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ALMOST PERIODIC FUNCTIONALS
ON SOME CLASS OF BANACH ALGEBRAS

H.S. MUSTAFAYEV

ABSTRACT. In this paper we study the question of char-
acterizing almost periodic functionals on some class of Banach
algebras. Some related problems are also discussed.

1. Introduction. Let A be a Banach algebra, A∗ its dual and A1

its closed unit ball. For ϕ ∈ A∗ and a ∈ A, the functionals ϕ · a and
a · ϕ are defined by 〈ϕ · a, b〉 = 〈ϕ, ab〉 and 〈a · ϕ, b〉 = 〈ϕ, ba〉. These
operations invert A∗ into a Banach A-bimodule. Kitchen [11] calls a
functional ϕ almost periodic on A, if the linear operator Lϕ : A→ A∗,
defined by Lϕ(a) = ϕ ·a, is compact. This is equivalent to the fact that
the set {ϕ · a : a ∈ A1} is relatively norm compact in A∗. For example
if A = L1(G) for a locally compact group G, then this reduces to the
classical notion of almost periodicity for ϕ ∈ L∞(G). Since for a ∈ A,
L∗

ϕ(a) = a · ϕ, it follows that ϕ is almost periodic if and only if the set
{a · ϕ : a ∈ A1} is relatively norm compact in A∗. By ap (A) we denote
the set of all almost periodic functionals on A. Clearly, ap (A) is a
norm closed A-subbimodule of A∗. In the theory of representations of
Banach algebras and in the Arens regularity theory it is important to
have a convenient description of ap (A) for concrete classes of Banach
algebras, see [6, 7, 11, 13, 15, 17, 18] for a discussion of this problem.
The following problem was posed in [6, Problem 2]: Characterize those
Banach algebras A for which each ϕ ∈ A∗ is almost periodic. It
has been proved by Quigg [18, Theorem 3.2], that for a C∗-algebra
A, ap (A) = A∗ if and only if A is scattered and its irreducible
representations are finite dimensional. Recall that A is called scattered
if every positive functional on A is a sum of pure positive functionals.
By Lau and Ülger [13, Theorem 3.6], other characterizations of the
C∗-algebra A satisfying the equality ap (A) = A∗ are given. Among
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them we note the following: ap (A) = A∗ if and only if the space A∗

is an �1-sum of finite dimensional Banach spaces if and only if A∗ has
the Schur property, i.e., every weakly convergent sequence in A∗ is
norm convergent. In [15, Theorem 4.8], the characterization of almost
periodic functionals on Herz algebras is given.

In this paper we study the question of characterizing almost periodic
functionals on some well-known classes of Banach algebras. These
results generalize and unify the above-mentioned results or parts of
them. Some other applications to related problems are also given.

2. Preliminaries. We recall the main definitions and results that
we require later. If X is a Banach space, we denote by X∗ its dual. The
natural duality between X∗ and X is denoted by 〈ϕ, x〉. If E ⊂ X, then
E will denote the norm closure of E in X. Now let A be an arbitrary
Banach algebra. A weak∗ closed subspace E ⊂ A∗ is said to be an
invariant subspace of A∗, if ϕ · a ∈ E and a · ϕ ∈ E, for all ϕ ∈ E
and a ∈ A. Note that if A has an approximate identity, then a weak∗

closed subspace E ⊂ A∗ is an invariant subspace of A∗ if and only if
a · ϕ · b ∈ E for all ϕ ∈ E and a, b ∈ A. An invariant subspace E of
A∗ is said to be minimal if E does not contain other nonzero invariant
subspaces of A∗. By Âc we will denote the set of all equivalence classes
of irreducible finite-dimensional representations of A. We can see that
if σ ∈ Âc, then the algebra A/ kerσ is isomorphic to the full matrix
algebra and consequently, kerσ is a maximal bi-ideal in A of finite
codimension. Hence (kerσ)⊥ is a minimal finite dimensional invariant
subspace of A∗.

Lemma 1. If A has a bounded approximate identity, then every
minimal finite-dimensional invariant subspace E of A∗ has the form
(kerσ)⊥, for some σ ∈ Âc.

Proof. Let E be a nonzero minimal finite-dimensional invariant
subspace of A∗. Then E = J⊥ for some maximal nontrivial bi-
ideal J in A of finite codimension. Note that the quotient algebra
A/J also has a bounded approximate identity. Since A/J is finite
dimensional, it has a unit element. Hence J is a maximal modular
bi-ideal. Then J is contained in a maximal modular nontrivial left
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ideal I. Let σ be the regular representation of A on A/I. Then
σ is a nonzero irreducible finite-dimensional representation of A and
J ⊂ kerσ = {a ∈ A : aA ⊂ I}. By maximality of J we have J = kerσ,
so that E = (kerσ)⊥.

