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INEQUALITIES OF GENERALIZED
HYPERBOLIC METRICS

PETER A. HÄSTÖ

ABSTRACT. In this paper inequalities between two gen-
eralizations of the hyperbolic metric and the jG metric are
derived. We also prove inequalities between generalized ver-
sions of the jG metric and Seittenranta’s metric.

1. Introduction. In contrast to the situation in the complex plane,
the well-known Poincaré hyperbolic metric is defined only in balls and
half-spaces in Rn when n ≥ 3. Many researchers have proposed metrics
that could take the place of the hyperbolic metric in analysis in higher
dimensions. Probably the most used one is the quasihyperbolic metric
introduced by Gehring and Palka in [5]. This metric has the slight
disadvantage in that it does not equal the hyperbolic metric in a ball,
but rather may be off by a multiplicative constant of 2. For accurate
estimates, for instance asymptotically sharp inequalities, this might
pose a problem.

Several metrics have also been proposed that are generalizations of
the hyperbolic metric in the sense that they equal the hyperbolic metric
if the domain of definition is a ball or a half-space. Some examples are
the Apollonian metric introduced by Beardon in [2], the Ferrand metric
[3], the Kulkani-Pinkall metric [8] and Seittenranta’s metric [9].

The generalizations of the hyperbolic metric studied in this paper
are based on directly using two simple closed form formulae for the
hyperbolic metric in balls. This approach was suggested by Vuorinen in
[11] and it yields generalized hyperbolic metrics that have the desirable
property that they equal the hyperbolic metric in balls and half-spaces
in all dimensions.

In what follows all topological operations are with respect to Rn (see
Section 2; for further reference, e.g., [11]).
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We will always denote by G�Rn a domain, i.e., open and connected
set, with at least two boundary points and by x and y points in G;
similarly for G′, x′ and y′.

We now give the precise definitions of the metrics. The generalized
hyperbolic metric,

(1) ρG(x, y) := sup
a,b∈∂G

cosh−1 (1 + |a, x, b, y| |a, y, b, x|/2),

where |a, x, b, y| denotes the cross-ratio, see equation (3), was intro-
duced by Vuorinen in [11, (3.28)], and proven to be a metric in domains
with at least two boundary points in [7]. Seittenranta’s metric, from
[9, Definition 1.1], is defined by

δG(x, y) := sup
a,b∈∂G

log(1 + |a, x, b, y|).

We cite some basic desirable properties of the generalized hyperbolic
metrics, as this may help motivate studying them.

Lemma 1 ([9, Theorem 3.1 and Remark 3.2(2)], [11, 3.25, 3.26,
8.38(3)]). The metrics ρG and δG have the following properties:

(i) they are Möbius invariant;

(ii) they are monotone in the domain of definition;

(iii) for G = Bn and G = Hn, they equal the hyperbolic metric;

(iv) ρG(x, y) ≥ cosh
(
(q(∂G)q(x, y))2

)−1 and δG(x, y) ≥ exp
(
(q(∂G)×

q(x, y))
)− 1, where q denotes the chordal metric.

The well-known jG metric, which is a modification from [10] of a
metric from [4], is defined for G�Rn by

jG(x, y) := log
(

1 +
|x − y|

min{d(x), d(y)}
)

,

where d(x) := d(x, ∂G). The first main results are the following
inequalities relating these metrics.

Theorem 1. Let G be a domain with card ∂G ≥ 2. Then

(i) δG ≤ ρG ≤ cosh−1 (3)/log(3) δG.



GENERALIZED HYPERBOLIC METRICS 191

Assume additionally that G�Rn. Then

(ii) jG ≤ ρG ≤ cosh−1 (3)/log(2) jG.

Both inequalities in (i) and the first inequality in (ii) are sharp.

Remark 1. Note that the term sharp means that the constant in an
inequality cannot be improved, i.e., there exist a domain G and points
xi, yi ∈ G, i = 1, 2, . . . , such that

lim
i→∞

d1(xi, yi)/d2(xi, yi) = c,

for the inequality d1 ≤ cd2.

