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ON IMPULSIVE TIME-VARYING SYSTEMS WITH
UNBOUNDED TIME-VARYING POINT DELAYS:

STABILITY AND COMPACTNESS OF THE
RELEVANT OPERATORS MAPPING THE INPUT
SPACE INTO THE STATE AND OUTPUT SPACES

M. DE LA SEN

ABSTRACT. This paper is concerned with time-varying
systems with non-necessarily bounded everywhere continuous
time-differentiable time-varying point delays. The delay-free
and delayed dynamics are assumed to be time-varying and im-
pulsive, in general, and the external input may be impulsive
as well. For given initial conditions, the (unique) homoge-
neous state-trajectory and output trajectory are equivalently
constructed from three different auxiliary homogeneous sys-
tems, the first one being delay-free and time-invariant, the
second one possessing the delay-free dynamics of the current
delayed system and the third one being the homogeneous part
of the system under study. In this way, the constructed so-
lution trajectories of both the unforced and forced systems
are obtained from different (input-state space/output space
and state space to output space) operators. The stability of
the homogeneous auxiliary system and that of the object sys-
tem are investigated. Finally, the compactness of some of the
various relevant operators involved in the descriptions of the
solution trajectories is investigated.

1. Introduction. Time-delay systems have been widely investigated
in the last years both in a theoretical context and in that of related
applications, see for instance, [2, 4, 6 12, 14 15, 17, 19 27]. Those
systems become inherently attractive from a theoretical point of view
since they are described by (infinite-dimensional) functional equations
and because of their interest towards potential applications like, for
instance, population growth models, transportation, communications
as well as war-peace and agricultural models [6, 26]. A wide variety
of both dependent and independent (of delay) results exist, see for
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instance, [2, 9 11, 17, 20, 24, 25, 27] obtained via Liapunov
stability theory or frequency-domain analysis tools, the second one
being only useful in the time-invariant case. Most of the available
results are restricted to time-invariant systems with constant delays.
However, nowadays, the extensions to the nonlinear and time-varying
systems as well as to systems described by partial-derivative equations
are receiving increasing interest in the literature, see for instance, [4,
9, 14, 15, 17, 20]. In this paper, a very general class of time-
varying systems is considered whose delay is time-varying and not
necessarily everywhere bounded time-differentiable while the delay-free
and delayed dynamics are, in general, time-varying and impulsive, and
whose external input is impulsive as well what is of interest in some
applications. Furthermore, the time-delay is not necessarily bounded
and time-differentiable for all time.

The paper is organized as follows. Section 2 contains the basic no-
tation issues used in the paper. Section 3 introduces three different
unforced auxiliary systems related to the current unforced delay dy-
namic system. Those systems are then used to build explicitly in three
different ways the unique state and output solution trajectories for any
given admissible initial conditions. They are also used to obtain a set
of global stability results for the current system based on their stability
properties. The first of such unforced auxiliary systems is a delay free
time-invariant one whose evolution operator is a C0-semigroup with an
infinitesimal generator. The second one is a delay-free (in general time-
varying) homogeneous dynamic system which contains the delay-free
dynamics of the whole current system which is, in general, impulsive
and its parametrization is subject to bounded discontinuities of first
and second class. Its evolution operator is bounded and almost every-
where time-differentiable. Finally, the third auxiliary system contains
all the dynamics of the unforced time-delay system under study. Its
bounded evolution operator involves explicitly the delay function and
it is almost everywhere time-differentiable. All the relevant associated
state-state/output and input-state/output operators defined to build
the trajectory solutions are characterized from the above evolution op-
erators and their associate evolution equations. Section 4 is devoted to
establish and prove a set of results on global exponential and asymp-
totic stability of the homogeneous and forced time-delay systems based
on some intermediate related previously derived results for the auxil-



ON IMPULSIVE TIME-VARYING SYSTEMS 81

iary systems which are obtained via Gronwall’s lemma or Lacunae’s
stability theory, [6, 16], by taking into account that the parametriza-
tion has bounded discontinuities, [1, 18] and has, in general, impulsive
terms in general while the input is impulsive as well, [10], under the
assumption that the impulsive-free partly dynamics is stable and varies
at a sufficiently slow rate with time. Section 5 is devoted to investigate
the compactness, see for instance, [3, 5, 13] for definitions and rele-
vant properties, of the various operators linking the input, state and
output Banach’s spaces under the key assumption that the input is
square-integrable on [0,∞). That investigation is performed, keeping
in mind the relevance of compact operators in the approximation theory
in Banach’s (and then in Hilbert) spaces since they map bounded sets
into totally bounded sets (since any operator is compact in a reflexive
space if and only if it is completely continuous). Another relevant prop-
erty which identifies compact operators in topological or metric spaces
(and that implies and it is implied by the above one) is that they
map weakly convergent sequences into strongly convergent ones. Thus,
the state/output trajectories are either finite-dimensional or arbitrar-
ily close to finite dimension functions if the input is square-integrable
on [0,∞) and the input-state, respectively, input-output operator is
compact.

2. Notation. R+
0 (Z+

0 ) = R+ ∪ {0} (Z+ ∪ {0}) and R−
0 (Z−

0 ) =
R−∪{0} (Z−∪{0}) are the (disjoint) sets of nonnegative and negative
real (integer) numbers in the real field R (integer ring Z).

The complement of a subset S ⊆ R in R is denoted as S.

The exponential function of “f” is denoted indistinctly as “exp(f)” or
“ef” with the main criterion of notation choice being reading quality.

λmax(P ) and λmin(P ) denote, respectively, the maximum and mini-
mum eigenvalue of the square real (symmetric) matrix P = PT . The
notation P > Q (P ≥ Q) means that (P − Q) is positive definite de-
noted by P − Q > 0 ((P − Q) being positive semi-definite is denoted
by P −Q ≥ 0) provided that Q is symmetric of the same order as P .

I denotes the identity matrix of any order (depending on context or
specified as a subscript when necessary).

X ⊆ Rn, U ⊆ Rm and Y ⊆ Rp are, respectively, the state, input
and output real spaces of the time-delay dynamic system of respective
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dimensions n, m and p so that the state, input and output real vectors
are, respectively, X, U and Y for all t ≥ 0.

The real n-vector function ϕ = ϕ0 + ϕ̃ + ϕ̃imp of the time-delay
system is the set of admissible initial conditions IC ([−r̄, 0],Rn) where
∞ > r̄ ≥ r(0) ≥ 0 and the time-varying delay function r : R+

0 → R+
0

so that ϕ0 : [−r̄, 0) → Rn is absolutely continuous, ϕ̃(t) = 0, for
all t ∈ (ti, ti+1) with ϕ̃(t−i ) �= ϕ̃(t+i ) being isolated bounded jump
discontinuities at ti ∈ [−r̄, 0] ∩ R+

0 with Maxti∈Supp (ϕ̃)(‖ϕ̃(t+i )‖) ≤
M < ∞ and

∫ 0

−r
ϕ̃(τ ) dτ = 0. A notation convention adopted is that

at any discontinuity points ti, ϕ̃(t+i ) (ϕ̃(t−i )) denotes the value of ϕ(ti)
to the right (to the left) of ti.

ϕ̃imp(t) =
∑

ti∈TNimp
ϕ̃imp(ti)δ(t− ti) is a real n-vector function from

[−r̄, 0]∩R+ to Rn taking nonzero values at set TNimp ⊂ [−r̄, 0]∩R+,
i.e., ϕ̃imp(0) = 0, of finite cardinal and zero measure with δ(t) being
the Dirac distribution function. That is,

lim
t→∞

( ∫ t

−t

g(σ − τ )δ(τ ) dτ
)

= lim
t→0+

( ∫ σ+t

σ−t

g(σ − τ )δ(τ ) dτ
)

= g(σ).

Thus,
∫ 0

−r
ϕ̃imp(τ ) dτ =

∑N
i=1 ϕ̃imp(ti), where Nimp := Card (TNimp)

of TNimp ⊂ [−r̄, 0] ⊂ R.

Lm
∞ is the set of essentially bounded m-vector functions from R+

0 to
R+

0 .

Lm
2 (a, b) ≡ L2((a, b),Rm) is the Hilbert space of the real m-vector

functions f : (a, b) → Rm which are square-integrable on (a, b) with
the inner product denoted by 〈., .〉 and the (semi-) norm

‖f‖Lm
2 (a,b) := 〈f, f〉1/2

Lm
2 (a,b) =

( ∫ b

a

fT (τ )f(τ ) dτ
)1/2

dτ <∞,

∀ f ∈ Lm
2 (a, b).

Lm
2 is an abbreviated notation to denote Lm

2 (0,∞) ≡ Lm
2 ((0,∞),Rm).

We use the notation M ∈ Ln×m
2 ≡ L2((0,∞),Rn×m) for any matrix

functionM=(mij) of real entriesmij in L2 withm rows and n columns.
Since impulsive functions are widely used thoroughly, closed and one-
side closed real intervals [a, b], respectively (a, b], [a, b), are used when
necessary, as well as related simplified notations for Lebesgue integrals:
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∫ b+

a+ (·), ∫ b−

a− (·), ∫ b−

a+ (·), ∫ b+

a− (·), meaning respectively limε→0+(
∫ b+ε

a+ε
(·)),

limε→0+(
∫ b−ε

a−ε
(·)), limε→0+(

∫ b−ε

a+ε
(·)) and limε→0+(

∫ b+ε

a−ε
(·)). For in-

stance, if f(t) = g(t) + kaδ(t − a) + kbδ(t − b) is a real function of
domain (a, b) ∩R with δ(t) being the Dirac distribution and g being a
real Lebesgue integrable function on (a, b), then:

∫ b+

a−
f(τ ) dτ =

∫ b

a

g(τ ) dτ + ka + kb;

∫ b+

a+
f(τ ) dτ =

∫ b

a

g(τ ) dτ + kb;

∫ b−

a−
f(τ ) dτ =

∫ b

a

g(τ ) dτ + ka;

and ∫ b−

a+
f(τ ) dτ =

∫ b

a

g(τ ) dτ.

The same delta symbol with integer subscripts, i.e., δij is unity if and
only if i = j and zero otherwise, instead of a time argument, will be
used for the Kronecker delta through Section 5.

The set of real absolutely integrable m-vector functions of do-
main (a, b) ∩ R is denoted by Lm

1 (a, b) with Lm
1 ≡ Lm

1 (0,∞) =
L1((0,∞),Rm).

A (truncated) function ft(τ ) of f(τ ) on [0, t] ⊂ R is defined as
ft(τ ) := f(τ ) [1(τ ) − 1(τ − t)], which equates f(τ ) on [0, t] and is
zero for all τ �= [0, t], where 1(t) = 1 for all t ≥ 0 and 1(t) = 0
for t < 0 is the unity step (Heaviside) function. The space of trun-
cated square-integrable real m-vector functions on (0,∞) is denoted
by Lm

2e ≡ Lm
2e((0,∞),Rm), defined as Lm

2e := {ft ∈ Lm
2 , all fi-

nite t ≥ 0} = ∪0<t<∞Lm
2 (0, t) and endowed with an inner product

〈., .〉1/2
Lm

2e
:= Sup0≤t<∞(

∫ ∞
−∞ fT

t (τ )ft(τ ) dτ ) and associate (semi-) norm:

‖f‖Lm
2e

:= 〈f, f〉1/2
Lm

2e
= Sup

0≤t<∞
(‖ft‖Lm

2
) := Sup

0≤t<∞
(〈ft, ft〉1/2

Lm
2

)

= Sup
0≤t<∞

(∫ ∞

−∞
fT

t (τ )ft(τ ) dτ
)1/2

= Sup
0≤t<∞

(∫ t

0

fT (τ )f(τ ) dτ
)1/2

,
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for all f ∈ Lm
2e (or, equivalently, for all ft ∈ Lm

2 ) for all finite t ≥ 0.
The usefulness of the Lm

2e-space in the formalism is that truncated
functions of nonsquare integrable functions are square-integrable, in
general. Thus, if f /∈ Lm

2 but ft ∈ Lm
2 for all 0 ≤ t < ∞, then f ∈ Lm

2e

and most of the properties of the Hilbert space Lm
2 may be invoked for

f (via ft) for all finite real intervals [0, t]. The notation f ∈ Lm
2 (or

f /∈ Lm
2e) may be further specified as f ∈ L2((0,∞) ∩ R, F ⊆ Rm) (or

f ∈ L2e((0,∞) ∩R, F ⊆ Rm) to indicate that f ∈ F for a real f with
definition domain [0,∞) (or ft ∈ F for all finite t ≥ 0).

The space Lm
1e of (truncated) absolutely integrable real m-vector

functions is defined in an analogous way related to the space Lm
1 ≡

L1((0,∞),Rm) = {f : [0,∞) ∩ R → Rm :
∫ ∞
0

(fT (τ )f(τ ) dτ )1/2 <∞.

x[t] is a strip of the solution trajectory, i.e., x[t] ≡ x : [t−r(t), t] → ∞
for t ≥ 0 of the dynamic time-delay system of point time-varying delay
r(t).

The set of linear operators Γ from the linear space X to the linear
space Y is denoted by L(X,Y ).

The same norm symbol ‖ · ‖ is used for vector and (induced) matrix
norms in Euclidean spaces as that used for the spaces Lm

∞, Lm
2 and Lm

1 ,
i.e., if z ∈ Rm and Z ∈ Rn×m, then

‖Z‖ := Sup
z �=0

(‖Zz‖
‖z‖

)
= Sup

0<‖z‖≤1

(‖Zz‖
‖z‖

)
= Sup

‖z‖=1

(‖Zz‖
‖z‖

)
= Sup

z=1
(‖Zz‖)

for any (vector) norm. Each particular norm symbol is interpreted
without difficulty depending upon context. When necessary for clarity,
the norm symbol is appropriately subscripted or described. Linear
operators Z ∈ L(Lp

2, L
q
2) from the Banach space Lp

2 to the Banach
space Lq

2 are usually defined pointwise as (Zf)(t) : [0, t]×Rp → Rq for
each f ∈ Lp

2 in the definition domain of the M -operator. The norm of
the M -operator is

‖Z‖ := Sup
‖f‖=1

(‖Zf‖
‖f‖ : f ∈ Lp

2

)

= {Inf k ∈ R+
0 : ‖Zf‖ ≤ k, ∀ f ∈ Lp

2 s.t. ‖f‖ ≤ 1},

while its adjoint is Z∗ ∈ L(Lq
2, L

p
2) with norm defined accordingly.
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Indicator binary functions with domain R+
0 are used to evaluate time-

integral functions containing impulses. For instance,

∫ t−

0−

(
f(τ ) +

∑
ti∈TN

g(τ )δ(τ − ti)
)
dτ

= h(t) +
∑

ti∈TN(0,t)

g(ti) = h(t) +
∫ t−

0−
μ(τ )g(τ ) dτ

=
∫ t−

0−
(f(τ ) + μ(τ )g(τ )) dτ, ti ∈ TN(0, t),

with h(t) :=
∫ t

0
f(τ ) dτ if f : [0, t] → R is Lebesgue integrable

where TN(0, t) := {τ ∈ TN : 0 ≤ τ < t} is the support (of zero
Lebesgue measure) of the real function g : [0, t) → R, provided that∑

ti∈TN(0,t) g(ti) < ∞, while μ : (0, t) → {0, 1} is a (binary) indicator
function of TN(0, t) defined as μ(t) = 0 if t /∈ TN(0, t) and μ(t) = 1 if
t ∈ TN(0, t).