Let A be an arbitrary Banach algebra. As is known [6], the second
dual A∗∗ of A can be equipped with two Banach algebra multiplications
◦ and ∗ (the first and the second Arens multiplication) which extend
the multiplication in A (canonically embedded into A∗∗). Namely for
a ∈ A, ϕ ∈ A∗ and F,H ∈ A∗∗, we set 〈F ◦ H,ϕ〉 = 〈F,H · ϕ〉 and
〈F ∗ H,ϕ〉 = 〈H,ϕ · F 〉, where H · ϕ and ϕ · F are functionals on
A defined by 〈H · ϕ, a〉 = 〈H,ϕ · a〉 and 〈ϕ · F, a〉 = 〈F, a · ϕ〉. If
F ◦ H = F ∗ H for every F,H ∈ A∗∗, then A is said to be Arens
regular. Recall that ϕ ∈ A∗ is said to be weakly almost periodic on A,
if the set {ϕ · a : a ∈ A1} is relatively weakly compact in A∗. As in the
introduction we can see that ϕ is weakly almost periodic if and only if
the set {a · ϕ : a ∈ A1} is relatively weakly compact in A∗. Let wap (A)
denote the set of all weakly almost periodic functionals on A. Then,
Arens regularity of A is equivalent to the condition that wap (A) = A∗

[6, Theorem 1]. Throughout the paper by A∗∗ we will denote the
Banach algebra A∗∗ equipped with the first Arens multiplication. It
can be seen that for F fixed in A∗∗, the mapping H → H ◦ F is
weak∗-weak∗ continuous on A∗∗. The weak∗-weak∗ continuity of the
mapping H → F ◦ H is equivalent to the Arens regularity of the
algebra A [6, Theorem 1]. Note also that ap (A) is a Banach A∗∗-
bimodule. Moreover, ϕ ∈ ap (A) if and only if either {F · ϕ : F ∈ A∗∗

1 }
or {ϕ · F : F ∈ A∗∗

1 } is relatively norm compact in A∗∗.

Later on we shall need the following results with which we now
proceed. Let G be a locally compact group, and let T be a continuous
representation of G on a Banach space X. T is said to be almost
periodic if the set {Tgx : g ∈ G} is relatively compact inX for all x ∈ X.
The following result is an immediate consequence of the Peter-Weyl
theory.

Theorem 1 [16, pp. 152 153]. If T is an almost periodic repre-
sentation of G on X, then X is a closed linear span of the irreducible
finite-dimensional T -invariant subspaces.
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Now define the adjoint representation T ∗ of G on X∗ by T ∗
g ϕ =

(Tg−1)
∗
ϕ, ϕ ∈ X∗. Of course, T ∗ is not (strongly) continuous in

general.

Lemma 2. Assume that the set
{
T ∗

g ϕ : g ∈ G
}

is relatively norm
compact in X∗, for every ϕ ∈ X∗. Then T ∗ is a continuous represen-
tation (consequently, T ∗ is an almost periodic representation).

Proof. Let ϕ ∈ X∗ be given. We have to show that the function
g → T ∗

g ϕ is continuous at g = 1, where 1 is the unit element of G.
Let (gλ)λ∈λ be a net in G that converges to 1. Since T ∗

gλ
ϕ → ϕ in the

weak∗ topology, it follows that ϕ is the unique norm cluster point of
the net

(
T ∗

gλ
ϕ
)
λ∈λ

. On the other hand, the net
(
T ∗

gλ
ϕ
)
λ∈λ

is contained
in a relatively norm compact set. This clearly implies that T ∗

gλ
ϕ → ϕ

for the norm topology.

3. Almost periodic functionals on the image of group alge-
bras. Before stating the main results of this section we shall need some
notation. Let G be a locally compact group equipped with a left Haar
measure dg and L1(G), the group algebra of G. For g ∈ G, the left and
the right translations of f ∈ L1(G) are defined by gf(t) = f(g−1t) and
fg(t) = Δ(g)f(tg), respectively, where Δ(g) is the modular function of
G. Recall that g (f ∗ h) =g f ∗h, (f ∗ h)g = f ∗hg and f ∗g h = fg−1 ∗h
for all f, h ∈ L1(G) and all g ∈ G. One of the main results of this
section is the following theorem.

Theorem 2. Let A be a Banach algebra. If there exists a continuous
homomorphism θ : L1(G) → A, with dense range, then

ap (A) = span
{
(kerσ)⊥ : σ ∈ Âc

}
.

Proof. The inclusion span
{
(kerσ)⊥ : σ ∈ Âc

} ⊂ ap (A) being clear,
we prove reverse inclusion only. Let us define the left and the right
regular representations on A as follows: Put Lgθ(f) = θ(gf) and
Rgθ(f) = θ(fg). Let (ei)i∈I be a bounded (by one) approximate
identity for L1(G). Since θ(gei)θ(f) → Lgθ(f), we have ‖Lgθ(f)‖ ≤
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‖θ‖ ‖θ(f)‖. Thus, since
{
θ(f) : f ∈ L1(G)

}
is dense in A, Lg (similarly

Rg) can be extended (in a unique way) to A as a bounded continuous
representation. We will denote this extension again by Lg (respectively
by Rg). We can see that Lg(ab) = (Lga)b, Rg(ab) = a(Rgb) and
a(Lgb) = (Rg−1a)b for all a, b ∈ A and all g ∈ G. Let T denote the
Cartesian product of the representations L and R : Tg,sa = LgRsa,
where a ∈ A and (g, s) ∈ G×G.

Clearly, (θ(ei))i∈I is a bounded approximate identity for A. As in the
proof of the Lemma 2, we can see that if ϕ ∈ ap (A), then ϕ ·θ (ei) → ϕ
and θ (ei) · ϕ → ϕ in the norm topology. Since ap (A) is a Banach
A-bimodule, by the Cohen-Hewitt factorization theorem [10, 32.22],
ap (A) = A · ap (A) = ap (A) · A. Consequently, every ϕ ∈ ap (A) can
be represented as ϕ = a · ψ · b , for some a, b ∈ A and ψ ∈ ap (A). We
claim that

(3.1) T ∗
g,sϕ = (Lsa) · ψ · (Rgb) .

