
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Assume that (H2) and (H3) hold. Assumption (H2) means that

(3.6) F (0) ≥ 0.

Furthermore, by assumption (H3), we obtain for λ > 0

F ′(λ) > 1 −
∑
i∈I

(−ci) −
∑
j∈J

(−bj)τj ≥ 0,

and consequently F is strictly increasing on the interval (0,∞). This
fact together with (3.6) guarantee that (∗̂) has no roots in the interval
(0,∞). We have thus shown Part (IV).

In order to establish Parts (I) and (V), we obtain

F ′′(λ) = 2
∑
i∈I

(−ci)σie
−λσi − λ

∑
i∈I

(−ci)σ2
i e−λσi

+
∑
j∈J

(−bj)τ2
j e−λτj for λ ∈ R,

and so we have

(3.7) F ′′(λ) > 0 for all λ ∈ (−∞, 0].

To show Part (I), we consider a nonpositive real root λ0 of the
characteristic equation (∗̂). By the definition of γλ0 , we have

1 + γλ0 = 1 +
∑
i∈I

ci(1 − λ0σi)e−λ0σi +
∑
j∈J

bjτje
−λ0τj

= 1 −
∑
i∈I

(−ci)e−λ0σi + λ0

∑
i∈I

(−ci)σie
−λ0σi−

∑
j∈J

(−bj)τje
−λ0τj

= F ′(λ0).

Let us assume that there exists another real root λ1 of (∗̂) with λ1 < λ0,
respectively 0 ≥ λ1 > λ0. Since F (λ0) = F (λ1) = 0, we can apply
Rolle’s theorem to conclude that F ′(ξ) = 0 for some point ξ such that
λ1 < ξ < λ0, respectively λ0 < ξ < λ1. Furthermore, we observe
that, in view of (3.7), F ′ is strictly increasing on (−∞, 0]. Thus,
since F ′(ξ) = 0, it follows that F ′ is positive on (ξ, 0], respectively
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F ′ is negative on (−∞, ξ). So, we must have F ′(λ0) > 0, respectively
F ′(λ0) < 0.

Finally, we will prove Part (V). Assume that (H2), (H4) and (H5) are
satisfied. Assumption (H2) means that (3.6) holds, while assumptions
(H4) and (H5) mean respectively

a − 1
r

< 0(3.8)

and

F

(
a − 1

r

)
< 0.(3.9)

The last inequality guarantees, in particular, that λ = a − (1/r) is not
a root of the characteristic equation (∗̂). Furthermore, it is not difficult
to verify that

(3.10) F (−∞) = ∞.

By taking into account (3.8), from (3.6), (3.7) and (3.9) we can conclude
that, in the interval (a − (1/r), 0], (∗̂) has a unique root. Moreover, in
view of (3.8), from (3.7), (3.9) and (3.10) it follows that, in the interval
(−∞, a − (1/r)), (∗̂) has a unique root.

The proof of our lemma is now complete.

Before closing this section and ending the paper, let us concentrate
our interest on the special case of the (non-neutral) delay differential
equation (E) considered in Section 2. Equation (E) can be obtained, as
a special case, from (Ê) by taking ci = 0 for i ∈ I and considering the
initial segment of natural numbers I and the delays σi for i ∈ I to be
chosen arbitrarily so that: σi for i ∈ I are positive real numbers such
that σi1 �= σi2 for i1, i2 ∈ I with i1 �= i2; and σ ≤ τ . (For example, it
can be considered that I = J , and σi = τi for i ∈ I.) As it concerns
the (non-neutral) delay differential equation (E), we have the number
τ in place of r and the initial condition (C) instead of (Ĉ). Also, the
characteristic equation (∗̂) reduces to (∗).

By applying Theorem 3.1 to the (non-neutral) delay differential
equation (E), we are led to Theorem 2.1, under the additional hypothesis
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that the root λ0 of the characteristic equation (∗) is nonpositive and
such that 1 +

∑
j∈J bjτje

−λ0τj �= 0. (Note that we always have
1+
∑

j∈J bjτje
−λ0τj �= 0 if the other root λ1 of (∗) is also nonpositive.)

But, this (additional) hypothesis is not needed for Theorem 2.1 to hold.
This is the reason for which we have examined separately the special
case of delay differential equations.
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