3. Time variant time-delay differential system. Consider the
dynamic system:

S : ẋ(t) = A(t)x(t) +Adx(t− r(t)) +B(t)u(t)(1.a)

y(t) = C(t)x(t) +D(t)u(t)(1.b)

where u, x and y are the input, state and output real vector functions
satisfying u ∈ L2((0,∞), U) ⊂ Lm

2 , x ∈ L2e((0,∞), X) ⊂ Ln
2e and

y ∈ L2e((0,∞), Y ) ⊂ Lp
2e, respectively; and U,X and Y are the m-

dimensional real input, n-dimensional real state and p-dimensional real
output linear spaces, respectively. That is, u(t) ∈ U , x(t) ∈ X and
y(t) ∈ Y for all t ≥ 0. The system (1) is subject to any function
of initial conditions ϕ ∈ IC ([−r̄, 0],Rn), of the form defined in the
notation section, where r(t) is a (not necessarily bounded) time-delay
function r : [0,∞) → R+

0 satisfying 0 ≤ r(t) ≤ t+r̄ (0 ≤ r(0) ≤ r̄ <∞)
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for all t ∈ R+
0 , and

A(t) := A′(t) +
∑

ti∈TN

A′′(t)δ(t− ti)(2.a)

= A0(t) + Ã′(t) +
∑

ti∈TN

A′′(t)δ(t− ti)

Ad(t) := A′
d(t) +

∑
ti∈TNd

A′′
d(t)δ(t− ti)(2.b)

are, in general, impulsive delay-free and delayed real matrix functions
of dynamics from [0,∞) to Rn×n, respectively, where: DD and DD
are, respectively, discrete real subsets of time instants where the time-
delay function is discontinuous and continuous non-differentiable, re-
spectively. A0 ∈ Rn×n is a constant real n-matrix, and A′(t) and
Ã′(t) := A′(t) −A0; and A′

d(t) have piecewise bounded continuous en-
tries with isolated jump bounded discontinuities at time instants TD
and TDd, respectively.

A′′(t) and A′′
d(t) are bounded matrix functions from [0,∞) to Rn×n

of support of zero Lebesgue measure consisting of the set of impulses
located at the time instants TN and TNd, respectively. By convenience
for evaluation of time integrals, continuous binary indicator real func-
tions μ : [0,∞) → {0, 1} and μd : [0,∞) → {0, 1} will be used when
necessary defined as μ(t) = 1 (μd(t) = 1) if t ∈ TN (t ∈ TND); and
μ(t) = 0 (μd(t) = 0) if t /∈ TN (t /∈ TNd). B : [0,∞) → Rm×n;
C : [0,∞) → Rn×p and D : [0,∞) → Rp×p are, respectively, the con-
trol, output and interconnection real matrix functions of continuous
bounded entries.

The input u in L2([0,∞), U ⊆ Rm) may also be impulsive and possess
discontinuities of second class (so-called jump discontinuities) at the set
TU ; i.e., u(t) = u′(t) +

∑
ti∈TU u

′′(t)δ(t − ti) with u ∈ Lm
2 , u′ ∈ Lm

2

with ti+1 − ti ≥ T0u > 0. μu : [0,∞) → {0, 1} is defined as μu(t) = 1 if
t ∈ TU and μu(t) = 0 (t /∈ TU) is a binary indicator of TU . Note
that DD, DD, TN , TD, TDd, TNd and TU are strictly ordered
sets in R+

0 and, respectively, in Z+
0 with respect to the “less than”

binary relation ‘<,’ i.e., satisfying the anti-reflexive, anti-symmetric
and transitive properties. The notationD(a, b) := {ti ∈ D : a ≤ ti < b}
for given a, b ∈ R+

0 applies to fixed elements of any set D (being, in
particular, DD, DD, TN , TD, TDd, TNd or TU) in [a, b) ∩ R+

0 .
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3.1 The use and usefulness of the indicator sets and functions. When
considering the state-trajectory solution of (1.a) for t ≥ 0 subject to
initial conditions ϕ ∈ IC ([−r̄, 0],Rn), note that

ẋ(t−) = A′(t−)x(t−) +A′
d(t

−)x(t− − r(t)) +B(t)u′(t−)

x(t+) = x(t−) +
∫ t+

t−
ẋ(τ ) dτ

= (I + μ(t)A′′(t))x(t−) + μd(t)A′′
d(t)x(t− − r(t))

+ μu(t)B(t)u′′(t)

ẋ(t+) = A′(t+)x(t+) +A′
d(t

+)x(t+ − r(t)) +B(t)u′(t+)

= A′(t+)((I + μ(t)A′′(t))x(t−)

+ μd(t)A′′
d(t)x(t− − r(t)) + μu(t)B(t)u′′(t))

+A′
d(t

+)x(t+ − r(t)) +B(t)u′(t+)

so that x(t+) = x(t−) if μ(t) = μd(t) = μu(t) = 0, i.e., if t /∈ (TN ∪
TNd ∪ TU). Another useful notation with indicators is x(t+i ) = x(t−i )
if ti /∈ (TN ∪ TNd ∪ TU); and

x(t+i ) = (I +A′′(ti))x(t−i ) +A′′
d(ti)x(t−i − r(t)) +B(t+i )u′′(ti)

if ti ∈ (TN ∩ TNd ∩ TU). The sets TN , TNd, TU , etc., are useful
to include the contribution of the impulses to the dynamics through
time. For instance, assume zero initial conditions, i.e., ϕ ≡ 0, then the
(forced) solution trajectory of (1.a) at t− may be expressed as

x(t−) =
∫ t−

0−
eA0(t−τ) [Ad(τ )x(t− τ (t)) +B(τ )u′(τ )] dτ

+
∑

ti∈TU(0,t)

eA0(t−ti)B(ti)u′′(ti).

The last right-hand side may also be denoted by using the sum over
the indicator I(TU(0, t)) as

∑
ti∈TU(0,t) e

A0(t−ti)B(ti)u′′(ti) or, alterna-
tively, it may be included in the integrand as eA0(t−τ)μu(τ )B(τ ) δ(τ )×
u′′(τ ) dτ by using the binary indicator function μu : R+

0 → {0, 1}. The
choice of each notation is made according to convenience criteria.
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3.2 Auxiliary homogeneous dynamic systems. It is now discussed how
the unique state and output trajectories x ∈ Ln

2e and y ∈ Lp
2e may

be equivalently built from three different homogeneous, i.e., unforced,
dynamic systems for each ϕ ∈ IC ([−r̄, 0],Rn), two being delay-free,
with one of them being in addition time-invariant, while the third
one is unforced (1.a). This allows to highlight the decomposition of
the trajectory solutions into parts and then to discuss stability results
based on different conditions and assumptions from (1) as well as the
compactness of the relevant operators associated with the trajectories.
The three auxiliary homogeneous systems are:

S1: żA0(t) = A0zA0(t); zA0(0) = z0 ∈ X ⊂ Rn

for any arbitrary constant matrix A0 ∈ Rn×n such that A′(t) =
A0 + Ã′(t); A(t) = A0 + Ã(t) with Ã′(t) = A′(t) − A0 (prescribed
after fixing A0) and Ã(t) = Ã′(t) +A′′(t).

S2: żA(t) = A(t)zA(t); zA(0) = z0 ∈ X ⊂ Rn

S3: ż(t) = A(t)z(t) + Ad(t)z(t− r(t)); z(0) = z0 ∈ X ⊂ Rn.

Note that S3 is the unforced system (1.a) and also a forced system
with the forcing term Ad(t)zA(t − r(t)). Also, (A(t) − A0)zA0(t) +
Ad(t)zA0(t− r(t)) is a forcing term to calculate the solution of S3 from
that of the homogeneous S1. Note that S1, S2 may be established
from a physical insight. In that way, S1 is an unforced delay-free
time invariant system which may be taken as a reference value for the
delay-free dynamics. For instance, the stability of the system (1.a)
may be formulated in terms of sufficiency conditions with respect to
a stability reference matrix A0 or A0 may be the delay-free average
delay-free dynamics in the case when A′(t) is slowly time-variant. S2
is an unforced delay-free, in general, time variant system which becomes
identical to the unforced (1.a) when the delayed dynamics is identically
zero for all time.
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3.3 Main result of Section 3. The following result holds concerning
the unique state/output trajectory of (1) from the auxiliary systems
S1, S2 on R+

0 with initial conditions

z(0−) = zA0(0−) = zA(0−) = ϕ0(0) + ϕ̃(0−)
z(0+) = zA0(0+) = zA(0+) = ϕ0(0) + ϕ̃(0+)

and S3 subject to z(t) ≡ ϕ(t) for all t ∈ [−r̄, 0] ∩ R+
0 with any

ϕ ∈ IC ([−r̄, 0],Rn) satisfying the above constraints at t = 0. The
following result holds:

Theorem 1. The unique state/output trajectories of S, equation (1),
on R+

0 such that z(t) ≡ ϕ(t) for t ∈ [−r̄, 0] ∩ R+
0 and r(t) ∈ [0, t + r̄]

are uniquely defined for all t ≥ 0, by any of the three sets of evolution
equations below:

(i) Evolution equation 1 (EE1) from S1.

(3.a) x(t−) = (SA0ϕ)(t) + (S′
A0x[t])(t−) + (Su

A0u)(t
−)

(3.b) = (SA0x̄0)(t) + (S
′
A0x[t])(t−) + (Su

A0u)(t
−)

(3.c) x(t+) = (SA0ϕ)(t) + (S′
A0x[t])(t+) + (Su

A0u)(t
+)

(3.d) = (SA0x̄0)(t) + (S
′
A0x[t])(t+) + (Su

A0u)(t
+)

(3.e) = (I + μ(t)A′′(t))x(t−) + μd(t)A′′
d(t)x(t− − r(t))

+ μu(t)B(t)u′′(t)

(3.f) y(t−) = (MA0ϕ)(t) + (M ′
A0x[t])(t−) + (Mu

A0u)(t
−)

(3.g) = (MA0x̄0)(t) + (M
′
A0x[t])(t−) + (Mu

A0u)(t
−)

(3.h) y(t+) = (MA0ϕ)(t) + (M ′
A0x[t])(t+) + (Mu

A0u)(t
+)

(3.i) = (MA0x̄0)(t) + (M
′
A0x[t])(t+) + (M

u

A0u)(t
+)

(3.j) = C(t)
(
(I + μ(t)A′′(t))x(t−) + μd(t)A′′

d(t)x(t− − r(t))

+ μu(t)B(t)u′′(t)
)

+ μu(t)D(t)u′′(t)δ(0)

where SA0 ∈ L(IC, Ln
2e), S′

A0 ∈ L(Ln
2e, L

n
2e), SA0 ∈ L(Lm

2 , L
n
2e), S

′
A0 ∈

L(Ln
2e, L

n
2e), S

u
A0 ∈ L(Lm

2e, L
n
2e), MA0 ∈ L(IC, Lp

2e), M
′
A0 ∈ L(Ln

2e, L
p
2e)
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and Mu
A0 ∈ L(Lm

2e, L
p
2e) are defined point-wise at t− via:

(4.a) (SA0ϕ)(t) := eA0t

(
x+

0 +
∫

I1t

e−A0τAd(τ )ϕ(τ − r(τ )) dτ
)
, x(0+)

= x+
0 = ϕ0(0) + ϕ̃(0+)

(4.b) (S′
A0x[t])(t−) := eA0t

[ ∫
I2t

e−A0τAd(τ )x(τ − r(τ )) dτ

+
∫ t−

0−
e−A0τ Ã(τ )x(τ ) dτ

+
∫ t−

r̄

e−A0τAd(τ )x(τ − r(τ ))

× [1(τ − r(τ ))(1(τ )− 1(τ − t))] dτ
]

(4.c) (SA0x̄0)(t) := eA0tx̄0;

x̄0 := x+
0 +

∫ r̄

0−
e−A0τAd(τ )ϕ(t−r(τ ))[1(τ )−1(τ−r(τ ))] dτ

(4.d) (S
′
A0x̄0)(t−) := eA0t

[ ∫ t−

0−
e−A0τ Ã(τ )x(τ ) dτ

+
∫

I2t

e−A0τAd(τ )x(t− r(τ )) dτ

−
∫

I′
1t

e−A0τAd(τ )x(τ − r(τ )) dτ

+
∫ t−

r̄

e−A0τAd(τ )x(τ − r(τ ))

× [1(τ − r(τ ))(1(τ )− 1(τ − t))] dτ
]

where It := (I1t ∪ I2t) ∩ R = (0,Min (r̄, t) ∩ R) is a real interval of
measure Min (r̄, t) for each t ≥ 0,

(4.e) I ′1t := [0, r̄] ∩R \ I1t = {τ ∈ R+
0 : r̄ ≥ τ > r(τ )}

(≡ I2t if 0 ≤ t ≤ r̄)
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I1t := {τ ∈ [0,Min (r̄, t)] ∩ R : τ ≤ r(τ )}
I2t := {τ ∈ [0,Min (r̄, t)] ∩ R : τ > r(τ )}

= [0,Min (r̄, t)] ∩R \ I1t

(4.f) (S
u

A0u)(t
−) :=

∫ t−

0−
eA0(t−τ)B(τ )u(τ ) dτ

=
∫ t−

0−
eA0(t−τ)B(τ )u(τ ) dτ

+
∑

ti∈TU(0,t)

e−A0(t−ti)B(ti)u′′(ti)

(4.g) (MA0ϕ)(t) := C(t)(SA0ϕ)(t);
(M ′

A0x[t])(t) := C(t)(S′
A0x[t])(t−)

(4.h) (MA0x̄0)(t) := C(t)(SA0x̄0)(t);

(M
′
A0x[t])(t−) := C(t)(S

′
A0x[t])(t−)

(4.i) (Mu
A0u)(t

−) := C(t)(Su
A0u)(t

−) +D(t)u′(t−)

and (S′
A0x[t])(t+), (S

′
A0x[t])(t+), (M ′

A0x[t])(t+), (M
′
A0x[t])(t+), (Su

A0u)
(t+) and (Mu

A0x[t])(t+) are defined similarly as their counterparts at t−

by replacing t− with t+ in the corresponding definitions.

(ii) Evolution equations 2 (EE2) from S2.