To see this, let c ∈ A be given. Since

(Rgb) c(Lsa) = b(Lg−1c)(Lsa) = b(Lg−1(c(Lsa)))
= b(Lg−1(Rs−1c))a = b(Tg−1,s−1c)a,

we have

〈(Lsa) · ψ · (Rgb), c〉 = 〈ψ, (Rgb)c(Lsa)〉 = 〈ψ, b(Tg−1,s−1c)a〉
= 〈a · ψ · b, Tg−1,s−1c〉 = 〈T ∗

g,sϕ, c〉.

A standard “finite ε-mesh technique” shows that if ϕ ∈ ap (A), then
the set {a · ϕ · b : a, b ∈ A1} is relatively norm compact in A∗. From
this and from the equality (3.1), we deduce that ap (A) is an invariant
subspace for T ∗ and moreover, the set

{
T ∗

g,sϕ : (g, s) ∈ G×G
}

is
relatively norm compact in A∗ for every ϕ ∈ ap (A). By Lemma 2, the
restriction of T ∗ to ap (A) is an almost periodic representation. Hence
by Theorem 1, ap (A) is a closed linear span of the irreducible finite-
dimensional T ∗-invariant subspaces. Now, by Lemma 1, it remains
to show that irreducible finite-dimensional T ∗-invariant subspaces are
exactly minimal finite-dimensional invariant subspaces of A∗. For this
it is enough to show that finite-dimensional T ∗-invariant subspaces are
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exactly finite-dimensional invariant subspaces of A∗. Let E be a finite-
dimensional T ∗-invariant subspace, and let ϕ ∈ E be given. By the
definition of the vector-valued integral∫

G×G

h̃(g)k(s)T ∗
g,s ϕdg ds

is in E, where h̃(g) = Δ(g−1)h(g−1). A simple calculation shows that
the last integral is equal to θ(h) · ϕ · θ(k). Since

{
θ(f) : f ∈ L1(G)

}
is dense in A, we have a · ϕ · b ∈ E for all a, b ∈ A. Now let E be
a finite-dimensional invariant subspace of A∗ and ϕ ∈ E. Using the
equality (3.1) again, we get that

T ∗
g,sϕ = weak∗ − lim

i
T ∗

g,s (θ(ei) · ϕ · θ(ei))

= weak∗ − lim
i

(θ(sei) · ϕ · θ(ei)g) .

Hence T ∗
g,sϕ ∈ E for all (g, s) ∈ G×G. This completes the proof.

The second main result of this section is the following theorem.

Theorem 3. Let A be an Arens regular Banach algebra. If there
exists a continuous homomorphism θ : L1(G) → A∗∗, with dense range,
then

ap (A) = span
{
(kerσ)⊥ : σ ∈ Âc

}
.

Proof. Let (ei)i∈I be a bounded approximate identity for L1(G), and
let Ei = θ(ei). Then (Ei)i∈I is a bounded approximate identity for
A∗∗. We may assume without loss of generality that the net (Ei)i∈I

converges weak∗ to some E ∈ A∗∗. Let us see that E is the identity for
A∗∗. Let F ∈ A∗∗ be given. Weak∗-continuity of H → H ◦ F implies
that Ei ◦ F → E ◦ F in the weak∗-topology. Since Ei ◦ F → F in
the norm, we obtain E ◦ F = F . On the other hand, since A is Arens
regular, the mapping H → F ◦H is weak∗-weak∗ continuous. It follows
that F ◦ Ei → F ◦ E in the weak∗-topology and hence F ◦ E = F .

Let L and R be the left and the right regular representations on
A∗∗, respectively (see the proof of the Theorem 2). We recall that
Lg(F ◦ H) = (LgF ) ◦ H, Rg(F ◦ H) = F ◦ (RgH) and F ◦ (LgH) =
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(Rg−1F ) ◦ H for all F,H ∈ A∗∗ and all g ∈ G. Denote by T , the
Cartesian product of the representations L and R: Tg,sF = LgRsF ,
where F ∈ A∗∗ and (g, s) ∈ G × G. ϕ ∈ A∗· and F ∈ A∗∗ are given.
We can see that ϕ = E · ϕ. On the other hand, since A is Arens
regular, we have 〈F, ϕ · E〉 = 〈E ∗ F, ϕ〉 = 〈E ◦ F, ϕ〉 = 〈F, ϕ〉, so that
ϕ = ϕ ·E. Hence ϕ can be represented as ϕ = E ·ϕ ·E. As in the proof
of Theorem 2, we can see that T ∗

g,sϕ = (LsE) · ϕ · (RgE). Now let ϕ ∈
ap (A) be given. Since ap (A) is a Banach A∗∗-bimodule, it follows that
ap (A) is an invariant subspace for T ∗. Further, since {LsE : s ∈ G}
and {RgE : g ∈ G} are bounded sets in A∗∗, from the last equality
we can deduce that the set

{
T ∗

g,sϕ : (g, s) ∈ G×G
}

is relatively norm
compact in A∗, for every ϕ ∈ ap (A). By Lemma 2, T ∗|ap (A),
the restriction of T ∗ to ap (A), is an almost periodic representation.
Hence, by Theorem 1, ap (A) is a closed linear span of the irreducible
finite-dimensional T ∗|ap (A)-invariant subspaces. As in the proof of
Theorem 2, we can see that irreducible finite-dimensional T ∗|ap (A)-
invariant subspaces are exactly minimal finite-dimensional invariant
subspaces of A∗. Further, since A is Arens regular and A∗∗ has a unit
element, A has a bounded approximate identity [3, p. 147, Corollary 8].
Consequently, by Lemma 1, every finite-dimensional invariant subspace
of A∗ has the form (kerσ)⊥, for some σ ∈ Âc. This completes the proof.