It was shown in [6, Corollary 6.1] that δG can be embedded in the
following family of metrics, 0 < p < ∞:

δp
G(x, y) := sup

a,b∈∂G
log{1 + (|x, a, y, b|p + |x, b, y, a|p)1/p},

δ∞G (x, y) := lim
p→∞ δp

G(x, y).

With this notation δ∞G = δG, Seittenranta’s metric. It likewise follows
directly from [6, Lemma 6.1 and Remark 6.1] that for G�Rn, jG can
be embedded in the family

jp
G(x, y) := sup

a∈∂G
log

(
1 +

( |x − y|p
|x − a|p +

|x − y|p
|y − a|p

)1/p
)

,

j∞G (x, y) := lim
p→∞ jp

G(x, y),

where 0 < p < ∞. Here j∞G = jG, the previously defined jG metric.

In this paper we prove the following inequalities of the generalized
jG and δG metrics. Note that inequality (iii) is a generalization of [9,
Theorem 3.4].

Theorem 2. Let G be a domain with at least two boundary points
and let 0 < q ≤ p ≤ ∞.

(i) Then δp
G ≤ δq

G ≤ 21/q−1/p δp
G.
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(ii) If additionally G�Rn, then jp
G ≤ jq

G ≤ 21/q−1/p jp
G.

(iii) If p ∈ [1,∞] and G�Rn, then jp
G ≤ δp

G ≤ 2jp
G.

All the inequalities are sharp.

The structure of the rest of this paper is as follows. Section 2 describes
the notation used in this paper, which conforms to that in [11]. The
two main theorems are proved in Sections 3 and 4, respectively.

2. Notation. We denote by {e1, e2, . . . , en} the standard basis of
Rn and by n the dimension of the Euclidean space under consideration
and assume that n ≥ 2. For x ∈ Rn we denote by xi the ith coordinate
of x. The following notation will be used for balls and the upper half-
space:

Bn(x, r) := {y ∈ Rn: |x − y| < r} and Hn := {x ∈ Rn: xn > 0}.

We will use the notation Rn := Rn ∪ {∞} for the one point com-
pactification of Rn. By ∂G we will denote the boundary and by Gc the
complement of G in Rn. We define the chordal metric q in Rn by means
of the canonical projection onto the Riemann sphere, Sn−1(en/2, 1/2),
hence

(2) q(x, y) :=
|x − y|√

1 + |x|2√1 + |y|2 , q(x,∞) :=
1√

1 + |x|2 .

We will consider Rn as the metric space (Rn, q), hence its balls are the
(open) balls of Rn and complements of closed balls of Rn as well as
half-spaces. The cross-ratio |a, b, c, d| is defined by

(3) |a, b, c, d| :=
q(a, c)q(b, d)
q(a, b)q(c, d)

(
=

|a − c| |b − d|
|a − b| |c − d|

)
,

for a, b, c, d ∈ Rn, a �= b and c �= d, where the second expression is valid
if a, b, c, d ∈ Rn. A mapping f :Rn → Rn is a Möbius mapping if

|f(a), f(b), f(c), f(d)| = |a, b, c, d|

for every quadruple a, b, c, d ∈ Rn with a �= b and c �= d ([1, p. 32]).
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3. The proof of Theorem 1.

Proof of Theorem 1(i). We start by proving the first inequality,
δG ≤ ρG. Fix the points x, y ∈ G. Let a, b ∈ ∂G be such that
δG(x, y) = log(1 + |a, x, b, y|). The points a and b can be chosen, since
∂G is a compact set in Rn. Then it suffices to prove the first inequality
in

(4) log(1+ |a, x, b, y|) ≤ cosh−1 (1+ |a, x, b, y| |a, y, b, x|/2) ≤ ρG(x, y),

since the second follows directly from the definition of ρG. Moreover,
since the cross-ratio is Möbius invariant we may assume that a = ∞
and b = 0. Denote s := |x − y|/√|x| |y| and k :=

√|x|/|y| and assume
by symmetry that |x| ≥ |y|. Then the first inequality in (4) becomes

log(1 + ks) ≤ log
(
1 + s2/2 +

√
s4/4 + s2

)

which reduces to k − s/2 ≤ √
s2/4 + 1. Squaring this, we see that

the inequality holds, since s ≥ k − 1/k by the definitions of k and s
using the Euclidean triangle inequality. We see that there is equality
for G = Rn \ {0}, x = e1 and y = re1, r > 0.