(5.a) x(t−) = (SAϕ)(t) + (S′
Ax[t])(t−) + (Su

Au)(t
−)

(5.b) x(t+) = (SAϕ)(t+) + (S′
Ax[t])(t+) + (Su

Au)(t
+)

= (I + μ(t)A′′(t))x(t−) + μd(t)A′′
d(t)x(t− − r(t))

+ μu(t)B(t)u′′(t)

(5.c) y(t−) = (MAϕ)(t−) + (M ′
Ax[t])(t−) + (Mu

Au)(t
−)

= C(t)((SAϕ)(t−)+(S′
Ax[t])(t−)+(Su

Au)(t
−))+D(t)u′(t−)

= C(t)x(t−) +D(t)u′(t−)

(5.d) y(t+) = (MAϕ)(t+) + (M ′
Ax[t])(t+) + (Mu

Au)(t
+)

= C(t)((SAϕ)(t+) + (S′
Ax[t])(t+) + (Su

Au)(t
+))
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+D(t)u′(t+) + μu(t)D(t)u′′(t)δ(0)

= C(t)((I + μ(t)A′′(t))x(t+) + μd(t)A′′
d(t)x(t+ − r(t))

+ μu(t)B(t)u′′(t)) +D(t)u′(t+) + μu(t)D(t)u′′(t)δ(0)

where the linear operators SA ∈ L(Ln
2e, L

n
2e), S′

A ∈ L(Ln
2e, L

n
2e),

Su
A ∈ L(Lm

2 , L
n
2e), MA ∈ L(IC, Lp

2e), M
′
A ∈ L(Ln

2e, L
p
2e) and Mu

A ∈
L(Lm

2 , L
p
2e) are defined point-wise at t− via:

(6.a) (SAϕ)(t−) := ΨA(t−, 0)
(
x+

0 +
∫ r̄

0−
ΨA(t−, τ )Ad(τ )ϕ(τ−r((τ ))

× (1(τ )−1(τ−t)) dτ )
)
,

x(0+) = ϕ0(0)+ϕ̃(0+)

(6.b) (S′
Ax[t])(t−) :=

[ ∫ t−

r̄

ΨA(t−, τ )Ad(τ )x(τ − r(τ ))1(t− τ ) dτ

+
∫

I2t

ΨA(t−, τ )Ad(τ )x(τ − r(τ )) dτ

−
∫ t−

I1t

ΨA(t−, τ )Ad(τ )x(τ − r(τ )) dτ
]

(6.c) (S
u

Au)(t
−) :=

∫ t−

0−
ΨA(t−, τ )B(τ )u(τ ) dτ

=
∫ t−

0−
ΨA(t−, τ )B(τ )u′(τ ) dτ

+
∑

ti∈TU(0,t)

ΨA(t−, ti)B(ti)u′′(ti)

(6.d) (S
u

Au)(t
+) := [the above definition (6.c) with the

replacement t− → t+]
= (I + μ(t)A′′(t))(Suu)(t−) + μu(t)B(t)u′′(t)

(6.e) (MAϕ)(t−) := C(t)(SAϕ)(t−);
(M ′

Ax[t])(t−) := C(t)(S′
Ax[t])(t−)

(6.f) (MAu)(t−) := C(t)(Su
Au)(t

−) +D(t)u′(t−)



ON IMPULSIVE TIME-VARYING SYSTEMS 93

(6.g) (MAu)(t+) := C(t)(Su
Au)(t

+) +D(t)u′(t+) + μu(t)D(t)u′′(t)

and (SAϕ)(t+), (S′
Ax[t])(t+), (M ′

Ax[t])(t+) and (Su
Au)(t

+) are defined
similarly as their counterparts at t− by replacing t− with t+ in the
corresponding definitions and the evolution operator ΨA(t−, 0) satisfies
the first-order differential system:
(7)

Ψ̇A(t−, 0) = A(t−)ΨA(t−, 0) = A′(t−)ΨA(t−, 0) with ΨA(0, 0) = I;
ΨA(t−, τ ) = 0 for all τ > t ≥ 0

and it is defined explicitly as follows:

(8.a) ΨA(t−, 0) = ΨA0(t, 0)
[
I +

∫ t−

0−
ΨA0(0, τ )Ã(τ )ΨA0(τ, 0) dτ

]

(8.b) = ΨA0(t, 0)
[
I +

∫ t−

0−
ΨA0(0, τ )Ã′(τ )ΨA0(τ, 0) dτ

]

+
∑

ti∈TN(0,t)

ΨA0(0, ti)A′′(ti)ΨA0(t−i , 0) for t ≥ 0

with Ã(t) = A(t) − A0 = Ã′(t) + A′′(t) and ΨA0(t, τ ) := eA0(t−τ), for
all t and τ , is a C0-semigroup of infinitesimal generator A0, which is
the evolution operator of S1, and

(9) ΨA(t+, 0) = (I + μ(t)A′′(t))ΨA(t−, 0).

(iii) Evolution equations 2 (EE3) from S3.

(10.a) x(t−) = (Sϕ)(t) + (Suu)(t−)

(10.b) x(t+) = (Sϕ)(t+) + (Suu)(t+)
= (I + μ(t)A′′(t))x(t−) + μd(t)A′′

d(t)x(t− − r(t))
+ μu(t)B(t)u′′(t)

(10.c) y(t−) = (Mϕ)(t−) + (Muu)(t−)

(10.d) y(t+) = (Mϕ)(t+) + (Muu)(t+)
= C(t)x(t+) +D(t)(u′(t) + μu(t)u′′(t)δ(0))
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where the linear operators S ∈ L(IC, Ln
2e), Su ∈ L(Lm

2 , L
n
2e), M ∈

L(IC, Lp
2e) and Mu ∈ L(Lm

2 , L
p
2e) are defined point-wise via:

(11.a) (Sϕ)(t−) := T (t−, 0)x0 +
∫ 0+

−r̄

T (t−,−τ )Ad(τ + r(τ ))ϕ(τ ) dτ,

x0 = x(0+) − ϕimp(0+) = ϕ0(0) + ϕ̃(0+)

(11.b) (Sϕ)(t+) := T (t+, 0)x0 +
∫ 0+

−r̄

T (t+,−τ )Ad(τ + r(τ ))ϕ(τ ) dτ

= (I + μ(t)A′′(t))(Sϕ)(t−) + μd(t)A′′
d(t)x(t− − r(t))

(11.c) (Suu)(t−) :=
∫ t−

0−
T (t−, τ )B(τ )u(τ ) dτ

=
∫ t−

0−
T (t−, τ )B(τ )u′(τ ) dτ+

∑
ti∈TU

T (t−, ti)B(ti)u′′(ti)

(11.d) (Suu)(t+) :=
∫ t+

0−
T (t+, τ )B(τ )u(τ ) dτ

=
∫ t−

0−
T (t+, τ )B(τ )u′(τ ) dτ

+
∑

ti∈TU

T (t+, ti)B(ti)u′′(ti) + μu(t)B(t)u′′(t)

= (I + μ(t)A′′(t))(Suu)(t−) + μu(t)B(t)u′′(t)

(11.e) (Mϕ)(t−) := C(t)(Sϕ)(t−); (Mϕ)(t+) := C(t)S(ϕ)(t+)

(11.f) (Mu)(t−) := C(t)(Suu)(t−) +D(t)u′(t−)

(11.g) (Mu)(t+) := C(t)(Suu)(t+) +D(t)(u′(t+) + μu(t)u′′(t)δ(0))

= C(t)[(I + μ(t)A′′(t))(Suu)(t−) + μu(t)B(t)u′′(t)]

+D(t)(u′(t+) + μu(t)u′′(t)δ(0))

= C(t)
[∫ t−

0−
T (t+, τ )B(τ )u′(τ ) dτ
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+
∑

ti∈TU

T (t+, ti)B(ti)u′′(ti) + μu(t)B(t)u′′(t)

+ μu(t)B(t)u′′(t)
]

+D(t)(u′(t+) + μu(t)u′′(t)δ(0))

and T (t, 0) is an almost everywhere time-differentiable evolution oper-
ator that satisfies the differential system:

(12.a)

Ṫ (t−, 0) = A′(t−)T (t−, 0) +Ad(t−)T (t− − r(t), 0)

Ṫ (t+, 0) = A(t+)T (t+, 0) +Ad(t+)T (t+ − r(t), 0)

= (A′(t+) + μ(t)A′′(t+))T (t+, 0)

+ (A′
d(t

+) + μd(t)A′′
d(t))T (t+ − r(t), 0)

with T (0, 0) = I; T (t−, τ ) = 0 for all τ > t ≥ 0

and it is defined explicitly as follows for t ≥ 0:

(12.b) T (t−, 0) = ΨA0(t, 0)
[
I +

∫ t−

0−
ΨA0(0, τ )Ã(τ )T (τ, 0) dτ

+
∫ t−

0−
ΨA0(0, τ )Ad(τ )T (τ − r(τ ), 0)1(t− τ ) dτ

]

= ΨA0(t, 0)
[
I +

∫ t−

0−
ΨA0(0, τ )Ã′(τ )T (τ, 0) dτ

+
∫ t−

0−
ΨA0(0, τ )A′

d(τ )T (τ − r(τ ), 0)1(t− τ ) dτ
]

+
∑

ti∈TN(0,t)

ΨA0(t, ti)A′′(ti)T (t−i , 0)

(12.c) +
∑

ti∈TNd(0,t)

ΨA0(t, ti)A′′
d(ti)T (t−i − r(ti), 0)

(12.d) = ΨA(t−, 0)+
∫ t−

0−
ΨA(t−, τ )Ad(τ )T (τ−r(τ ), 0)1(t−τ )dτ

(12.e) = ΨA(t−, 0) +
∫ t−

0−
ΨA(t−, τ )A′′

d(ti)T (t−i − r(ti), 0)
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and
(13) T (t+, 0) = (I + μ(t)A′′(t))T (t−, 0) + μd(t)A′′

d(t)T (t− − r(t), 0).

Proof [Part (i)]. Note that ΨA0(t, τ ) = eA0(t−τ), for all t, τ is a (C0-
semigroup) evolution operator for S1 with infinitesimal generator A0

possessing the well-known properties ΨA0(t, t) = I and ΨA0(t, τ ) =
ΨA0(t − τ ) = Ψ−1

A0(τ, t) = eA0(t−τ) and f(t) = (A(t) − A0)x(t) +
Ad(t)x(t−r(t))+B(t)u(t) is a forcing term in (1.a) with respect to the
homogeneous system S1 for any ϕ ∈ IC([−r̄, 0],Rn); i.e., x(t) ≡ zA0(t)
for any real bounded x(0+) = zA0(0) = x0 = ϕ0(0+) + ϕ̃(0) if f ≡ 0
and ϕ(t) = 0, t ∈ [r̄, 0). Thus, the unique state and output solution
trajectories of (1) satisfy the integral identities for t > 0:

(14.a) x(t−) = eA0t

[
x+

0 +
∫ t−

0−
e−A0τf(τ ) dτ

]
;

y(t−) = C(t)x(t−) +D(t)u′(t)

(14.b) x(t+) = eA0t

[
x+

0 +
∫ t+

0−
e−A0τf(τ ) dτ

]

= (I + μ(t)A′′(t))x(t−) + μd(t)A′′
d(t)x(t− − r(t))

+ μu(t)B(t)u′′(t)

(14.c) y(t+) = C(t)x(t+) +D(t)(u′(t) + μu(t)u′′(t)δ(0))

since u(t−) = u′(t−) and u(t+) = u′(t+) + μu(t)u′′(t)δ(0). Equations
(14.a) are directly obtained by constructing the solution of (1.a) via the
homogeneous auxiliary system S1 and the use of (1.c) from the integral

equalities
∫ t−

0− (.) =
∫ r̄

0−(.) +
∫ t−

r̄
(.) if t ≥ r̄ and

∫ t−

0− (.) =
∫

I1t
(.) +

∫
I2t

(.)
for all t ≥ 0 with I1t and I2t being connected real intervals if r :
[0,Min (r̄, t)] → R+

0 is continuous, and
∫ t−

0− (.) =
∫

I1t
(.) +

∫
I′
1t

if
0 ≤ t ≤ r̄ by equating x(t) ≡ ϕ(t) for all t ∈ [r(t) − r̄, 0] since∫ t

r̄
(.) is annihilated for all 0 ≤ τ ≤ r(τ ) for any given function ϕ ∈

IC ([−r̄, 0],Rn) since the function 1(τ )(1(τ )− 1(τ − t)) becomes zero.
The proofs concerning (14.b), (14.c) follow directly from calculating

x(t+) = x(t−) +
∫ t+

t− ẋ(τ ) dτ via (14.a) and (1.b), the given function of
initial conditions.
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[Part (ii)]. By comparing the auxiliary systems S2 and S1 with
Ã(t) = A(t)−A0 = Ã′(t)+A′′(t). Since S2 has a forcing term Ã(t)zA(t)
with respect to S1, the unique state-trajectory solution of S2 for t > 0
for any z+

0 = zA(0+) = ϕ0(0+) + ϕ̃(0) is given by

(15)

zA(t−) = ΨA(t−, 0)z+
0

= ΨA0(t−, 0)z+
0 +

∫ t−

0−
ΨA0(t, τ )Ã(τ )z(τ ) dτ

= ΨA0(t−, 0)
(
I +

∫ t−

0−
ΨA0(0, τ )Ã(τ )Ψ(τ, 0) dτ

)
z+
0

since ΨA0(t, τ ) = ΨA0(t, 0)ΨA0(τ, 0) = eA0(t−τ) for any t, τ provided
that zA(τ ) = ΨA(τ, 0)z+

0 is the unique solution of S2 on [0, t) for any
z+
0 ∈ Rn if and only if (8) holds for t ≥ 0 with ΨA(t, τ ) ≡ 0 and

ΨA(t, t) = I for all τ > t ≥ 0. Direct calculation with (8) yields

Ψ̇A(t−, 0) = A0

{
ΨA0(t, 0)

[
I +

∫ t−

0−
ΨA0(0, τ )Ã(τ ) dτ

]}
+Ã(t)Ψ(t−, 0)

= (A0 + Ã(t))z(t) = A(t)Ψ(t−, 0)z+
0

since Ψ̇A0(t, τ ) = A0ΨA0(t, τ ) = A0e
A0(t−τ), for all t, τ , provided that

(8) holds, which satisfies the differential system describing S2. On the
other hand,

(16)

zA(t+) = ΨA(t+, 0)z+
0 = ΨA(t−, 0)z+

0

+
( ∫ t+

t−
A′′(τ )δ(τ − t)ΨA(τ, 0) dτ

)
z+
0

= (I + μ(t)A′′(t))ΨA(t−, 0)z+
0

= (I + μ(t)A′′(t))zA(t−)

which holds for any z+
0 if and only if (9) holds. It has been proved

that the evolution operator of S2 satisfies (8), (9). Now, since S3 has
a forcing term Ad(t)z(t − r(t)) with respect to S2, the unique state
trajectory solution of S3 for any given ϕ ∈ IC ∈ ([−r̄, 0],Rn), which is
also the unique solution of the homogeneous equation (1.a) for such an
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initial condition for all t > 0, is by construction:

(17.a) z(t−) = ΨA(t−, 0)z+
0 +

∫ t−

0−
ΨA(t−, τ )Ad(τ )z(τ − r(τ )) dτ

= ΨA(t−, 0)z+
0 +

∫ t−

0−
ΨA(t−, τ )A′

d(τ )z(τ − r(τ )) dτ

+
∑

ti∈TNd

ΨA(t−, ti)A′′
d(ti)z(t−i − r(ti))

(17.b) z(t+) = ΨA(t+, 0)z+
0 +

∫ t+

0−
ΨA(t+, τ )Ad(τ )z(τ − r(τ )) dτ

= ΨA(t+, 0)z+
0 +

∫ t+

0−
ΨA(t+, τ )A′

d(τ )z(τ − r(τ )) dτ

+
∑

ti∈TNd

ΨA(t+, ti)A′′
d(ti)z(t+i − r(ti))

(17.c) = (I+μ(t)A′′(t))z(t−)+
∫ t+

t−
ΨA(t+, τ )A′′

d(τ )z(τ−r(τ )) dτ
= (I + μ(t)A′′(t))z(t−) + μd(t)A′′

d(t)z(τ − r(τ )) dτ.