For the next result we recall [1] that a closed subspace E of a Banach
space X is said to be an L-ideal if there exists a projection P : X → E
such that ‖x‖ = ‖Px‖+ ‖x− Px‖, for every x ∈ X. E is said to be an
M -ideal if E⊥ is an L-ideal in X∗. Below we shall need the following
result [1, Proposition 1.7]. Let E and F be two L-ideals, and let PE

and PF be the associated projections, respectively. If E ∩ F = {0},
then PEPF = PFPE = 0.

We shall also need the following notation. Let λ be a nonempty
index set, and suppose {Xλ : λ ∈ λ} is a collection of Banach spaces.
By X =

[∑
λ∈λ ⊕Xλ

]
α

we mean the Banach space of all {xλ} such
that {‖xλ‖} is in c0 (λ) or �1 (λ) or �∞ (λ) for the case α = c0 or α = �1
or α = �∞, respectively, and xλ ∈ Xλ for each λ ∈ λ. The norm on X
is to be the norm of {‖xλ‖}.
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Theorem 4. Assume that the hypotheses of Theorem 2 (or the
hypotheses of Theorem 3) are satisfied. Moreover, assume that for each
σ ∈ Âc, kerσ is an M -ideal. Then,

(3.2) ap (A) =
( ∑

σ∈Ac

⊕ (kerσ)⊥
)

l1
.

Proof. For an arbitrary σ ∈ Âc, we put Eσ = (kerσ)⊥. Then
Eσ is an L-ideal in A∗. Let Pσ be the associated projection. Let
two distinct σ′, σ′′ ∈ Âc be given. Since Eσ′ and Eσ′′ are minimal
invariant subspaces of A∗, we have Eσ′ ∩ Eσ′′ = {0}, and therefore
Pσ′Pσ′′ = Pσ′′Pσ′ = 0. It follows that, if ϕσi

∈ Eσi
, i = 1, . . . , n,

where σi 
= σj(i 
= j), then

(3.3)

‖ϕσ1 + · · · + ϕσn
‖ = ‖Pσ1(ϕσ1 + · · · + ϕσn

)‖
+ ‖ϕσ1 + · · · + ϕσn

− Pσ1(ϕσ1 + · · · + ϕσn
)‖

= ‖ϕσ1‖ + ‖ϕσ2 + · · · + ϕσn
‖

= · · · = ‖ϕσ1‖ + · · · + ‖ϕσn
‖ .

Let Y denote the right-hand side of (3.2), Yc the linear subspace of
Y consisting of all functions with finite support. By Theorem 2 (or
Theorem 3), we have

ap (A) = span
{
(kerσ)⊥ : σ ∈ Âc

}
.

From this and from the identity (3.3), we see that the linear operator
S : Yc → ap(A), defined by

S : (ϕj)j∈J −→
∑
j∈J

ϕj ,

is an isometry with dense range. Since Yc is dense in Y , S extends
by continuity to an isometric isomorphism of Y onto the ap (A). This
completes the proof.

LetA be an arbitrary Banach algebra. We putA∗·A = {ϕ · a : ϕ ∈ A∗ ,
a ∈ A}. If A has a bounded approximate identity, then by the Cohen-
Hewitt factorization theorem [10, 32.22], A∗ ·A is a norm closed linear
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subspace of A∗. The following result is related to a result of Duncan
and Ülger [7, Theorem 2.3].

Theorem 5. Let A be a semi-simple Banach algebra with a bounded
approximate identity. Moreover, assume that the following conditions
are satisfied.

a) Every irreducible representation of A is finite-dimensional.

b) For each a ∈ A, the left multiplication operator La : A → A,
defined by La : b→ ab is weakly compact. Then,

ap (A) = A∗ ·A = span
{
(kerσ)⊥ : σ ∈ Âc

}
.

Proof. Obviously, we have

span
{

(kerσ)⊥ : σ ∈ Âc

} ⊂ ap (A).

As in the proof of Theorem 2, we can see that

ap (A) = {a · ϕ : ϕ ∈ ap (A), a ∈ A} .

Hence ap (A) ⊂ A∗ ·A. Now it remains to show that

A∗ ·A ⊆ span
{
(kerσ)⊥ : σ ∈ Âc

}
.

Assume that for some ϕ ∈ A∗ and a ∈ A,

ϕ · a /∈ span
{
(kerσ)⊥ : σ ∈ Âc

}
.

Then there is an F in A∗∗ such that 〈F, ϕ · a〉 
= 0 but 〈F, ψ〉 = 0, for
all ψ ∈ (kerσ)⊥ and all σ ∈ Âc. In particular, we have 〈a ◦ F, ψ〉 =
〈F, ψ · a〉 = 0, for all ψ ∈ (kerσ)⊥ and all σ ∈ Âc. We recall [6, Lemma
3] that A is a right ideal in A∗∗ if and only if La is a weakly compact
operator for each a ∈ A. Hence a◦F ∈ A. From the last equality we see
that a ◦ F ∈ kerσ, for all σ ∈ Âc. Since A is a semi-simple algebra, we
have a◦F = 0. This contradicts the fact that 〈a ◦ F, ϕ〉 = 〈F, ϕ · a〉 
= 0.
The proof is complete.
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These theorems have several corollaries. We first remark that a
class of Banach algebras satisfying the hypotheses of Theorem 2 are
sufficiently large. For example, let T be a continuous representation of
G on a Banach space X. For f ∈ L1(G), the operator Tf : X → X,
defined by

Tfx =
∫

G

f(g)Tgx dg,

is a bounded linear operator on X. Let LT (G) denote the closure
of

{
Tf : f ∈ L1(G)

}
with respect to the uniform operator topology.