In proving the second inequality it again suffices to assume a = ∞
and b = 0. Let s and k be as before and set c := cosh−1 (3)/ log(3).
The second inequality is equivalent to

(5) c log(1 + ks) − log(1 + s2/2 +
√

s4/4 + s2) ≥ 0.

The partial derivative with respect to s of the left-hand side of the
above inequality equals

c

s + 1/k
− 1√

s2/4 + 1
=

1
s + 1/k

(
c − s + 1/k√

s2/4 + 1

)
.

Since the term in the parenthesis is decreasing in s, the derivative has at
most one zero, which is a maximum. Therefore we need only check that
(5) holds at the end points, s = 0 and s = k+1/k, which correspond to
|x−y| = 0 and |x−y| = |x|+ |y|, respectively. For s = 0 the inequality
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(5) obviously holds. In the case s = k+1/k, since k =
(
s+

√
s2 − 4

)
/2,

we need to show that

c log
(
1 + s2/2 +

√
s4/4 − s2

) ≥ log
(
1 + s2/2 +

√
s4/4 + s2

)
.

Clearly equality holds for s = 2. The claim then follows when we show
that the left-hand side has greater derivative than the right-hand side
for s ≥ 2. Let us change the variable, t = s2, and differentiate with
respect to t:

c
t2 + t

√
t2 − 4 − 1√

t2 − 4 (2t2 + 1)
≥ 1√

t2 + 4
.

Since c ≥ 1, we may drop it. Multiplying by
√

t2− 4 (2t2+ 1)
√

t2+ 4
and squaring gives, after rearranging and dividing by 2,

t(t2 − 1)(t2 + 4)
√

t2 − 4 ≥ t6 − 8t4 + 4t2 − 4.

To see that this holds, observe the following chain of inequalities (note
that t ≥ 4):

t(t2 − 1)(t2 + 4)
√

t2 − 4 ≥ t5
√

t2 − 4 ≥ t6 − 7t4 ≥ t6 − 8t4 + 4t2 − 4.

For the sharpness of this inequality we choose G = Rn \ {0}, x = 1
and y = −1. Then there is equality in the inequality, and hence the
constant cannot be improved.

Proof of Theorem 1(ii). The first inequality follows from Theorem 1(i)
(δG ≤ ρG) and [9, Theorem 3.4] (jG ≤ δG). Its sharpness follows by
letting G = Hn, x = sen and y = ren, see [9, Remark 3.5].

We turn to the second inequality. The metric jG as it is normally
defined is not Möbius invariant, and indeed ∞ is a special point in the
sense that it may not belong to the domain G in which the metric is
defined. We may, however, think of jG as the member jG,∞ of the
following family:

(6) jG,b(x, y) := sup
a∈∂G

log
(
1 + max{|x, a, y, b|, |x, b, y, a|}),

where G�Rn is a domain not containing b with at least two boundary
points. Since jG,b is defined in terms of cross ratios, it is clear that it is
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Möbius invariant. Hence we may apply an auxiliary Möbius transform
to both sides of the inequality ρG ≤ (cosh−1 3/log 2)jG,∞, as long as
we keep track of where ∞ is mapped and use the appropriate jG,b.

As before we may then assume that the boundary points a and b
occurring in the definition of ρG equal 0 and ∞. We need to prove

(7) cosh−1

(
1 +

|x′ − y′|2
2|x′| |y|

)

≤ cosh−1 3
log 2

sup
a∈∂G′

log
(
1 + max{|x′, a, y′, b|, |x′, b, y′, a|})

= cosh−1 3log 2 sup
a∈∂G′

log
(

1 +
|x′− y′| |b − a|

min{|x′− b| |y′− a|, |x′− a| |y′− b|}
)

,

where the supremum is over the boundary point a only; b is some
fixed point in the complement of G. If b = 0 or b = ∞, we may proceed
exactly as in the proof of Theorem 1(i) and arrive at the better constant
cosh−1 (3)/ log(3). Assume then that b �∈ {0,∞}. We may assume
without loss of generality that b = e1 by scaling and rotating. Since
both sides are Möbius invariant, we may assume that |x′| |y′| ≤ 1 by
performing an inversion in the unit sphere, since this leaves b fixed. We
then forget about the original x and y and denote x′ by x and y′ by y,
to simplify the notation.