Now, from the integral identity (
∫ r

0
(.)−) +

∫
I2t

(.) =
∫

I1t
(.) +

∫
I2t

(.),
it follows that the homogeneous solution of S3, i.e., that of (1.a) for
u ≡ 0, for t ≥ 0 for any given ϕ ∈ IC ∈ ([−r̄, 0],Rn) is:

z(t−) = (SAϕ)(t−) + (S′
Az[t])(t

−); z(t+) = (SAϕ)(t+) + (S′
Az[t])(t

+),

while that of S2 is zA(t−) = (SAz
+
0 )(t−); zA(t−) = (SAz

+
0 )(t+) with

z+
0 = zA(0+) = ϕ0(0) + ϕ̃(0+). Then, the unique state-trajectory

solution of S from (1.a) is then uniquely given by construction by (5.a),
(5.b) subject to (6.a) (6.d) since

∑
ti∈TU(0,t)

ΨA(t−, ti)B(ti)u′′(ti) =
∑

ti∈TU

ΨA(t−, ti)B(ti)u′′(ti)

since ΨA(t, τ ) = 0 for τ > t. Combining (1.b) with (5.a), (5.b) yields
directly the output-trajectory solution (5.c), (5.d) on [0,∞) with the
operator definitions (6.e) (6.g) and the replacements t− → t+ referred
to previously.
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[Part (iii)]. If the state-trajectory solution satisfies (10.a) with z(t) ≡
ϕ(t) for any given ϕ ∈ IC([−r̄, 0],Rn) satisfying the corresponding
equations (11). Then, for any z(0+) = z+

0 = ϕ0 + ϕ̃(0+) and all t > 0,

(18)

ż(t−) = Ṫ (t−, 0)z+
0 +

∫ 0−

−r̄

Ṫ (t,−τ )Ad(τ + r(τ ))ϕ(τ ) dτ

= A(t−)
[
T (t−, 0)z+

0 +
∫ 0−

−r̄

T (t−,−τ )Ad(τ + r(τ ))ϕ(τ ) dτ
]

+Ad(t−)
[
T (t− − r(t))z+

0 +
∫ 0−

−r̄

T (t− − r(t) − τ, 0)

× Ad(τ + r(τ ))ϕ(τ ) dτ
]

= A(t−)z(t−) +Ad(t−)z(t−)

by using the definition of T (t−, 0) in (12) and T (t, τ ) = 0 for τ > t.
Similarly, the definition of T (t+, 0) and a similar derivation as that of
(18) yield:

(19) ż(t+) = A(t+)z(t+) +Ad(t+)z(t+ − r(t))

and direct calculation yields

z(t+) = (Sϕ)(t+) = z(t−) +
∫ t+

t−
ż(τ ) dτ

= (I + μ(t)A′′(t))(Sϕ)(t−) + μd(t)A′′
d(t)(Sϕ)(t− − r(t)).

Then, the state trajectory solution of S3, and thus that of S, equation
(1.a), is satisfied on (0,∞) for u ≡ 0 by (10.a), (10.b) via the corre-
sponding definitions of the operators (Sϕ)(t−), (Sϕ)(t+), T (t−, 0) and
T (t+, 0) via (11), (12) provided that z(t) ≡ ϕ(t), t ∈ [−r̄, 0], for all
ϕ ∈ IC ([−r̄, 0],Rn).

The forced state-trajectory solution (10.a), (10.b) follows by direct
construction from the homogeneous solution of S3. The output trajec-
tory solution (10.c), (10.d) follows directly from (1.b) via (10.a), (10.b)
by replacing the operators S ∈ L(IC, Ln

2e) and Su ∈ L(Lm
2 , L

n
2e) by

M ∈ L(IC, Lp
2e) and Su ∈ L(Lm

2 , L
p
2e) defined in (11), respectively.
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4. Stability. The following result is concerned with sufficient
conditions for global exponential stability (GES) of the System S (via
obtaining related properties for the auxiliary systems S1, S2), which
implies global asymptotic stability (GAS) in the sense that the state
trajectory of the unforced system vanishes exponentially, respectively,
asymptotically with time for any ϕ ∈ IC ([−r̄, 0],Rn) for any bounded
z(0+) ≡ ϕ(0+) = ϕ0(0) + ϕ̃(0+). Such conditions also imply the global
stability (GE) of the forced system S and that its output y ∈ Lp

2, for
any input u ∈ Lm

2 , and that y ∈ Lp
2 ∩ Lp

∞ if u ∈ Lm
2 ∩ Lm

∞, i.e., when u
is square-integrable but not impulsive. The conditions concerning the
“smallness” of the absolute values of certain parameters referred to in
the result statement are then made explicit in the corresponding parts
of the proof.

4.1 Main stability result.

Theorem 2. The following items hold : (i) Let A0 be a stability
matrix with fundamental matrix of the associated differential system
being the evolution C0-semigroup ΨA0(t, τ ) satisfying ‖ΨA0(t, τ )‖ ≤
k0e

−ρ0(t−τ) for all t, τ , some real (norm-dependent) constants k0 ≥ 1
and all real constants ρ0 ∈ (0, ρ∗) where (−ρ∗) < 0 is the stability
abscissa of A0 (i.e., the largest real part of its eigenvalues. If the
eigenvalue of largest real part is simple then ρ ∈ (0, ρ∗]). Thus, S2
is GES if 0 /∈ TN and

(20) ρ0 ≥ ρ0 := Sup
t∈R+

0

(
k0

t

[ ∫ t−

0−
‖Ã′(τ )‖ dτ +

∑
ti∈TN(0,t)

‖A′′(ti)‖
])

for any (vector-induced) matrix norm ‖(.)‖.
(ii) Assume that 0 /∈ TN and that there exist finite nonnegative real

constants a := ess Supt∈R+
0
(‖Ã′(t)‖),

b ≥ Sup
t∈R+

0

(
1
t

∑
ti∈TN(0,t)

‖A′′(ti)‖
)
.

Then, S2 is GES if ρ0 > k0(a+ b).
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(iii) Assume that A′(t) has uniformly bounded entries on [0,∞) and
eigenvalues satisfying Re [λi(A′(t)) ≤ −σ < 0], for all t ≥ 0, and that
positive real constants T1 > 0 and T > 0 exist such that :

• Any two consecutive ti, ti+1 ∈ TN satisfy ti+1 − ti ≥ T1, i.e.,
TN(t, t+ T1) contains at most a ti ∈ TN (otherwise, it is empty), for
all t ≥ 0.

• Any two consecutive ti, ti+1 ∈ TD satisfy ti+1 − ti ≥ T2, i.e.,
TD(t, t+ T2) contains at most a ti ∈ TD (otherwise, it is empty), for
all t ≥ 0.

• Real constants α0 and α1 exist such that
∫ t−+T

t− ‖Ȧ′(τ )‖ dτ ≤
α1T + α0, for all t ≥ 0. Then, S2 is GES for all real constants
α1 ∈ [0, α∗

1) and ε ∈ [0, ε∗), some sufficiently small α0, α∗
1 ∈ R+

and ε ∈ R+ where ε := Max (ε1 + ε2, ε3) with

ε1 := Sup
t∈S1(t,t+T )

(
ln
zT
A(t+)P (t−)zA(t+)
zT
A(t−)P (t−)zA(t−)

)(21)

≤ ε∗1 := Sup
t∈S1(t,t+T )

(
ln
λmin[(I + μ(t)A′′T (t))P (t−)(I + μ(t)A′′(t))]

λmax(P (t−))

)

ε2 := Sup
t∈S2(t,t+T )

(
ln
zT
A(t)P (t+)zA(t)
zT
A(t)P (t−)zA(t)

)

≤ ε∗2 := Sup
t∈S2(t,t+T )

(
ln
λmin(P (t+))
λmax(P (t−))

)

ε3 := Sup
t∈S3(t,t+T )

(
ln
zT
A(t+)P (t+)zA(t+)
zT
A(t−)P (t−)zA(t−)

)

≤ ε∗3 := Sup
t∈S3(t,t+T )

(
ln
λmin[(I+μ(t)A′′T (t))P (t+)(I+μ(t)A′′(t))]

λmax(P (t−))

)

where Si(t, t+ T ), i = 1, 2, 3, are the empty or nonempty sets of time
instants of impulses, jump discontinuities or combined impulses and
jump discontinuities in the real interval (t, t+ T ] defined as :

(22)
S1(t, t+ T ) := TN(t, t+ T ) ∩ TD(t, t+ T );
S2(t, t+ T ) := TD(t, t+ T ) ∩ TN(t, t+ T );
S3(t, t+ T ) := TN(t, t+ T ) ∩ TD(t, t+ T ),
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and P (t) = PT (t) > 0 is a real matrix function P : R+
0 → Rn×n that

satisfies a Liapunov matrix equation:
(23)

A′T (t)P (t) + P (t)A′(t) = −I for t /∈ TD

A′T (t)P (t+) + P (t+)A′(t) = A′T (t−)P (t−)
+ P (t−)A(t−) = −I for t ∈ TD.

(iv) If the growing rate condition on ‖A′(t)‖ in (iii) is replaced with

∫ t−+T

t−
‖Ȧ′(τ )‖ dτ ≤ α1T + α0 + α′

0, for all t ≥ 0,

where

α′
0 := Sup

t∈R+
0

( ∑
t∈TD(t,t+T )

(‖A′(τ+) −A′(τ−)‖)
)
,

then S2 is GES for all real α1 ∈ [0, ᾱ∗
1), some ᾱ∗

1 ∈ R+ if ε ∈ [0, ε∗),
for some sufficiently small (α0 +α′

0), ᾱ∗
1 ∈ R and ε∗ ∈ R+ where ε, εi,

i = 1, 2, 3, are defined in (iii).

(v) Items (iii) (iv) still hold under similar conditions if

(24)
∫ t−+T

t−
‖Ȧ′(τ )‖2 dτ ≤ α2

1T + ᾱ0, for all t ≥ 0,

respectively,

(25)
∫ t−+T

t−
‖Ȧ′(τ )‖2 dτ ≤ α2

1T + ᾱ0 + ᾱ′
0, for all t ≥ 0,

where ᾱ′
0 := Supt∈R+

0
(
∑

t∈TD(t,t+T ) ‖A′(τ+)−A′(τ−)‖2) provided that
α1 ∈ [0, ᾱ∗

1), respectively α1 ∈ [0, ᾱ′∗
1 ), with ᾱ∗

1, respectively ᾱ∗′
1 , and

α0, respectively (ᾱ0 + ᾱ′
0) being sufficiently small.

(vi) Items (iii), (iv) still hold if ‖Ȧ′‖ ∈ Ln×n
2 .

(vii) Assume that A′(t) is locally integrable for all t ≥ 0 and that
for some integers n0, 1 ≤ n0 ≤ n, and n′

0, there is an n0 × n′
0 matrix

function N(t) such that the Liapunov matrix equation

(26) A′T (t)P (t) + P (t)A′(t) = −N(t)NT (t) − q0I



ON IMPULSIVE TIME-VARYING SYSTEMS 103

holds for all real t ∈ R+
0 , some real square n-matrix P = PT > 0 and

some real q0 ∈ R+
0 . Then, S2 is GES if A′′(ti), ti ∈ TN , is uniformly

bounded, the pair [A′(t), NT (t)] is uniformly completely observable if
q0 = 0 (not required if q0 > 0) and

(27) ∏
ti∈TN(t,t+T )

[
zT
A(t−i )(I+A′′T (ti))P (I+A′′(ti))zA(t−i )

zT
A(t−i )PzA(t−i )

]
<

λmax(P )
α

where αI is a lower-bound matrix of the observability Grammian
G(t, t+ T ) of [A′(t), NT (t)], i.e., G(t, t+ T ) − αI ≥ 0.

(viii) Assume a real sequence St ≡ {ti}∞1 defined by St := {ti ∈ R+
0 :

ti+1 ≥ T∗ > 0}, some real fixed T∗ > 0. Thus, (vii) still holds if the
subsequent Liapunov matrix inequality is satisfied :

A′T (t)P (t) + P (t)A′(t) ≤ −N(t)NT (t) − q0(ti)I,
for all t ∈ [ti, ti+1)

with the real sequence {q0(ti)}∞1 satisfying q0(ti) ≥ q0 > 0 for all real
intervals [ti, ti+1), ti ∈ Si, provided that (27) holds where [A′(t), NT (t)]
is not uniformly completely observable.

(ix) The auxiliary system S3, and then the unforced S (1.a), is GES
for all ϕ ∈ IC ([−r̄, 0],Rn) if S2 is GES satisfying all the conditions of
(iii), or, alternatively, those of (ix), (v) or (vi), for some positive real
constant T , with 0 < q0 < (4σ2

A/α
4
A) and, furthermore,

(a) ‖A′T
d (h−1(t))A′

d(h
−1(t))‖ is finite for all t ∈ CD ∪ DD where

h(t) := t− r(t), CD is the set of zero measure where the delay function
r : R+

0 → R+
0 is continuous nondifferentiable with respect to time, DD

is the set of zero measure where it is discontinuous,

(28) (b)
∫ 1/t−2

1/t−1

‖A′
d(τ )‖2(1 − ṙ(τ )) dτ ≤ γ′(t2 − t1) + γ′0(t1, t2)

for all t2 ≥ t1 > 0 such that (CD ∪ DD) ∩ [t1, t2) = ∅ for some
nonnegative finite real constants γ′(t2 − t1) and γ′0(t1, t2). If [t1, t2) ∩
TN = ∅, then γ′0(t1, t2) = 0.

(29) (c) e−qT

( ∏
ti∈D(t,t+T )

[λ(ti)]
)
< 1; λ(ti) :=

V ′(t+i )
V ′(t−i )
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where q := q0(1− (α4
Aq0/4σ

2
A))−Supt/∈D (‖A′T

d (h−1(t))A′
d(h

−1(t))‖) >
0 for some real constant q0 ≥ q0 ≥ 0 with sets D(t, t+ T ) := TN(t, t+
T ) ∪ TNd(t, t+ T ) ∪ TD(t, t+ T ) ∪DD(t, t+ T ) and DD(t, t+ T ) :=
DD(t) ∩DD(t, t+ T ) of discontinuities, and

(30)

V ′(t) := zT (t)P (t)z(t) +
∫ t−

t−−r(t)

zT (τ )AT
d (h−1(τ ))Ad(h−1(τ ))z(τ ) dτ.