Hence, Theorem 2 can be applied to the algebras LT (G). Let X =
Lp(G), 1 < p < ∞, and let T be the left regular representation on
Lp(G). In this case, as in [9], LT (G) will be denoted by PFp(G).
We can see that PFp(G) is the completion of L1(G) relative to the
convolution operator norm:

‖|f |‖p = sup
{‖f ∗ h‖p : h ∈ Lp(G), ‖h‖p ≤ 1

}
, f ∈ L1(G).

Clearly, ‖|f |‖p ≤ ‖f‖1. We shall also need the following notation. By
C0(G) we denote the space of continuous functions on G which are null
at infinity. AP (G) denotes the space of almost periodic functions on
G.

Corollary 1. ap (PFp(G)) = PFp(G)∗ if and only if G is compact.

Proof. For the compact group G the equality ap (PFp(G)) =
PFp(G)∗ has been proved in [13, Corollary 8.7]. Now assume that
ap (PFp(G)) = PFp(G)∗ and G is not compact. We see that id :
L1(G) → PFp(G) is a continuous homomorphism with dense range.
If ϕ ∈ ap (PFp(G)), then by Theorem 2, id∗ϕ ∈ AP(G). For
h ∈ Lp(G)−{0} and k ∈ Lq(G)−{0}, (1/p+1/q = 1), let [h⊗k] denote
the functional on PFp(G), defined by 〈[h⊗k], f〉 = 〈f ∗h, k〉. It is easy
to verify that id∗[h⊗k] = h∗kν , where kv(g) = k(g−1). Hence we have
h∗kν ∈ AP(G). Because h∗kν ∈ C0(G), we obtain h∗kν = 0, since no
nontrivial almost periodic function on a noncompact locally compact
group can vanish at infinity [4, p. 41, Corollary 3.8]. Let (V ) be a net
of compact symmetric neighborhoods of 1 contracting to {1}, eV , the
nonnegative function on G supported by V and satisfying eV = eν

V and
‖eV ‖1 = 1. Then 0 = h ∗ eV → h in Lp-norm as V → {1}. Hence, we
have h = 0. This contradicts h 
= 0.
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Below, we will assume that G is an abelian group. In this case,
under the hypotheses of Theorem 2, A becomes a commutative Banach
algebra. By ΣA we will denote the structure space of A. A standard
Banach algebra technique shows that θ∗ is homeomorphic identified ΣA

with the hull (ker θ). We see that hull (ker θ) is a closed subset of Ĝ,
the dual group of G.

Corollary 2. Under the hypotheses of Theorem 2,

ap (A) = span ΣA.

Corollary 3. Assume that the hypotheses of Theorem 2 are satisfied
and J is a closed ideal of A. Then

ap (A/J) = span hull (J).

A subset K of Ĝ is strongly independent if, for every choice distinct
points χ1, . . . , χk of K and integers n1, . . . , nk, the equality χn1

1 · · · · ·
χnk

k = 1 implies n1 = · · · = nk = 0 [2, p. 69]. Recall also that [20, p.
98], a subset K of Ĝ is a Kronecker set if K has the following property:
to every continuous function f on K of absolute value one, and to every
ε > 0, there is g ∈ G, such that supχ∈K |f(χ) − χ(g)| < ε.

Corollary 4. Assume that the hypotheses of Theorem 2 are satisfied
and hull (ker θ) is a strongly independent subset of Ĝ. Then ap (A) is
isomorphic to the space �1 (ΣA).

Proof. By Corollary 2, ap (A)= span ΣA. Therefore, it is enough to
show that, for every choice φ1, . . . , φn ∈ ΣA and λ1, . . . , λn ∈ C−{0},

(3.4)
∥∥∥∥

n∑
i=1

λiφi

∥∥∥∥
A∗

≥ 1
‖θ‖

n∑
i=1

|λi|.

Let θ∗φi = χi, i = 1, . . . , n, where χ1, . . . , χn ∈ hull (ker θ). Then, we
have ∥∥∥∥

n∑
i=1

λiφi

∥∥∥∥
A∗

≥ 1
‖θ∗‖

∥∥∥∥θ∗
( n∑

i=1

λiφi

)∥∥∥∥
∞

=
1
‖θ‖

∥∥∥∥
n∑

i=1

λiχi

∥∥∥∥
∞
.
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Let f be the function on {χ1, . . . , χn}, defined by f(χi) = |λi| /λi,
i = 1, . . . , n. Let an arbitrary ε be such that 0 < ε < 1 be given. Since
a finite strongly independent set is a Kronecker set [20, Theorem 5.1.3],
there exists g0 ∈ G, such that supi |f(χi) − χi(g0)| < ε.

Consequently, we have

∥∥∥∥
n∑

i=1

λiχi

∥∥∥∥
∞

≥
∣∣∣∣

n∑
i=1

λiχi(g0)
∣∣∣∣

≥
∣∣∣∣

n∑
i=1

λif(χi)
∣∣∣∣ −

n∑
i=1

|λi| |f(χi) − χi(g0)|

≥ (1 − ε)
n∑

i=1

|λi|.