We may restrict the supremum from ∂G to its subset {0,∞} on the
right-hand side of (7), since this only makes the supremum smaller.
Moreover, we can move the supremum to the denominator of the
fraction inside the logarithm, changing it to minimum, since it is taken
over finitely many terms. In other words

log
(

1 +
|x − y|

min{|x − e1| |y|, |x||y − e1|, |y − e1|, |x − e1|}
)

≤ sup
a∈∂G

log
(

1 +
|x − y| |a − e1|

min{|x − e1| |y − a|, |x − a| |y − e1|}
)

.

Let us estimate |y − e1| ≤ |y| + 1 and |x − e1| ≤ |x| + 1. Then

min{|x − e1| |y|, |x| |y − e1|, |y − e1|, |x − e1|}
≤ min{min{1, |y|}(1 + |x|), min{1, |x|}(1 + |y|)}
= min{|x|, |y|} + min{1, |x| |y|}.
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Recall that we assumed that |x||y| ≤ 1. By symmetry, we may assume
that |x| ≤ |y|. Then we need to prove

(8) cosh−1

(
1 +

|x − y|2
2|x| |y|

)
≤ cosh−1 3

log 2
log
(

1 +
|x − y|

|x| + |x| |y|
)

.

Denote Sc := {z ∈ Rn: |z − y| = c|z|}. For fixed y and c > 0 consider
how the inequality (8) varies as x varies over Sc:

(9) cosh−1

(
1 +

c|x − y|
2|y|

)
≤ cosh−1 3

log 2
log
(

1 +
c

1 + |y|
)

.

We see that the right-hand side does not depend on |x − y|, which
means that it suffices to consider points x ∈ Sc which maximize this
distance, since this yields the hardest inequality.

Observe that for all c > 0 the sphere Sc intersects the segment [0, y]
and Sc encloses y if and only if c ∈ (0, 1) and 0 if and only if c > 1. Note
also that Sc is a subset of Bn(0, |y|) if and only if c > 2. Since we need
only consider points x that satisfy |x| ≤ |y|, we see that for c ∈ (0, 2],
the distance |x−y| is maximized by some x satisfying |x| = |y|. If c > 2,
then |x − y| is maximized by the choice x = −y/(c − 1).

Let λ :=
√|x| |y| ≤ 1. If λ < 1, then we can consider the points

x′ := x/λ and y′ := y/λ. The left-hand side of (8) is the same for the
points x and y as for the points x′ and y′, however the right-hand side
is smaller for the latter points. Hence we see that it suffices to prove
(8) for points x and y with |x||y| = 1.

Combining the conclusions of the previous two paragraphs, we see
that if c ≤ 2 we need to consider only the case |x| = |y| = 1, i.e.,

cosh−1 (1 + s2/2) ≤ cosh−1 3
log 2

log(1 + s/2),

where we have denoted s := |x − y|. For s = 0 there is equality in the
inequality, and since the left-hand side has lesser derivative than the
right-hand side the inequality holds for larger s, also.

In the case c < 2 we need to consider points x and y with |x||y| = 1
such that x, 0 and y lie on some line in this order. Hence we need to
show that

cosh−1

(
1 +

(|x| + |y|)2
2|x| |y|

)
≤ cosh−1 3

log 2
log
(

1 +
|x| + |y|

|x| + |x| |y|
)

.
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Let us write t := |y| = 1/|x| ≥ 1. The previous inequality becomes

cosh−1
(
1 + (t + 1/t)2/2

) ≤ cosh−1 3
log 2

log
(
1 + (t2 + 1)/(t + 1)

)
.