(x) Assume that there exist a matrix function N(t) and q0 ∈ R+
0

satisfying q0 < (4σ2
A/α

4
A) such that the Liapunov matrix inequality

below is satisfied :

(31) A′T (t)P (t) + P (t)A′(t) ≤ − q0I −N(t)NT (t)

with A′(t) being locally integrable and A′′(t). Assume also that the
matrix function A′

d : R+
0 → Rn×n satisfies the same conditions as in

(ix) and (28) of (ix) is fulfilled. Then S3, and then the unforced (1.a)
of S, is GES for all ϕ ∈ IC ([−r̄, 0],Rn).

(xi) Assume that A′(t) is locally integrable, A′′(t) is uniformly
bounded and, for some positive real constants α, β, β ≥ α, and, in
addition,

(32) βI ≥
∫ t−

0−
TT (t, τ )N(τ )NT (τ )T (t, τ ) dτ ≥ αI, for all t ≥ 0,

for the case when the Liapunov matrix equation (26) holds with q0 = 0.
Then S3, and then the unforced S, is GES for all ϕ ∈ IC ([−r̄, 0],Rn)
while S is GE for all ϕ ∈ IC ([−r̄, 0],Rn) and u ∈ Lm

2 and, furthermore,

(33)
αϑ′t(0)
λmax(P )

> ε0;
(

1 − αϑ′T (t)
λmax(P )

) ∏
ti∈D(t,t+T )

[λ(ti)] < 1 − ε0

with

(34)

0 < ϑ′T (t) ≤ e−q0T ; λ(ti) :=
zT (t+i )Pz(t+i )
zT (t−i )Pz(t−i )

;

0 < ε0 ≤ αkϕ Sup
t∈R+

0

(‖T (t, 0)‖2
2ϑ

′
T (t)

λmax(P )

)
< 1
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for some real constant kϕ, dependent on the initial conditions, and for
all t ≥ 0.

(xii) Assume that A′(t) is locally integrable, A′′(t) is uniformly
bounded and [A′(t), NT (t)] is uniformly completely observable, i.e., for
some positive real constants α, β, β ≥ α, such that
(35)

βI ≥
∫ t−+T

t−
TT (t, τ )N(τ )NT (τ )T (t, τ ) dτ ≥ αI, for all t ≥ 0.

Then S3, and then the unforced S, is GES for all ϕ ∈ IC ([−r̄, 0],Rn)
while S is GE for all ϕ ∈ IC ([−r̄, 0],Rn) and u ∈ Lm

2 if the Liapunov
equation (26) and (33), (34) hold with q0 = 0.

4.2 Proof of Theorem 2. (i) One gets directly from the differential
system defining S2:

(36) ‖zA(t+)‖ ≤ k0

[
e−ρ0t‖zA(0−)‖ +

∫ t+

0−
e−ρ0τ‖Ã(τ )‖ ‖zA(τ )‖ dτ

]

for all t ≥ 0 and any vector norm ‖m‖ and associated induced matrix
norm

‖M‖ = Sup
‖m‖≤1

(‖Mm‖
‖m‖

)
= Sup

‖m‖=1

(‖Mm‖),

for all m ∈ Rn and M ∈ Rn×n,

since ‖ΨA0(t, τ ) ≤ k0e
−ρ0(t−τ) with some real constants k0 ≥ 1 (norm-

dependent) and ρ0 > 0 (since A0 is a stability matrix). It follows from
(36) that

(37) v(t) := eρ0τ‖zA(t+)‖ ≤ k0

[
‖zA(0−)‖ +

∫ t+

0−
‖Ã(τ )‖v(τ ) dτ

]
,

for all t ≥ 0. Using Gronwall’s lemma [8], in (37):

(38) ‖zA(t+)‖ ≤ e−ρ0tv(t) ≤ k0

[
‖zA(0−)‖e−(ρ0t−

∫ t+

0− ‖Ã(τ)‖ dτ)
]
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for all t ≥ 0, but

(39)
∫ t+

0−
‖Ã(τ )‖ dτ ≤

∫ t+

0−
‖Ã′(τ )‖ dτ +

∑
ti∈TN

‖A′′(ti)‖

and S2 is GES from(32) for all ϕ ∈ IC ([−r̄, 0],Rn) if ρ0 > ρ0, which
is finite since 0 /∈ TN which implies A′′(0) = 0.

(ii) ‖zA(t+)‖ ≥ k0‖zA(0−)‖e−(ρ0−k0(a+b)t) for all t ≥ 0 which yields
directly the result.

(iii) Since A′(t) is a stability matrix for any fixed t ≥ 0, then
the Liapunov matrix equation A′T (t)P (t) + P (t)A′(t) = −q0I has a
unique solution P (t) := q0

∫ ∞
0
eA′T (τ)eA′(τ) dτ for all t /∈ TN and

to the left limit t− of any t ∈ TN , and ‖eA′(t)τ‖ ≤ αAe
−σAτ ,

some (norm-dependent) real constant αA ≥ 1 and all real constant
σA ∈ [0, σ) (σA ∈ [0, σ) if the eigenvalue with largest real part of
A(t) is simple). Thus, note that

∫ t

0
‖eA′(τ)τ‖ dτ ≤ (αA/σA). If

αA is related to the l2-matrix norm ‖P (t)‖2 = λmax(P (t)). Then,
‖P (t−)‖2 = λmax(P (t)) ≤ β2 := (q0α2

A/2σA). Taking time-derivatives
within any open neighborhood (t− 2ε, t− ε) of t /∈ TD, one gets:

(40)

A′T (t−)Ṗ (t−)+ Ṗ (t−)A′(t−) = −Q(t) := Ȧ′T (t−)P (t−)+P (t−)Ȧ′(t−)

so that, since A′(t) is a stability matrix,

(41)
Ṗ (t−) :=

∫ ∞

0

eA′T (τ)(Ȧ′T (t−) + P (t−)A′(t−))eA′(τ) dτ,

for all t /∈ TD.

From (40), (41),

(42)

‖Ṗ (t−)‖2 ≤
∫ t

0

‖eA′(t−)τ‖2
2‖Q(t−)‖2 dτ ≤ β‖Ȧ′(t)‖2, for all t ≥ 0,

with β := (α2
Aβ2/σA) = (q0α4

A/2σ
2
A) and, for any real 0 < β1 ≤

λmin(P ), one has

(43) 0 < β1 ≤ λmin(P ) ≤ β2 ≤ q0α
2
A

2σA
.
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Then, along the state trajectory of S2, the Liapunov function candi-
date V (t, zA(t)) := zT

A(t)P (t)zA(t), denoted by simplicity as V (t) in
what follows, is time-differentiable for all t ∈ (ti, ti+1) with ti, ti+1,
being two consecutive elements in TN . For all t ∈ TN ∪ TD, one
has V (t+) − V (t−) = zT

A(t+)P (t+)zA(t+) − zT
A(t−)P (t−)zA(t−) with

P (t+) = P (t) = P (t−) if t ∈ TN ∪ TD; P (t+) �= P (t−) if t ∈ TD,
zA(t+) �= zA(t−) if t ∈ TN . Taking time-derivatives of V (t) in an open
neighborhood of t /∈ TN and using (43), one gets:

(44)
V̇ (t) = −‖zA(t)‖2

2 + zT
A(t)Ṗ (t)zA(t)

= − (β−1
2 V (t) − ββ−1

1 ‖Ȧ′(t)‖2)V (t)

for all t /∈ TN ∪TD and, from (23) and ti+1 − ti ≥ T1, for all ti ∈ TN ,
one has:
(45)

∞ > V (0−) ≥ V (t− + T ) ≥ exp[−(β−1
2 − ββ−1

1 α1)T ]

× exp(ββ−1
1 α0)

∏
ti∈TN∪TD

∏
ti∈TN∪TD

[
V (t+i )
V (t−i )

]
V (t−)

so that V (t− + T ) ≤ e−ε′TV (t−) → 0 as t → ∞. Thus, the candidate
is a Liapunov function provided that

(46) 0 < ε′ := (β−1
2 − ββ−1

1 ε)T − ββ−1
1 α0 − ε

such that e−ε ≥ ∏
ti∈TN∪TD [V (t+i )/V (t−i )] so that, for some real

constant ε > 0,

(47) α1 :=
β1

ββ2
− 1
T

(
(ε+ ε′)β1

β
+ α0

)

is nonnegative for any prefixed real constant ε′ with 0 < ε′ < Min (1−ε,
(T/β2)−ε) provided that ε ∈ [0, ε∗), Max (ε∗, ε′) < (T/β2), α1 ∈ [0, α∗

1)
with

(48)
α0 ≤ T

β2
− (ε∗ + ε′)

β1

β
;

α∗
1 :=

4σ3
A Inft≥0 [λmin(P (t−))]

q20 α
6
A
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(iv) The proof is similar to that of (iii) but now the effect of jump
discontinuities at TD is taken into account through impulses in Ȧ′(t)
via the replacement α0 → α0 + α′

0 to evaluate the upper-bound of∫ t−+T

t− ‖Ȧ′(τ )‖ dτ . Thus, ε∗ = ε∗1, and
∏

ti∈S1(t,t+T )[V (t+i )/V (t−i )] is
replaced with

∏
ti∈TN(t,t+T )[V (t+i )/V (t−i )].

(v) The part of the proof concerned with condition (24) is as follows
from Schwartz’s inequality:

(49)

∫ t−+T

t−
‖Ȧ′(τ )‖ dτ ≤

( ∫ t−+T

t−
‖Ȧ′(τ )‖2 dτ

)1/2√
T

≤ (α2
1T

2 + ᾱ0T )1/2 ≤ α1T +
√
ᾱ0T

so that

(50)

∞ > V (0−) ≥ V (t− + T ) ≤ exp
[
− 1

2
(β−1

2 − ββ−1
1 α1)T

]

× exp
[
− 1

2
β−1

2 T + ββ−1
1

√
α0T

]

∏
ti∈TN(t,t+T )∪TD(t,t+T )

[
V (t+i )
V (t−i )

V (t−)
]

≤ exp
[
−

(
1
2
β−1

2 − ββ−1
1 α1

)
T

]
exp

[
1
2
ᾱ0

β2β2

β2
1

]
V (t−)

≤ e−ε′TV (t−) −→ 0 as t→ ∞,

provided that ᾱ0 < ε + ε′ < (T/2β2) for ε ∈ [0, ε∗), [26]. If
(25) holds, i.e., the bounded discontinuities in Ȧ′(t) are considered

as impulses in Ȧ′(τ ) to govern
∫ t−+T

t− ‖Ȧ′(τ )‖ dτ then ᾱ0 → ᾱ0 + ᾱ′
0

has to fulfil ᾱ0 + ᾱ′
0 ≥ (β1/ββ2)2(T − 2β2(ε + ε′)) and the times

t ∈ TN(t, t + T ) ∪ TD(t, t + T ) to evaluate jumps V (t+i )/V (t−i ) in
(50) are replaced with t ∈ TN(t, t + T ) leading to the constraint
α1 ∈ [0, ᾱ∗′

1 ) with ᾱ∗′
1 := (β1/β)((1/2β2) − (ε∗1/T )) for S2 to be GES

for any ϕ ∈ IC )[−r̄, 0],Rn).

(vi) Since ‖Ȧ′‖ ∈ L2 implies the integral constraints of ‖Ȧ′(t)‖ of
items (iii), (iv), the proof follows directly.

(vii) Take a Liapunov function candidate V (T ) := zT
A(t)PzA(t) with

P = PT > 0 being a real symmetric n-matrix. Along any trajectory
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solution of S2, V̇ (T ) = −zT
A(t)[N(t)NT (t) + q0I]zA(t) ≤ 0 so that S2

is GES for all bounded z0 ∈ Rn. Since A′(t) is a stability matrix for
all t ≥ 0, the solution to (26) for all t ≥ 0 is:

(51)

P =
∫ ∞

0

ΨT
A(τ, t−)[N(τ )NT (τ ) + q0I]ΨA(τ, t−) dτ

=
∫ t−

0

ΨT
A(τ, t−)[N(τ )NT (τ ) + q0I]ΨA(τ, t−) dτ,

the second identity arising since ΨA(τ, t) = 0 for τ > t, all t ≥ 0. Direct
calculus from (52) yields:

Ṗ (t−) =
∫ t−

0

[Ψ̇T
A(τ, t−)[N(τ )NT (τ ) + q0I]ΨA(τ, t−)

+ ΨT
A(τ, t−)[N(τ )NT (τ ) + q0I]Ψ̇A(τ, t−)] dτ

+ ΨT
A(t−, t−)[N(t−)NT (t−) + q0I]Ψ̇A(t−, t−)

(52)

= AT (t−)
{∫ ∞

0

ΨT
A(τ, t−)[N(τ )NT (τ ) + q0I]ΨA(τ, t−) dτ

}

+
{∫ ∞

0

ΨT
A(t, t−)[N(τ )NT (τ ) + q0I]ΨA(τ, t−) dτ

}
A(t−)

+N(t)NT (t) + q0I

= A′T (t)P + PA′(t) +N(t)NT (t) + q0I = 0,
(53)

by using the properties ΨA(t, t) = I and A′(t) and ΨA(t, τ ) commute
for all t, τ since ΨA(t, τ ) is a fundamental matrix of S2. Now, since
[A′(t), NT (t)] is uniformly completely observable, if q0 = 0 and P =
PT > 0, equations (52), (53) satisfy two Liapunov matrix equations
(26); one has from (52) for q0 = 0 for some real T > 0, α > 0, one has

(54)

0 < αI ≤
∫ t−+T

t−
ΨT

A(τ, t−)N(τ )NT (τ )ΨA(τ, t−) dτ

≤ P =
∫ t−+T

0−
ΨT

A(τ, t−)N(τ )NT (τ )ΨA(τ, t−) dτ

≤ λmax(P )I
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so that λmax(P ) ≥ α. If q0 > 0 then V̇ (t) ≤ −q0V (t). Also, one gets
directly by defining λ(t) := (V (t+i )/V (t−i )) for all ti ∈ TN :

(55)
λmin(P )‖zA(t− + T )‖2

2 − λmax(P )‖zA(t−)‖2
2

≤ V (t− + T ) − V (t−)

≤ −
∏

ti∈TN(t,t+T )

[λ(ti)]
( ∑

ti∈TN(t,t+T )

zT
A(τ )N(τ )NT (τ )zA(τ ) dτ

)

= −
∏

ti∈TN(t,t+T )

[λ(ti)]zT
A(t)

×
( ∫ t−+T

0−
ΨT

A(τ, t−)N(τ )NT (τ )ΨA(τ, t−) dτ
)
zA(t)

≤ −αϑT (t)‖zA(t)‖2
2 ≤ −α

ϑT (t)V (t−)
λmax(P )

where ϑT (t) :=
∏

ti∈TN(t,t+T )[λ(ti)] since λmax(P ) ≥ α. Thus, one gets
from (55)

(56) V (t− + T ) ≤
(

1 − αϑT (t)
λmax(P )

)
V (t−); for all t ≥ 0,

(57) ‖zA(t− + T )‖2
2 ≤ λmax(P )

λmin(P )

(
1 − αϑT (t)

λmax(P )

)
‖zA(t−)‖2

2

and S2 is GES for all bounded zA(0) = z0 ∈ Rn if (27) holds and the
proof of (vii) is complete.