This completes the proof.

Corollary 5. We have ap (PFp(G)) = span Ĝ.

4. Herz algebras and the Schur property. Let G be a locally
compact abelian group. For 1 < p < ∞, let Ap(G) denote the linear
subspace of C0(G) consisting of all functions of the form

f =
∞∑

n=1

hn ∗ kv
n

where h′ns are in Lp(G), k′ns in Lq(G), (1/p+1/q = 1), kv
n(x) = kn(x−1)

and ∞∑
n=1

‖hn‖p ‖kn‖q <∞.

The norm of f is the infimum of these sums over all such representations
of f . Obviously we have ‖f‖∞ ≤ ‖f‖Ap

for all f ∈ Ap(G). Ap(G) is
often called a Herz algebra. As is known [9], Ap(G) is a commutative
semi-simple regular Banach algebra. The structure space of Ap(G)
can be identified with a group G via Dirac measures δg(g ∈ G).
Recall also that L1(Ĝ) is isometric isomorphic to A2(G) via Fourier
transform F . As functions which are continuous on G with a compact
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support are dense in Lp(G), A2(G) is dense in Ap(G). It follows that
F : L1(Ĝ) → Ap(G) is a continuous homomorphism with dense range.
Now applying Corollary 2, we have the following.

Corollary 6 [15, Theorem 4.8]. ap (Ap(G)) = span {δg : g ∈ G}.

Let PMp(G) denote the algebra of all operators on Lp(G) which
commute with translation. As is known [9] PMp(G) can be iden-
tified with the dual space of Ap(G). The elements of PMp(G) are
called p-pseudomeasures. There is an obvious notion “support” for
p-pseudomeasures. Let K be a compact subset of G and PMp(K),
the space of p-pseudomeasures which are supported on K. Note that
PMp(K) is the dual space of Ap(G)/JK , where JK is the smallest
closed ideal in Ap(G) whose hull is K.

Recall that a Banach space X has the Schur property, if every
weakly convergent sequence in X is norm convergent. Lust-Piquard
[15, Theorem 2.14] has shown that, if K is compact and dispersed
(i.e. K has no nonempty perfect subset), then PMp(K) has the Schur
property. Under a metrizability hypothesis on K, the converse of this
fact was proved in [15, Theorem 2.8] and [14, Proposition 3]. However,
we have the following.

Theorem 6. Let K be an arbitrary compact subset of G. If PMp(K)
has the Schur property, then K is dispersed.

For the proof of this theorem we need the following lemma which is
proved in [17]. We include a proof for completeness.

Lemma 3. Let A be an arbitrary Banach algebra. If the space A∗

has the Schur property, then ap (A) = A∗.

Proof. Suppose that A∗ has the Schur property. Let ϕ be an element
in A∗. We have to show that the operator Lϕ : A → A∗ defined by
Lϕ(a) = ϕ · a is compact. To prove this, let (an)n∈N be a sequence in
A1. Since A∗ has the Schur property, A does not contain an isomorphic
copy of �1 [5, Theorem 3]. Hence, by Rosenthal’s �1-theorem [19], the



1990 H.S. MUSTAFAYEV

sequence (an)n∈N has a subsequence, denoted again (an)n∈N , which
is weakly Cauchy. It follows that the sequence (Lϕ(an))n∈N is weakly
Cauchy in A∗. As A∗ has the Schur property, it is weakly sequentially
complete. Consequently, the sequence (Lϕ(an))n∈N converges weakly,
so in norm in A∗. This proves that ϕ is almost periodic on A, so that
A∗ = ap (A).

Proof of Theorem 6. Assume that PMp(K) has the Schur property.
Since PMp(K) is the dual space of Ap(G)/JK , by Lemma 3,

ap (Ap(G)/JK) = PMp(K).

We have already noted that the Fourier transform F maps L1(Ĝ) onto
a dense subalgebra of Ap(G). Now, applying Corollary 3, we get that

ap (Ap(G)/JK) = span {δg : g ∈ K} .

Hence, we have

(4.1) PMp(K) = span {δg : g ∈ K} .

Let μ be an arbitrary finite regular Borel measure on G. μ can be
considered as an element of PMp(G) for the pairing

〈μ, f〉 =
∫

G

f(g) dμ(g), f ∈ Ap(G).

We remark also that suppμ in terms of the support of PMp(G) and
suppμ in usual terms are the same. Now we claim that F ∗μ = μ̂(χ),
where μ̂(χ) is the Fourier-Stieltjes transform of μ. To see this let
f ∈ L1(Ĝ) be given. We can write

∫
Ĝ

(F ∗μ)f(χ) dχ = 〈μ, F (f)〉 =
∫

G

f̂(g) dμ(g)

=
∫

G

(∫
Ĝ

f(χ)χ(g) dχ
)
dμ(g)

=
∫

Ĝ

(∫
G

χ(g) dμ(g)
)
f(χ) dχ =

∫
Ĝ

μ̂(χ)f(χ) dχ.
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This being true for all f ∈ L1(Ĝ), we get that F ∗μ = μ̂(χ).

Now let μ be an arbitrary continuous regular Borel measure supported
on K. To prove that K is dispersed, it is enough to show that μ is
identically zero [12, p. 52, Theorem 10]. Since μ ∈ PMp(K), it follows
from the equality (4.1) that F ∗μ can be approximated in the ‖·‖∞-norm
by the linear combinations of the characters

{
g(χ) : g ∈ K

}
. Hence,

μ̂(χ−1) is an almost periodic function on Ĝ. Let Φ be the invariant
mean on AP (Ĝ).