For t = 1 there is clearly equality in this inequality. We show that
the right-hand side has larger derivative than the left-hand side for all
t > 1, which is equivalent to

2
t

t2 − 1√
t4 + 6t2 + 1

≤ cosh−1 3
log 2

t2 + 2t − 1
(t + 1)(t2 + t + 2)

.

We use the estimate cosh−1 (3)/(2 log 2) ≥ 5/4 and multiply both sides
by the denominators:

4(t2 − 1)(t + 1)(t2 + t + 2) ≤ 5(t2 + 2t − 1) t
√

t4 + 6t2 + 1.

We then use the estimates t2+2t−1 ≥ t (t+1) and
√

t4+ 6t2+ 1 ≥ t2+1
and cancel the term t + 1 from both sides:

4(t4 + t3 + t2 − t − 2) ≤ 5(t4 + t2).

With the substitution u := t+1 this is equivalent to u4−5u2−2u+10 ≥
0. Since 2u ≤ u2 + 1 we have u4 − 5u2 − 2u + 10 ≥ u4 − 6u2 + 9 ≥
(u2 − 3)2 ≥ 0.

4. The proof of Theorem 2.

Proof of Theorem 2(i) and (ii). In this proof we use the convention
that 1/p = 0 and (xp + yp)1/p = max{x, y} if p = ∞.

It suffices to prove each of the claims for some fixed boundary
point(s), since we may choose it (them) to correspond to the point(s)
where the supremum is attained in the quantity whose upper bound we
want to establish. Hence it suffices to prove the real-number inequality

log(1+(xp+yp)1/p) ≤ log(1+(xq+yq)1/q) ≤ 21/p−1/q log(1+(xp+yp)1/p)

in order to prove both of the claims. Since (xp + yp)1/p ≤ (xq + yq)1/q

the first inequality is clear. Let us denote s := 21/q−1/p ≥ 1. Then
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log(1 + xs) ≤ s log(1 + x) for x ≥ 0 by the Bernoulli inequality. Hence
it suffices to prove the first inequality in

log(1 + (xq + yq)1/q) ≤ log(1 + s(xp + yp)1/p) ≤ s log(1 + (xp + yp)1/p).

However, this is immediately clear, since (xq + yq)1/q ≤ s(xp + yp)1/p

by the power-mean inequality.

We still need to show that the inequalities are sharp: Let G :=
Rn \ {0}. Then

δp
G(x, y) = jp

G(x, y) = log

(
1 +

( |x − y|p
|x|p +

|x − y|p
|y|p

)1/p
)

.

Fix y and let x → ∞. Then

lim
x→∞

jp
G(x, y)
log |x| −→ log 2

irrespective of the value of p, which shows that the first inequalities are
sharp. If |x| = |y|, then

jp
G(x, y) = log(1 + 21/p|x − y|/|x|).

As y → x we see that the second inequalities are also sharp.

Proof of Theorem 2(iii). It is easy to see that the supremum in the
definition of δG can be taken over the complement of G instead of over
the boundary without affecting the value of δG. Since ∞ is either a
boundary or exterior point of G, it is clear that δp

G ≥ jp
G, as taking

b = ∞ in the expression of δG gives the expression for jG. In the
domain Rn \ {0} we have δp

G(x, y) = jp
G(x, y) for every pair of points

x, y ∈ G, hence the inequality is sharp. It remains to consider the
second inequality.

Fix x and y in G and the boundary points a and b for which the
supremum is attained. We may assume without loss of generality that
|x − y| = 1. Then

δp
G(x, y) = log(1 + (|x, a, y, b|p + |x, b, y, a|p)1/p)

≤ log(1 + ((s + t + st)p + (u + v + uv)p)1/p),
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where we have denoted

s :=
1

|x − a| , t :=
1

|y − b| , u :=
1

|x − b| , v :=
1

|y − a| ,

and used the estimates

|a−b| ≤ |a−x|+ |x−y|+ |y−b| and |a−b| ≤ |a−y|+ |y−x|+ |x−b|
in |x, a, y, b| and |x, b, y, a|, respectively. Now

jp
G(x, y) ≥ sup

w∈{a,b}
log(1 + (|x − w|−p + |y − w|−p)1/p)

= log(1 + max{sp + vp, tp + up}1/p).