Alternative condition via the condition number of P for the l2-matrix
norm (K2(P )).
(58)
αK2(P )
λmin(P )

∏
ti∈TN(t,t+T )

[λmax(I +A′′T (ti))(I +A′′(ti))]

≤ Kν
2 (P )

∏
[λmax((I +A′′T (ti))(I +A′′T (ti))(I +A′′(ti)))] <

1
α

where ν ∈ Card [TN(t, t+ T )].
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(viii) The proof follows directly from that of (vii) since V (ti+1) ≤
δ(T∗)V (ti) for some 0 < δ(T∗) < 1, for all ti ∈ Si if [A′(t), NT (t)]
is completely observable on [ti, ti+1) or, if q0(ti) ≥ q0 > 0, for
all ti ∈ St. Define the sets D := TN ∪ TNd ∪ TD ∪ DD and
De := TN ∪ TNd ∪ TD ∪ (DD ∪CD) where DD and CD are the real
subsets where the delay is discontinuous and continuous, respectively.

(ix) Consider the Liapunov function candidate (30). It is first

proved that
∫ t−

t−−r(t)
zT (τ )K(τ )z(τ ) dτ does not diverge faster than

r(t)(Sup0≤τ≤t (‖z(τ )‖2
2) where K(t) := A′T

d (h−1(t))A′
d(h

−1(t)). Direct
calculus yields, [9]:

ΔV (t) := V ′(t) − V (t) =
∫ t

t−r(t)

‖A′
d(h

−1(τ ))z(τ )‖2
2 dτ

≤ ess Sup
t−r(t)≤τ≤t

(‖z(τ )‖2
2)

∫ 1/t−

1/(t−−r(t))

‖A′
d(h

−1(τ ))‖2
2 ḣ(τ ) dτ

≤ μar(t) ess
t−r(t)≤τ≤t

(‖z(τ )‖2
2)

for all t /∈ CD ∪ DD for any vector and associate (induced) matrix
norm and some μa ∈ R+

0 . Since ‖A′
d(1/t)‖ is bounded if t ∈ CD∪DD,

μb ∈ R+ exists such that ΔV (t) ≤ μbr(t)ess Supt−r(t)≤τ≤t(‖z(τ )‖2
2).

Also,

(59)

V̇ ′(t) = 2żT (t)P (t)z(t) + zT (t)K(t)z(t)

− ḣ(t)zT (h(t))K(h(t))z(h(t))− zT (t)Ṗ (t)z(t)
= zT (t)[A′T (t)P (t) + P (t)A′(t) +K(t)]z(t)

+ 2zT (t)P (t)A′
d(t)z(h(t))

− (1 − r′(t))zT (h(t))K(h(t))z(h(t))− zT (t)Ṗ (t)z(t)

for all t /∈ CD where r′(t) := 1− ṙ(t). Assume that q ∈ R+ exists such
that

(60) q0 ≥ q + Sup
t/∈CD

[A′T
d (h−1(t))A′

d(h
−1(t))] +

q20α
4
A

4σ2
A

with q0, σA and αA defined in the proof of (iii). Direct calculus
guarantees (60) if for all t /∈ De:

(61) 0 < q0 <
4σ2

α4
A

; λmax[A′T
d (h−1(t))A′

d(h
−1(t))] < q0

(
1− q0α

4
A

4σ2
A

)
.
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Then,

(62) A′T (t)P (t) + P (t)A′(t) + Ṗ (t)
= − q0I ≤ − (qI + P 2(t) +A′T

d (h−1(t))A′
d(h

−1(t)))

for t /∈ De provided that (60) holds via (61). Then, the substitution of
(62) into (59) and the use of item (iii) yields, provided that (61) holds,
that

(63)

V̇ (t) ≤ − (q0β−1
2 − ββ−1

1 ‖Ȧ′(t)‖2
2) z

T (t)P (t)z(t)

−
∥∥∥∥ 1√

1 − r′(t)
P (t)z(t) −

√
1 − r′(t)Ad(t)z(h(t))

∥∥∥∥
2

2

≤ −(q0β−1
2 − ββ−1

1 ‖Ȧ′(t)‖2) zT (t)P (t)z(t) ≤ 0,

where ‖·‖2 denotes the l2 vector and associated induced matrix norms.
Thus, since V ′(t) ≥ zT (t)P (t)z(t), by construction:

(64)
V̇ ′(t)
V ′(t)

≤ V̇ ′(t)
zT (t)P (t)z(t)

≤ − q < 0, for all t /∈ De.

If ti ∈ CD and CD ∩ (TN ∪ TNd) = ∅, then V ′(t+i ) = V ′(t−i )
(so that C �D is irrelevant for stability analysis purposes). If ti ∈
(TN ∪ TD ∪ ∪DD ∪ TNd), then V ′(t+i ) �= V ′(t−i ), in general, through
respective jump discontinuities ż(t+i ) �= ż(t−i ); P (t+i ) �= P (t−i ), see item
(vi), and

ΔV (t+i ) = V ′(ti) − zT (ti)P (ti)z(ti) =
∫ ti

ti−r(ti)

‖A′
d(h

−1(τ ))z(τ )‖2
2 dτ.

The various discontinuities at V ′(t+i ) may be combined since the
above discontinuity sets are not required to be disjoint. Thus, if
e−qT [

∏
ti∈D(t,t+T )[λ(ti)]] < 1 and taking into account (64),

V ′(t+ T ) ≤ e−qT
∏

ti∈D(t,t+T )

[λ(ti)]V ′(ti) ≤ V ′(t−), for all t ≥ 0

with D(t+ T ) := {τ ∈ D : t ≤ τ < t+ T} and λ(ti) := V ′(t+i )/V ′(t−i ).
It has been proved that S2 is GES if item (iii) holds. The proof is quite
similar if S2 satisfies any of items (iv) (vi).
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(x) It follows directly since the Liapunov matrix inequality of item
(viii) implies that of (62) with a constant positive finite symmetric
matrix P . Thus, the Liapunov function candidate V ′(t) for S3, which
is well-posed from the assumption on A′

d(t) has a time-derivative
satisfying (63) for all t /∈ D which leads directly to the proof since
V (t− + T ) ≤ e−qTV (t−) ≤ ϑT (t)V (t−), 0 < ϑT (t) < 1, and

q < q∗ := q0

(
1 − α4

A q0
4σ2

A

)
Sup

t/∈D(t,t+T )

[‖A′
d(h

−1(t))‖2
2],

see the proof of (ix).

(xi) Take the Liapunov function candidate V (t) = zT (t)Pz(t) for S3
so that for all t /∈ D along the state trajectory generated from any ϕ ∈
IC ([−r̄, 0],Rn) satisfies V̇ (t) = 2zT (t)P ż(t) = −zT (t)N(t)NT (t)z(t),
so that for all t ≥ T > 0:

(65) V (t−) − V (0−) = − z̄T
0

( ∫ t−

0−
TT (τ, 0)N(τ )NT (τ )T (τ, 0) dτ

)
z̄0,

with z̄0 = z−0 +
∫ 0

−r̄
T−1(t−, 0)T (t− − τ )ϕ(τ ) dτ . Note that, since

‖T (t, τ )‖ is of exponential order and ϕ is essentially bounded on [−r̄, 0],
except at most at a finite set of time instants where impulses take place,
as a direct consequence of Theorem 1 (iii), there are finite real constants
ρ̄ ≥ 0, kϕ ≥ 0 and kT ≥ 1 such that ‖z̄0‖ ≤ ‖z0‖+ kT1 ≤ kϕ‖z̄0‖, some
nonnegative kT1 := kT e

r̄ρ̄(ess Sup−r̄≤τ<0(‖ϕ(τ )‖) + k1ϕ) <∞.Thus, if
M(t) := ‖T (t, 0)‖2

2, then

‖z(t−)‖2 = ‖T (t−, 0)z̄0‖2 ≤M1/2(t−)‖z0‖2

≤M1/2(t−)kϕ‖z̄−0 ‖2 ≤ M1/2(t−)kϕV (0)1/2

λmin(P )

so that, from (65),

V (t−) ≤
(

1 − αkϕM(t)ϑ′T (t)
λmax(P )

)
V (0−)

so that S3 is GES for all ϕ ∈ IC ([−r̄, 0],Rn) and then S is globally
stable for all u ∈ Lm

2 since from the Cauchy-Buniakovski inequality, [3,
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22], one has for the l2-vector and associate induced matrix norm:∥∥∥∥
∫ ∞

0

T (t, τ )B(τ )u(τ ) dτ
∥∥∥∥
2

≤ Sup
t≥0

[( ∫ ∞

0

‖T (t, τ )‖2
2 dτ

)1/2](∫ ∞

0

‖u(τ )‖2
2 dτ

)1/2

<∞,

since B ∈ Lm×n
∞ , u ∈ Lm

2 and T (t, τ ) ∈ L2([0,∞),Rm×n). Thus, the
system S is GES for all u ∈ Lm

2 .

(xii) It is very similar to that of (xi) by building the solution z(t− +

T ) = T (t− + T, t)z̄(t) where z̄(t) = z(t−) +
∫ t−+T

t− T−1(τ ′, t)z(τ ′) dτ .

4.3 Closed-loop stabilization. Theorem 2 may be easily extended to
the case when u(t) is generated from x(t) or y(t), namely, through the
state or output measurements, in the context of the so-called closed-
loop stabilization problem via a linear feedback regulator. Assume that
the state-feedback control law:
(66)

u(t) = u′(t) + u′′(t) = {(K0Kc(t))x(t) +Kd(t)x(t− r(t))}
+

{ ∑
ti∈TN

Kcimp(ti)δ(t− ti)x(t−i )

+
∑

ti∈TNd

Kdimp(ti)δ(t− ti)x(t−i − r(ti))
}

where Kc(t), Kd(t) are bounded matrix functions from [0,∞) to Rn×m

allowed to have removable and/or jump discontinuities in the sets
TD and TDd, respectively, and Kcimp(t), Kdimp(t) are (impulsive)
matrix functions of ranges in Rn×n with supports of zero Lebesgue
measure TN and TNd, respectively. Thus, the closed-loop system is
GE for all ϕ ∈ IC ([−r̄, 0],Rn) and the control law is stabilizing if
and only if the results of Theorem 2 (ix) (xii) hold for the subsequent
replacements: A0 → A0 +B(t)K0, A′(t) → A′(t)+B(t)Kc(t), A′

d(t) →
A′

d(t) + B(t)Kd(t) for all t ∈ R+
0 , A′′(t) = 0 for all t /∈ TN ; A′′

d(t) = 0
for all t /∈ TNd; and

(67)
A′′(ti) −→ A′′(ti) +B(ti)Kcimp(ti) for all ti ∈ TN,

A′′
d(ti) −→ A′′

d(ti) +B(ti)Kdimp(ti) for all ti ∈ TNd.
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(67) If output-feedback, instead of state-feedback, is used and D(t) = 0
in (1.b), then the control law (66) is substituted with a similar one
with the replacements x(.) → C(.)x(.) everywhere in its righthand
side while (67) is reformulated with the controller gain replacements
K0,c,d,cimp,dimp(t) → K0,c,d,cimp,dimp(t)C(t), K0(t) = K0 being con-
stant. If D(t) �= 0, then the control law becomes implicit in u(t)
and some rank conditions have to be fulfilled in order to convert it
into an explicit form, one of them being, for instance, that the matrix
(I − (K0 +Kc(t))D(t)) is nonsingular for all t /∈ (TN ∪ TNd).

5. Compactness of some of the input/output, input/state
and state/output operators defining the state/output trajec-
tory solutions. Note that the Banach space U ⊂ Lm

2 is also a
real Hilbert space endowed with the (semi-)norm of the inner prod-
uct ‖ · ‖Lm

2
defined by ‖u‖Lm

2
:= 〈u, u〉1/2

Lm
2

, for all u ∈ U . The subscript
for the space Lm

2 for inner products and associated endowed norms are
omitted in the sequel when no confusion is expected. Let {φm

i }∞1 and
{θ(m)∗

i }∞1 = {θ(m)T
i }∞1 be an orthonormal basis and its reciprocal one

for the Lm
2 -space (this notation for orthonormal basis is adopted inde-

pendently of the dimension m which is easily elucidated depending on
context) so that:

(68)
〈φ(m)

i , φ
(m)
j 〉 = δij ; 〈θ(m)

i , θ
(m)
j 〉 = δij ;

〈φ(m)
i , φ

(m)
j 〉 = δij ; i, j = 1, 2, . . . ,∞,

with δij being the Kronecker delta, [24]. Then, the evolution operator
T (t, τ ) has a representation

(69) T (t, τ ) =
∞∑

k=1

ψl(t)θ
(m)T
k (τ ) =

∞∑
k=1

∫ t

0

T (t, τ )φk(τ ′)θ(m)T

k (τ ) dτ ′

where Ψk(t) :=
∫ ∞
−∞ T (t, τ )φ(m)

k (τ ) dτ =
∫ t

0
T (t, τ )φ(m)

k (τ ) dτ , since
T (t, τ ) = 0 for t ≥ τ , is an n-matrix function which is the image of φk

via the operator T . From Theorem 1, the state and output trajectories
are:

(70) x(t) = (Sϕ)(t) + (Suu)(t); y(t) = (Mϕ)(t) + (Muu)(t)
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for all t ∈ R+
0 so that for zero initial conditions:

(71)
[x(t−)]ϕ≡0 = (Suu)(t−) =

∫ t−

0

[Hx(t−, τ )u(τ ) dτ ; y(t−)]ϕ≡0

= (Muu)(t−) =
∫ t−

0

H(t−, τ )u(τ ) dτ

(71) with similar expressions for x(t+) and y(t+) with the appropriate
replacements t− → t+. The kernels of the operators Su ∈ L(U,X)
and Mu ∈ L(U, Y ) are, respectively Hx := [0,∞) → L(U,X) and
H : [0,∞) → L(U, Y ), respectively. Let now {φi}∞1 ≡ {φ(1)

i }∞1 be
an orthonormal basis of the real (scalar) space L2. It follows that
{φ(l)

ij
}∞1 ≡ {e(l)j φi}∞1 , ij , j = 1, 2, . . . , l, is an orthonormal basis of

Ll
2 (any l ∈ Z+) for unity Euclidean vectors e(l)j ∈ Rl, i.e., its jth

component is unity while the remaining ones are zero for j = 1, 2, . . . , l
so that the inner product satisfies 〈e(m)

j φi, e
(m)
l θk〉 = δjlδik. Then,

ϕ(t) =
∞∑

k=1

n∑
j=1

αϕkje
(n)
j φk(t)

with

x0 = ϕ(0) =
∞∑

k=1

n∑
j=1

αϕkje
(n)
j φk(0)

for all ϕ ∈ IC ([−r̄, 0],Rn) admitting a component-wise representation

ϕj(t) =
∞∑

k=1

αϕkjφk(t),

with

xj(0) = ϕj(0) =
∞∑

k=1

αϕkjφk(0),

where the αϕkj , j = 1, 2, . . . , n, k = 0, 1, . . . , are the (real constant)
components of ϕj in the basis {ϕk}∞1 . An artifice is now used to
represent (possibly impulsive) inputs u ∈ Lm

2 of the class of the
above sections. Such an artifice consist of introducing time-varying
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components which are essentially discontinuous (and not constant) only
at discontinuity points so that u(t) takes the form

u(t) =
∞∑

k=1

n∑
j=1

αkj(t)e
(m)
j φk(t)

with time-varying components αkj(t) = α−
kj + αδ

kjμu(t)δ(0) so that:

u(t−) = u′(t−) =
∞∑

k=1

n∑
j=1

α−
kje

(m)
j φk(t)

u(t+) = u′(t+) + u′′(t) =
∞∑

k=1

n∑
j=1

αkje
(m)
j φk(t)

=
∞∑

k=1

n∑
j=1

(α−
kj + αδ

kjμu(t)δ(0))e(m)
j φk(t),

i.e., αkj(t−) = α−
kj and αkj(t+) = α−

kj + αδ
kjμu(t)δ(0) and having

(possibly discontinuous) components to the left and right of any t ∈ R+
0

represented by

uj(t∓) =
∞∑

k=1

n∑
j=1

αkj(t∓)φk(t).