Since

〈Φ, g(χ)〉 =
{

1 g = 1
0 g 
= 1

and since μ is a continuous measure, we have

〈
Φ, g(χ) μ̂(χ−1)

〉
= μ{g} = 0, g ∈ K.

This shows that the Fourier-Bohr coefficients of μ̂(χ−1) are zero. By
the uniqueness theorem we obtain that μ̂(χ−1) ≡ 0 and hence μ = 0.
This completes the proof.

5. Almost periodic functionals on C∗-algebras. Recall that
the following characterization of almost periodic functionals on C∗-
algebras is given by Quigg [18, Theorem 3.4]. Let πap be the direct
sum of all the finite dimensional cyclic representations obtained from
the application of the Gelfand-Naimark-Segal construction to the states
of A, and denote the corresponding central projection by zap. Then
ap (A) = zap ·A∗. However, we have the following.

Corollary 7. For an arbitrary C∗-algebra A,

ap (A) =
( ∑

σ∈Âc

⊕(kerσ)⊥
)

�1
.

Proof. Let A be a C∗-algebra. It is well known that A is Arens
regular and A∗∗ can be identified with the enveloping von Neumann
algebra of A. Let Γ be the unitary group in A∗∗ endowed with the
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discrete topology. It follows from the Russo-Dye theorem [3, p. 210],
id : L1(Γ) → A∗∗ is a continuous homomorphism with dense range.
On the other hand, the M -ideals in C∗-algebras are exactly the closed
two-sided ideals [21]. Thus, the result now follows from Theorem 4.

LetM be a von Neumann algebra andM∗ its predual. It is well known
that M∗ is a Banach M -bimodule. By ap∗(M) we denote the set of
all σ-continuous almost periodic functionals on M . Clearly, ap∗(M)
is an M -subbimodule of M∗. A closed subspace E ⊂ M∗ is called an
invariant subspace of M∗, if a ·ϕ · b ∈ E for all ϕ ∈ E and a, b ∈ A. An
invariant subspace E of M∗ is said to be minimal if E does not contain
other nonzero invariant subspaces of M∗. As usual, we call a projection
p in a von Neumann algebra M finite dimensional if the algebra pMp
is finite dimensional. By Pc(M) we shall denote the set of all minimal
finite dimensional central projections of M .

Quigg [18, Theorem 2.8], has shown that ap∗(M) = (Map)∗, where
Map is the largest ideal of M which is a direct sum of matrix algebras.
The following theorem gives another characterization of σ-continuous
almost periodic functionals on von Neumann algebras.

Theorem 7. For an arbitrary von Neumann algebra M ,

ap∗(M) =
( ∑

p∈Pc(M)

⊕ p ·M∗

)
�1
.

Proof. Let {Ei : i ∈ I} be the family of all minimal finite-dimensional
invariant subspaces of M∗. We first show that

(5.1) ap∗(M) = span {Ei : i ∈ I} .

Since each Ei, i ∈ I, is a finite-dimensional invariant subspace of M∗,
we have Ei ⊂ ap∗(M) and consequently span {Ei : i ∈ I} ⊂ ap∗(M).
To show the reverse inclusion, let U denote the group of all unitary
elements of M . Let us equip U with the discrete topology and define
a representation T of U × U on M∗ by T (γ, s)ϕ = γ−1 · ϕ · s,
where γ, s ∈ U and ϕ ∈ M∗. Clearly, ap∗(M) is an invariant
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subspace for T . A standard “finite ε-mesh technique” shows that
the set

{
γ−1 · ϕ · s : (γ, s) ∈ U × U

}
is relatively compact in M∗ for

all ϕ ∈ ap∗(M). Hence, the restriction of T to ap∗(M) is an almost
periodic representation. By Theorem 1, ap∗(M) is a closed linear span
of the irreducible finite-dimensional T -invariant subspaces. However,
since the linear span of U is dense in M , irreducible finite-dimensional
T -invariant subspaces are exactly minimal finite-dimensional invariant
subspaces of M∗. This proves (5.1). Further, if E is a minimal finite-
dimensional invariant subspace of M∗, then E⊥ is a maximal bi-ideal in
M of finite codimension. It follows that there exists a minimal finite-
dimensional central projection p ∈ M such that E⊥ = (1 − p)M and,
consequently, E = p ·M∗. The converse is also true. If p is a minimal
finite-dimensional central projection in M , then p · M∗ is a minimal
finite-dimensional invariant subspace of M∗. Let pi be the associated
projection of Ei, i ∈ I. Since Ei ∩ Ej = {0}, i 
= j, it follows that
the projections {pi : i ∈ I} are mutually orthogonal. Furthermore, the
natural mapping

M −→ (piM ⊕ (1 − pi)M)�∞ ,

is clearly isometric, whence ‖ϕ‖ = ‖pi ·ϕ‖+‖ϕ−pi ·ϕ‖, for all ϕ ∈M∗
and i ∈ I. Consequently, for a given ϕi1 ∈ Ei1 , . . . , ϕin

∈ Ein
, since

pin
· ϕim

= 0, n 
= m, we have

‖ϕi1 + · · · + ϕin
‖

= ‖pi1 · (ϕi1 + · · · + ϕin
)‖ + ‖ϕi1 + · · · + ϕin

− pi1 · (ϕi1 + · · · + ϕin
)‖

= ‖ϕi1‖ + ‖ϕi2 + · · · + ϕin
‖ = · · · = ‖ϕi1‖ + ‖ϕi2‖ + · · · + ‖ϕin

‖.