By symmetry we may assume that the tp + up ≤ sp + vp. If we apply
the exponential function to both sides of the second inequality in

δp
G(x, y) ≤ log(1 + ((s + t + st)p + (u + v + uv)p)1/p)

≤ 2 log(1 + max{sp + vp, tp + up}1/p) ≤ 2jp
G(x, y),

we see that it suffices to show that

(10) 1 + ((s + t + st)p + (u + v + uv)p)1/p ≤ (1 + (sp + vp)1/p)2.

We see that the left-hand side can be increased by increasing t while
keeping the right-hand side constant if tp + up < sp + vp. Hence we
may assume that tp + up = sp + vp =: αp.

We will show that (10) holds for every quadruple s, t, u, v ∈ R+ with
tp + up = sp + vp for p ≥ 1. For fixed s, t, u and v let us consider
how the inequality varies under the transformation x 
→ wx, y 
→ wy,
u 
→ wu and v 
→ wv. Then the inequality (10) becomes, after we
divide it by the common factor w,

f(w) := 2α + wα2 − ((s + t + stw)p + (u + v + uvw)p)1/p ≥ 0.

We will show that f increases in w. The derivative f ′(w) equals

α2 − {(s + t + stw)p + (u + v + uvw)p}1/p−1{(s + t + stw)p−1st

+ (u + v + uvw)p−1uv}
= α2 − {(1 + ζp)1/p−1st + (1 + ζ−p)1/p−1uv} =: α2 − g(ζ),
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where ζ := (u + v + uvw)/(s + t + stw). We will now consider how

g(ζ) = (1 + ζp)1/p−1st + (1 + ζ−p)1/p−1uv

varies with ζ. The derivative g′(ζ) equals

− (p − 1)((1 + ζp)1/p−2ζp−1st − (1 + ζ−p)1/p−2ζ−p−1uv)

= −(p − 1)(1 + ζp)1/p−2ζp−2(stζ − uv).

We see that g has a maximum at ζ = uv/(st) for p > 1. Hence

df

dw
≥ α2 − g

(uv

st

)

= α2 −
((

(st)p + (uv)p

(st)p

)1/p−1

st +
(

(st)p + (uv)p

(uv)p

)1/p−1

uv

)

= α2 − ((st)p + (uv)p)1/p

= (tp + up)1/p(sp + vp)1/p − ((st)p + (uv)p)1/p ≥ 0.

Now since f is increasing in w, it suffices to show that f(0) ≥ 0 in order
to obtain f(w) ≥ 0, which is equivalent with (10). In other words we
have to show that

2(sp + vp)1/p − ((s + t)p + (u + v)p)1/p ≥ 0.

Recall that tp +up = sp +vp =: α1/p and denote additionally β := s+t.
The previous inequality becomes

2α − {βp +
[
(αp − sp)1/p + (αp − (β − s)p)1/p

]p}1/p
.

For fixed α and β, (αp−sp)1/p +(αp− (β−s)p)1/p ≤ 2(αp− (β/2)p)1/p

and so it suffices to show that 2α−(βp+2p(αp−(β/2)p))1/p ≥ 0, which
is obvious.

We still have to show that the inequality is sharp. Consider then the
domain G = Rn \ {−e1, e1} and the points εe2 and −εe2. We have

δp
G(εe2,−εe2) = log

(
1 +

21/p+2ε√
1 + ε2

)
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and

jp
G(εe2,−εe2) = log

(
1 +

21/p+1ε√
1 + ε2

)
.

It is then clear that

lim
ε→0

δp
G(εe2,−εe2)

jp
G(εe2,−εe2)

= 2.

Remark 2. It is not immediately clear whether the inequality from
Theorem 2(iii) holds for 0 < p < 1 as well. It is clear that (10)
does not hold in this case for arbitrary s, t, u, v ∈ R+, however, these
variables are not really arbitrary but rather related by various triangle
inequalities.
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