Note that the above representation is well-posed since u, u′, u′′ ∈
Lm

2 so that both u′ and u′′ admit representations with real constant
components α−

kj and αδ
kjδ(τ − t) for input impulses at τ = t. By

convenience, the representations of operators for zero initial state and
zero input are discussed separately.

5.1 Representations of the zero-state relevant operators. Note that
the state trajectory solution satisfies
(72)

[x(t)]ϕ≡0 = (Suu)(t) =
∫ t

0

Hx(t, τ )u(τ ) dτ =
∫ t

0

T (t, τ )B(τ )u(τ ) dτ,

with possible eventual discontinuities. Thus, the kernel Hx(t, τ ) =
T (t, τ )B(τ ) of Su ∈ L(U,X) admits the representation:

(73) Hx(t, τ ) =
∞∑

k=1

ψxk(t)θT
k (τ ),
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where

ψxk(t) =
m∑

j=1

∫ t

0

αkj(t)T (t, τ )B(τ )(e(m)
j φk(τ )) dτ

=
∞∑

k=1

∫ ∞

k=1

∫ t

0

T (t, τ )B(τ )αk(t)φk(τ ) dτ

is the n-vector state for zero initial conditions with input
m∑

j=1

αkj(t)e
(m)
j φk(t)

with

αk(t) =
m∑

j=1

αkj(t)e
(m)
j

since

uj(t) =
∞∑

k=1

αkj(t)φk(t) =
∞∑

k=1

αk(t)φk(t),

and

u(t) =
∞∑

kj=1
1≤j≤m

αkj(t)(e
(m)
j φk(t)) =

∞∑
k=1

m∑
j=1

αkj
(t)e(m)

j φk(t)

where αk(t) = (αk1(t), αk2(t), . . . , αkm(t))T ∈ Rm. In the same way,

(74)
y(t) = (Muu)(t) =

∫ t

0

H(t, τ )u(τ ) dτ

=
∫ t

0

(C(t)T (t, τ )B(τ ) +D(t)δ(t− τ ))u(τ ) dτ

so that

y(t−) =
∫ t−

0

H(t−, τ )u(τ ) dτ =
∫ t−

0

C(t)T (t−, τ )B(τ )u(τ ) dτ

y(t+) =
∫ t+

0

H(t+, τ )u(τ ) dτ

=
∫ t+

0

C(t)T (t+, τ )B(τ )u′(τ ) dτ +D(t)δ(0)μu(t)u′′(t)(75)
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with the operator H(., .) admitting a representation, [24]:

(76) H(t−, τ ) =
∞∑

k=1

Ψk(t−)θT
k (τ ); H(t+, τ ) =

∞∑
k=1

Ψk(t+)θT
k (τ )

(77) Ψk(t−) =
m∑

j=1

∫ t−

0

αkj(t−)C(t)T (t−, τ )B(τ )e(m)
j φk(τ ) dτ

Ψk(t+) =
m∑

j=1

∫ t+

0

αkj(t+)(C(t)T (t+, τ )B(τ )

+D(τ )δ(τ − t)μu(τ ))e(m)
j φk(τ ) dτ

=
m∑

j=1

αkj(t+)
(∫ t+

0

C(t)T (t+, τ )B(τ )φk(τ ) dτ

+D(t)δ(0)μu(t)φk(t)
)
e
(m)
j .

A quite similar representation may be obtained for the operator

T (t∓, τ ) =
∞∑

k=1

ΨTk(t∓)θT
k (τ ),

provided that Bu ∈ Ln
2 , by replacing the real vector functions Ψk(t∓)

by vector functions ΨTk(t∓) obtained by fixing C(t) = In in the right-
hand sides of (77) and the use of the representation:

B(t)u(t) =
∞∑

k=1

m∑
j=1

ᾱkj(t)e
(n)
j φk(t);

ΨTK(t∓) =
m∑

j=1

∫ tmp

0

ᾱkj(t∓)T (t∓, τ )e(n)
j φk(τ ) dτ.

As a result,

x(t) =
∞∑

k=1

n∑
j=1

βxkj(t)e
(n)
j φk(t)

=
∞∑

k=1

∞∑
l=1

n∑
j=1

αlj(t)Ψtk(t)
∫ t

0

θT
k (τ )e(n)

j φl(τ ) dτ,
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y(t) =
∞∑

k=1

p∑
j=1

βkj(t)e
(p)
j φk(t)

=
∞∑

k=1

∞∑
l=1

n∑
j=1

αlj(t)C(t)ΨTk(t)
∫ t

0

θT
k (τ )e(n)

j φl(τ ) dτ,

where βxki(t) and βxk(t), i = 1, 2, . . . , n, j = 1, 2, . . . , p, k = 0, 1, . . . ,
are the components of x : [0,∞) → Rn and y : [0,∞) → Rp

with respect to the two respective orthonormal bases {e(n)
j φk}∞1 and

{e(p)
j φk}∞1 .

5.2 Representations of the zero-input relevant operators. Since the
function of initial conditions ϕ ∈ IC ([−r̄, 0],Rn) has the form ϕ(t) =
ϕ0(t) + (ϕ̃(t) + ϕ̃imp(t)) with domain of finite measure, ϕ0(t) being
uniformly bounded and (ϕ̃(t) + ϕ̃imp(t)) possessing a support of zero
measure and a domain of finite measure. Then, ϕ,ϕ0 and (ϕ̃(t) +
ϕ̃imp(t)) are in Lm

2 while ϕ(t+) �= ϕ(t−) if ϕ̃(t) + ϕ̃imp(t) �= 0. Then
it is possible to represent ϕ(t) =

∑∞
k=1

∑n
j=1 αϕkj(t)e

(n)
j φk(t) with left

and right limits:

ϕ(t−) =
∞∑

k=1

n∑
j=1

α−
ϕkje

(n)
j φk(t),

ϕ̃(t) + ϕ̃imp(t) =
∞∑

k=1

n∑
j=1

(α+
ϕkj − α−

ϕkj)e
(n)
j φk(t)

ϕ(t+) =
∞∑

k=1

n∑
j=1

α+
ϕkje

(n)
j φk(t)

=
∞∑

k=1

n∑
j=1

α−
ϕkje

(n)
j φk(t) +

∞∑
k=1

n∑
j=1

(α+
ϕkj− α−

ϕkj)e
(n)
j φk(t)

with real components αϕkj(t−) = α−
kj and αϕkj(t+) = α+

ϕkj = α+
ϕkj =

α−
kj + αδ

kjμϕ(t) δ(0) in a similar way as argued for the input represen-
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tation. The zero-input trajectory of S is given by:

(78) x(t) = (Sϕ)(t) =
∞∑

k=1

ΨTk(t)
[ ∞∑

l=1

n∑
j=1

αϕlj

(
θT

k (0)e(n)
j φl(0)

+
∫ 0

−r̄

θT
k (τ+r̄)e(n)

j Ad(τ+r̄)φl(τ+r̄− r(τ ))
)]
,

while its zero-input output state trajectory follows directly from the
above expression by pre-multiplying its righthand side by C(t) to obtain
a point-wise representation of the operator M via y(t) = (Mϕ)(t) =
C(t)x(t) = (C(t)Sϕ)(t).

5.3 Representations of the zero-state relevant operators associated
with gate operators. In some applications of electronics, the use of
so-called gate operators is relevant where the input is impulsive of the
form

u(t) = u′′(t) =
∑

ti∈TU

ω(ti)δ(t− ti)u0(t)

with u0 ∈ Lm
2 being the reference input and ω : [0,∞) → R being the

piecewise continuous weighting function. Then, one has the point-wise
operator definitions:

(79) (Suu)(t) =
∫ t

0

Hx(t, τ )u(τ ) dτ

=
∫ t

0

∑
ti∈TU

T (t, τ )B(τ )ω(τ )δ(τ − ti)u0(τ ) dτ,

(80) (Su0u0)(t) =
∑

ti∈TU

T (t, ti)B(ti)ω(ti)u0(ti)

(81) (Muu)(t) =
∫ t

0

H(t, τ )u(τ ) dτ

=
∫ t

0

∑
ti∈TU

C(t)T (t, τ )B(τ )ω(τ )δ(τ − ti)u0(τ ) dτ

+D(t)μu(t)ω(t)δ(0)u0(t)

(82) (Mu0u0)(t) =
∑

ti∈TU

C(t)T (t, ti)B(ti)ω(ti)u0(ti)

+D(t)μu(t)ω(t)δ(0)u0(t).
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The following result holds.

Theorem 3. The operator (Su0u0)(t), defined in (80), is a Hilbert-
Schmidt operator if B : [0,∞) → Rm×n is in Lm×n

∞ , T (t, τ ) ∈ Ln×n
2

as a function of τ over [0,∞) for all t ∈ R+
0 and

∑
ti∈TU ω

2(ti) < ∞
(which holds if ω ∈ L2).

The operator (Mu0u0)(t), defined in (82), is a Hilbert-Schmidt oper-
ator if C : [0,∞) → Rn×p is in Ln×p

∞ , T (t, τ ) ∈ Ln×n
2 as a function of

τ over [0,∞) for all t ∈ R+
0 ,

∑
ti∈TU ω

2(ti) < ∞ and D(t) ≡ 0 for all
t ∈ R+

0 .

Proof. The operators (Su0u0)(t) and (Mu0u0)(t) are Hilbert-Schmidt
if their kernels are Hilbert-Schmidt, i.e., square-integrable on (−∞,∞),
[19, 22], which holds under the given respective conditions.

5.4 Compactness of the relevant input-state, state-output and input-
output operators. The main well-known properties of compact oper-
ators, which are useful to approximate infinite dimensional spaces by
finite dimensional ones; those used are the following [19, 22]:

(i) A Hilbert-Schmidt operator is compact.

(ii) An operator of finite dimensional range is compact.

(iii) A degenerate operator from a Banach space to a Banach space
which is the limit of operators of finite dimensional ranges is compact.

(iv) An operator of closed range which is compact has a finite-
dimensional range.

From the developments of subsections 5.1 5.3, Theorem 3, and the
above list of properties, the subsequent result holds for relevant oper-
ators defined in (78) (82) and some related operators:

Theorem 4. (i) The operators S ∈ L(Ln
2 , L

n
2 ), M ∈ L(Ln

2 , L
p
2),

SS∗ ∈ L(Ln
2 , L

n
2 ), MM∗ ∈ L(Ln

2 , L
n
2 ) are compact.

(ii) Let the input u ∈ U ⊂ Lm
2 be impulsive and generated from a

mapping U0 ×W → U (gate operator) via a reference input u0 ∈ U0 ⊂
Lm

2 and ω ∈W ⊂ L2 is a modulating weighting function that generates
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an impulsive input from u0 defined by

u(t) =
∑

ti∈TU

ω(t)δ(t− ti)uu0(t) =
∑

ti∈TU

ω(ti)δ(0)ω(ti)μu(t).

Assume that
∫ ∞
0

∫ ∞
0

‖T (t, τ )‖2 dτ dt < ∞, or in particular that the
unforced S is GES (see Theorem 2 for sufficiency-type conditions).
Then, the operators Su0 , (Su0)∗ and Su0(Su0)∗, from the appropriate
Banach spaces to appropriate Banach spaces, are compact if all the
entries of B(t) are bounded and

∑
ti∈TU ω

2(ti) < ∞. If, in addition,
all the outputs of C(t) are uniformly bounded and D(t) ≡ 0 for all
t ∈ R+

0 , then the operators Mu0 , (Mu0)∗ and Mu0(Mu0)∗ are Hilbert-
Schmidt operators and then compact.