Now the proof is completed as in the proof of Theorem 4.

This theorem also gives a characterization of almost periodic func-
tionals on C∗-algebras.

Corollary 8. For an arbitrary C∗-algebra A,

ap (A) =
( ∑

p∈Pc(A∗∗)

⊕ p ·A∗
)

�1
.
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Proof. It is easy to see that ap (A) = ap∗(A∗∗). Thus, the result
follows from Theorem 7.

Remark 1. Let A be a C∗-algebra. As in the proof of Theorem 7,
we can see that {p ·A∗ : p ∈ Pc(A∗∗)} is exactly the set of all minimal
finite-dimensional invariant subspaces of A∗. Since A has a bounded
approximate identity, by Lemma 1, we have {p · A∗ : p ∈ Pc(A∗∗)} ={
(kerσ)⊥ : σ ∈Âc

}
. Hence, Corollary 8 is a reformulation of Corol-

lary 7.

The following simple fact presents certain interest.

Proposition 1. Let H be a Hilbert space, and let A be a Banach
algebra of compact operators on H. Then the following assertions are
equivalent.

a) ap (A) = A∗.

b) A1 is relatively compact in the strong operator topology.

Proof. a) ⇒ b). Note that A∗ is (linearly isometric) L1(H)/A⊥,
where L1(H) is the space of trace-class operators on H. For x, y in
H, by x ⊗ y we denote the one-dimensional operator on H defined by
x ⊗ y : z → (z, y)x. Now let (Tn)n∈N be an arbitrary sequence in
A1. For given x, y in H\{0}, since x ⊗ y + A⊥ is in ap (A), (Tn)n∈N

has a subsequence denoted again by (Tn)n∈N , such that the sequence
Tn · (x⊗ y +A⊥)

= Tnx⊗ y converges in A∗. Consequently, we have

‖Tnx⊗ y − Tmx⊗ y‖ = ‖Tnx− Tmx‖ ‖y‖ −→ 0.

It follows that the sequence (Tnx)n∈N converges.

b) ⇒ a). Since the linear span of
{
x⊗ y +A⊥ : x, y ∈ H

}
is dense

in A∗, it is enough to show that x ⊗ y + A⊥ is in ap (A) for every
x, y in H. To see this, let (Tn)n∈N be an arbitrary sequence in A1,
and let x ∈ H. Since the set (Tnx)n∈N is relatively compact, it has a
subsequence denoted again by (Tnx)n∈N such that Tnx → z, for some
z ∈ H. Hence

Tn · (x⊗ y +A⊥)
= Tnx⊗ y −→ z ⊗ y.
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The proof is complete.

Corollary 9. Let H be a Hilbert space, and let A be a C∗-algebra of
compact operators on H. Then the following assertions are equivalent.

a) A1 is relatively compact in the strong operator topology.

b) A is a c0-sum of finite dimensional C∗-algebras.

Proof. As shown in [13, Lemma 4.1], under the hypotheses of the
corollary, ap (A) = A∗ if and only if A is a c0-sum of finite dimensional
C∗-algebras. Thus the result follows from Proposition 1.

Now let A and B be two unital C∗-algebras and A⊗̂B their projective
tensor product. Let UA and UB be the group of unitary elements
of A and B, respectively. By the Russo-Dye theorem [3, p. 210],
a.c.h.UA = A1 and a.c.h.UB = B1, where a.c.h. is the “absolute convex
hull”. Then Γ = {u⊗ v : u ∈ UA, v ∈ UB} is a group in A⊗̂B and,
by the definition of the projective tensor norm, a.c.h. (Γ) =

(
A⊗̂B)

1
.

Let Γ be equipped with the discrete topology. Then the mapping
id : L1 (Γ) → A⊗̂B is a continuous homomorphism with dense range (it
can be deduced even more: A⊗̂B is isomorphic to a quotient algebra
of L1 (Γ)). Now, applying Theorem 2, we have the following.

Corollary 10. Let A and B be two unital C∗-algebras. Then

ap
(
A⊗̂B)

= span
{
(kerσ)⊥ : σ ∈ (

A⊗̂B)∧
c

}
.

Let K and S be two compact Hausdorff spaces and K × S their
Cartesian product.

Corollary 11. We have ap
(
C(K)⊗̂C(S)

)
= �1(K × S).

Proof. It is well known that the structure space of C(K)⊗̂C(S) can be
identified canonically with K×S via the mapping (x, y) → δx ⊗ δy(x ∈
K, y ∈ S), where δx⊗δy is defined by 〈δx ⊗ δy, f ⊗ g〉 = f(x)g(y), f ∈
C(K), g ∈ C(S). By Corollary 10, we have

ap
(
C(K)⊗̂C(S)

)
= span

{
δx ⊗ δy : (x, y) ∈ K × S

}
.
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On the other hand, we can see that, for every choice of x1, . . . , xn ∈ K,
y1, . . . , yn ∈ S and complex numbers λ1, . . . , λn,

‖λ1δx1 ⊗ δy1 + · · · + λnδxn
⊗ δyn

‖ = |λ1| + · · · + |λn| .

Now the proof is completed as in the proof of Theorem 4.

Acknowledgment. I am very grateful to the referee for valuable
remarks and suggestions.
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