(iii) Assume that the input satisfies the constraints in (ii). Then
the operator Su0(k) has a decomposition Su0(k) =

∑n
i=1

χiΔi where
(Δix)(t) = 〈x, ξi〉Ln

2
ξi(t), i = 1, 2, . . . , n, while

T (k)(t, τ ) =
k∑

i=1

χiξi(t)ξT
i (τ ) =

k∑
i=1

χiψi(t)θT
i (τ )

where ξi(t) is a set of orthonormal eigenvectors of respective eigenvalues
χi, i = 1, 2, . . . , n, of T (k) satisfying

∑∞
i=1 |χi|2 < ∞. Furthermore,

Su0 − Su0(k) =
∑∞

i=k+1 ξiΔi,

‖Su0u0‖Ln
2

= 〈Su0u0, S
u0u0〉Ln

2
=

m∑
j=1

∞∑
k=1

|α′
kj |2|χk|2

≤ Sup
t∈Su0u0

(‖B(t)‖2
2)

( m∑
j=1

∞∑
k=1

|αkj |2|χk|2
)
,

provided that u0(t) =
∑m

j=1

∑∞
k=1 αkje

(m)
j φk(t) ∈ Lm

2 and B(t)u0(t) =∑m
j=1

∑∞
k=1 α

′
kje

(m)
j φk(t) ∈ Lm

2 since B(t) is bounded on [0,∞). If
‖u0‖ ∈ Lm

2 , then
∑∞

k=1 |αkj |2 = 1, any integer j = 1, 2, . . . ,m, so that

‖Su0u0‖Ln
2
≤ Sup

t∈Su0u0

(‖B(t)‖2
2)

( m∑
j=1

|χj |2
)
.
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Proof. (i) Define the sequences of operators

Ψ(k)
A0 (t) :=

k∑
l=0

Al
0 t

l

l!

and

T (k)(t−, 0) := Ψ(k)
A0(t)

[
I +

∫ t−

0−
Ψ(k)

A0 (τ )Ã(τ )T (k)(τ, 0) dτ

+
∫ t−

r̄

Ψ(k)
A0 (τ )Ad(τ )T (k)(τ − r(τ ), 0)1(t− τ ) dτ

]
;

for all t ∈ R+
0 ; k = 0, 1, . . . .

with T (0)(0, 0) = T (0, 0) = I, and T (k)(t, τ ) = T (t, τ ) = 0, for all
τ > t. Assume that for −r̄ ≤ τ < t and any given finite real t > 0,
‖T (k) −T‖L(L2[0,t],L2[0,t]) → 0. Since limk→∞(‖Ψ(k)

A0(t)−ΨA0(t)‖2) = 0
for all t ∈ R+

0 , it follows by using l2 matrix norms that:

‖T (k)(t− + ε, 0) − T (t− + ε, 0)‖2

≤ 2
∥∥∥∥

∞∑
j=k+1

Ψ(k)
A0(t+ ε) − ΨA0(t+ ε)

∥∥∥∥
2

×
[ ∫ t−+ε

0

∥∥∥∥
∞∑

j=k+1

Ψ(k)
A0 (τ )−ΨA0(τ )

∥∥∥∥
2

2

(‖Ã(τ )‖2+‖Ãd(τ )‖2)2 dτ
]1/2

×
[

Sup
0≤τ ′≤τ−r(τ)

( ∫ t−

0−
‖T (k)(τ − τ ′, 0) − T (τ − τ ′, 0)‖2

2 dτ

)

+ Sup
τ−r(τ)≤τ ′≤τ

( ∫ t−+ε

t−
‖T (k)(τ − τ ′, 0) − T (τ − τ ′, 0)‖2

2 dτ

)]

−→ 0 as k → ∞
and

‖T (k)(t+ + ε, 0) − T (t+ + ε, 0)‖2

≤
[ ∞∑

j=k+1

∞∑
tl∈TN(t,t+ε)∪TNd(t,t+ε)

‖Ψ(k)
A0(tl) − ΨA0(tl)‖2
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× (‖Ã(tl)‖2 + ‖Ãd(tl)‖2) dτ
]

×
[

Sup
tl∈TN(0,t)∪TNd(0,t)

Sup
0≤τ≤tl−r(tl)

(‖T (k)(tl−τ, 0)−T (tl−τ, 0)‖2)

+ Sup
tl∈TN(0,t)∪TNd(0,t)

Sup
tl−r(tl)≤τ≤tl

(‖T (k)(tl− τ, 0)−T (tl− τ, 0)‖2)
]

−→ 0 as k → ∞

since ‖Ψ(k)
A0 (t)−ΨA0(t)‖2 → 0 as k → ∞, for all t ∈ R+

0 . Furthermore,
T (k)(t, τ ) =

∑k
l=1 ψ

(k)
l (t)θ(k)T

l (τ ) is of finite range for all t, τ for all
finite integers k. Since ‖ψ(k)(t+)‖2 ≤ k

(k)
1 ‖ψ(k)(t−)‖2 then ‖ψ(t+)‖2 ≤

k1‖ψ(t−)‖2 from Theorem 1 (ii) for some nonnegative real constants
k

(k)
1 , k = 0, 1, . . . , and k1, then

‖T (k)(t+ + ε, 0) − T (t+ + ε, 0)‖2 ≤ ‖T (k)(t− + ε, 0) − T (t− + ε, 0)‖2

−→ 0 as k → ∞, for all t ∈ R+
0

and ‖T (k) − T‖Ln
2e

→ 0, i.e.
∫ t

0− ‖T (k)(τ, 0) − T (τ ′, 0)‖ dτ < ∞, as
k → ∞, for all t ∈ R+

0 and T (k)(τ, 0) is of finite range on [0, t + ε),
provided it is compact on [0, t) for any finite integer k ∈ Z+

0 . Since
‖T (k)(t, 0)−T (t, 0)‖Ln

2
→ 0 and T (k)(t, 0) is of finite dimensional range

as k → ∞, for all t ∈ R+
0 , T (t, 0) is a compact operator. It is now

proved that T ∗, (T ∗T ) and (TT ∗) are also compact. Note that taking
norms in Ln

2 :

‖T ∗T (fn − fm)‖2
Ln

2
= 〈T ∗T (fn − fm), T ∗T (fn − fm)〉Ln

2

= 〈TT ∗T (fn − fm), T (fn − fm)〉Ln
2

≤ ‖T (T ∗T )(fn − fm)‖Ln
2
· ‖T (fn − fm)‖Ln

2
−→ 0

as Z+
0 � n, m→ ∞, for any bounded sequence {fn}∞1 and its endowed

norm from the inner product in the Hilbert space of square-integrable
real vector functions of dimension n. Then (T ∗T ) is a compact operator
and, therefore, (TT ∗) is compact as well, [5]. As a result, weak
convergence, i.e., convergence of the inner products, implies strong
convergence, i.e., convergence of the sequences, so that fk → f as



126 M. DE LA SEN

k → ∞ implying 〈T ∗Tfk, fk〉Ln
2
→ 0 as k → ∞ implies that T ∗Tfk as

k → ∞. Also,

‖T ∗(fn − fm)‖2
Ln

2
= 〈T ∗(fn − fm), T ∗(fn − fm)〉Ln

2

= 〈TT ∗(fn − fm), (fn − fm)〉Ln
2

≤ ‖TT ∗(fn − fm)‖Ln
2
· ‖fn − fm‖Ln

2

≤ 2C‖TT ∗(fn − fm)‖Ln
2

since ‖fn −fm‖Ln
2
≤ 2C‖TT ∗(fn−fm)‖Ln

2
→ 0 for some finite positive

real constant C as Z+
0 � n, m → ∞, so that {T ∗fn}∞1 and T ∗ is

compact. By construction via T , the operators S (SS∗), M∗ and
(MM∗) are compact as well and (i) has been proved.

(ii) Since u(t) = u′′(t) =
∑

ti∈TU ω(ti)δ(t − ti)u0(t) and (Su0u0)(t)
and (Mu0u0)(t) are defined via (80), (81), it follows that their kernels
are square-integrable if

∑
ti∈TU ω

2(ti) < ∞ and Su0 and Mu0 are
Hilbert-Schmidt and then compact operators. In the same way as in
(i), (Su0Su∗

0 ), (Mu0Mu∗
0 ), Su∗

0 and Mu∗
0 are compact since Su0

and
Mu0

are compact.

(iii) It follows directly from the definitions of the various operators
and their spectral decompositions since they are compact since the
reference input is square integrable.

Using similar reasoning as that used in Theorem 4 (i), it may
be proved that the operators ΨA0 ∈ L(IC, Ln

2 ), SA0e ∈ L(IC, Ln
2e),

MA0e ∈ L(IC, Ln
2e), SA0 ∈ L(IC, Ln

2 ) and MA0 ∈ L(IC, Ln
2 ) are

compact operators. The evolution operator ΨA ∈ L(IC, Ln
2 ) as well

as SAe ∈ L(IC, Ln
2e), MAe ∈ L(IC, Lp

2e), SA ∈ L(IC, Ln
2 ) and MA ∈

L(IC, Lp
2) are proved to be compact as well under similar guidelines for

the proofs. Those properties are useful to approximate the zero-input
responses of the auxiliary systems S1 and S2 through finite dimensional
real vector functions what holds irrespective of the stability or not of
the infinitesimal generator A0 or that of the matrix function A(t).

Remarks 1. Theorem 4 (ii) also holds under similar conditions if
U0 ∈ Lm′

2 , W ∈ Lm×m′
2 and

∑
ti∈TU ‖ω(ti)‖2 < ∞, which implies that

U ⊂ Lm
2 although the proof is omitted.
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2. sp (T ), the spectrum of T. is close, belongs to [−‖T‖, ‖T‖] and
includes zero. The remaining values of the spectrum excluding zero are
eigenvalues of T . Such a spectrum is either zero, finite (when excluding
zero) or a sequence which converges to zero. All the points of sp (T )/{0}
are isolated.

3. ΨA0(t) =
∑μ̄−1

k=0 αk(t)Ak
0 for any integer μ̄ ≥ μ, μ being the degree

of the minimal polynomial of A0 and αk : R+
0 → R, k = 0, 1, . . . , μ̄−1)

are linearly independent functions calculated from the algebraic system
of linear equations:

(
dj

dλj

)
[1λλ2 · · ·λv̄i ] · [α0(t)α1(t) · · ·αμ̄−1(t)]T

= [eλ1t · · · tν̄1−1eλ1t · · · eλσt · · · tν̄1−1eλσt]T ,

j = 0, 1, . . . , ν̄i − 1; i = 1, 2, . . . σ,

where λi, of respective multiplicities νi, i = 1, 2, . . . , σ, are the distinct
eigenvalues of A0 and ν̄i, i = 1, 2, . . . , σ, are (nonuniquely) chosen
satisfying the constraints Z+ � ν̄i ≥ νi and μ̄ =

∑σ
i=1 ν̄i ≥ μ =∑σ

i=1 νi. The set {αi(t), i = 1, 2, . . . , μ̄} is not unique since it depends
on the set ν̄i, i = 1, 2, . . . , σ, (the minimum set {αi(t), i = 1, 2, . . . , μ}
is unique). As a result, each unique real n-dimensional vector trajectory
solution of S1 is represented in any of the forms

zA0(t) =
μ̄−1∑
k=0

αk(t)Ak
0x0 =

μ̄−1∑
k=0

αk(t)
( n∑

i=1

ciA
k
0e

(n)
i

)

for any initial condition

x0 =
n∑

i=1

cie
(n)
i , ci ∈ R; i = 1, 2, . . . , n,

so that it is of finite dimension as it is the real p-vector function
C(t)zA0(t). As a result, the operators SA0 ∈ L(IC, Ln

2 ), SA0e ∈
L(IC, Ln

2e), MA0 ∈ L(IC , Lp
2), MA0e ∈ L(IC, Lp

2e). If, furthermore,
‖A′

d‖ ∈ L2, then SA0e ∈ L(Ln
2e, L

n
2e), MA0e ∈ L(Ln

2e, L
p
2e), SAe ∈

L(Ln
2e, L

n
2e) and MAe ∈ L(Ln

2e, L
p
2e) are also compact, see (4.c), (4.d),

(4.g) and (4.h) in Theorem 1.
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4. If ϕimp ≡ 0 for t ∈ [−r̄, 0], then Se ∈ L(IC , Ln
2e) and Me ∈

L(IC, Lp
2e) are compact if the auxiliary system S3, or equivalently the

unforced S, equation (1), is GAS.
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5. H. Brézis, Analyse fonctionelle, Masson, Paris, 1983.

6. T.A. Burton, Stability and periodic solutions of ordinary and differential
equations, Elsevier, New York, 1985.

7. T. Caraballo, J.A. Langa and J.C. Robinson, Attractors for differential equa-
tions with variable delays, J. Math. Anal. Appl. 260 (2001), 421 438.

8. M. De la Sen, The use of Gronwall’s lemma for robust compensation of time-
varying linear systems, Internat. J. Systems Sci. 22 (1991), 885 903.

9. M. De la Sen and V. Etxebarria, Discretized models and use of multirate
sampling for finite spectrum assignment in linear systems with commensurate time-
delays, Nonlinear Anal. Appl. 38 (1999), 193 228.

10. M. De la Sen and Ningsu Luo, A note on the stability of linear time-delay
systems with impulsive inputs, IEEE Trans. Circuits Systems I Fund. Theory Appl.
50 (2003), 149 152.

11. , On the uniform exponential stability of a wide class of linear time-
delay systems, J. Math. Anal. Appl. 289 (2004), 456 476.

12. T. Faria, W. Huang and J. Wu, Smoothness of center manifolds for maps
and formal adjoints for semilinear FDES in generic Banach spaces, SIAM J. Math.
Anal. 34 (2002), 173 203.

13. L.E. Franks, Signal theory, Prentice Hall, Englewood Cliffs, 1975.

14. Z. Gang Zeng, J. Wang and X. Liao, Global exponential stability of neural
networks with time-varying delays, IEEE Trans. Circuits Systems I Fund. Theory
Appl. 50 (2003), 1353 1358.



ON IMPULSIVE TIME-VARYING SYSTEMS 129

15. Z. Gang Zeng, J. Wang and X. Liao, Stability of neural networks with time-
varying delays, Dyn. Contin. Discrete Impuls. Syst. 10 (2003), 340 345.

16. P. Ioannou and A. Datta, Robust adaptive control : Design, analysis and
robustness bounds, in Foundations of adaptive control (M. Thoma and A. Wyner,
eds.), Lecture Notes in Control and Inform. Sci. (P.V. Kokotovic, ed.), No. 160,
Springer-Verlag, Berlin, 1991.

17. J. Jugo and M. De la Sen, Input-output based pole-placement controller for a
class of time-delay systems, IEEE Proc. Control Theory Appl. 149 (2002), 323 330.

18. S. Larsson, V. Thomée and L.B. Wahlbin, Numerical solutions of parabolic
integro-differential equations by the discontinuous Galerkin method, Math. Comp.
67 (1998), 45 71.

19. B. Lehman and S.P. Weibel, Averaging theory for delay difference equations
with time-varying delays, SIAM J. Appl. Math., 5 (1999), 1487 1506.

20. Ningsu Luo and M. De la Sen, State feedback sliding mode control of a class
of uncertain time-delay systems, IEEE Proc. Control Theory Appl. 140 (1993),
456 476.

21. M.C. Memory, Stable and unstable manifolds for practical functional differ-
ential equations, Nonlinear Anal. 16 (1991), 131 142.

22. S.I. Nakagiri, Structural properties of functional differential equations in
Banach spaces, Osaka J. Math. 25 (1988), 353 398.

23. V.A. Oliveira, M.C.M. Teixeira and L. Cossi, Stabilizing a class of time-
delay systems using the Hermite-Biehler theorem, Linear Algebra Appl. 369 (2003),
203 216.

24. S. Oucheriah, Exponential stabilization of linear delayed systems, IEEE
Trans. Circuits Systems I Fund. Theory Appl. 50 (2003), 826 830.

25. V. Ngoc Phat, Stabilization of linear continuous time-varying systems with
state delays in Hilbert spaces, Electron. J. Differential Equations 2001 (2001), 1 13.

26. J.P. Richard, Time-delay systems: An overview of some recent advances and
open problems, Automatica 39 (2003), 1667 1694.

27. F. Zheng and P.M. Frank, Finite dimensional variable structure control design
for distributed delay systems, Internat. J. Control 74 (2001), 398 408.

Department of Systems Engineering and Automatic Control, University
of Basque Country, Campus of Leioa (Bizkaia), Aptdo. 644 Bilbao, 48080
Bilbao
E-mail address: wepdepam@lg.ehu.es


