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PERIODIC BOUNDARY VALUE PROBLEM
FOR FIRST ORDER IMPULSIVE

DIFFERENTIAL EQUATION AT RESONANCE

GUOLAN CAI, ZENGJI DU AND WEIGAO GE

ABSTRACT. We develop a general theorem concerning the
existence of solutions to the periodic boundary value problem
for the first-order impulsive differential equation,

{
x′(t) = f(t, x(t)) t ∈ J \ {t1, t2, . . . , tk}
�x(ti) = Ii(x(ti)) i = 1, 2 . . . , k

x(0) = x(T ).

And using it we get a concrete existence result. Moreover, to
our knowledge, the coincidence degree method has not been
used with first order impulsive differential systems. Besides,
our results can also be applied in studying the usual periodic
boundary value problem at resonance without impulses.

1. Introduction. In recent years, many authors have discussed
impulsive differential equation, see [1, 3, 6, 7, 9]. For example,
He and Ge [6], Bainov and Hristova [1] and Liz [9] investigated the
existence of solutions for first order impulsive equations by use of upper
and lower solution methods. Frigon and O’Regan [3] investigated
the existence of solutions to first order impulsive equations by the
alternative theorem and upper and lower solution method. Dong [2],
Liu and Yu [8] researched the existence of solutions to second order
impulsive equations by making use of the coincidence degree theory
and autonomous curvature bound set. However, to our knowledge, the
coincidence degree method developed by Gaines and Mawhin [5] has
not been used to the first order impulsive differential systems. In this
paper, we are concerned with the periodic boundary value problem for
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the nonlinear impulsive differential equation:

x′(t) = f(t, x(t)), t ∈ J ′(1.1)
Δx(ti) = Ii(x(ti)), i = 1, 2, . . . , k(1.2)

associated with the boundary value conditions

(1.3) x(0) = x(T )

where T > 0, J = [0, T ], 0 < t1 < t2 < · · · < tk < T , J ′ =
J \ {t1, t2 . . . , tk}, x ∈ R, f : J × R → R, Ii : R → R, i ∈ {1, 2 . . . , k},
are continuous. �x(ti) = x(ti + 0) − x(ti).

A map x : J → R is said to be a solution of (1.1) (1.3) if it satisfies:

(1) x(t) is continuously differentiable for t ∈ J ′, both x(t + 0) and
x(t − 0) exist at t = ti, and x(ti) = x(ti − 0), i = 1, 2 . . . , k.

(2) x(t) satisfies the relations (1.1) (1.3).

We shall use the continuation theorem of coincidence degree [1] to
show a general theorem for the existence of solutions to the problem
(1.1) (1.3) and then use it to get concrete existence conditions in
Section 3. This paper is motivated by [2, 4, 8].

2. Preliminary lemmas. For the convenience of the readers, we
recall at first some notations. Moreover, we present a series of useful
lemmas with respect to problem (1.1) (1.3) that is important in the
proof of our results. Consider an operator equation

(2.1) Lx = Nx

where L : domL∩X → Z is a linear operator, N : X → Z is a nonlinear
operator, X and Z are Banach spaces. If dim Ker L = dim (Z/ImL) <
∞, and ImL is closed in Z, then L will be called a Fredholm mapping
of index zero. And at the same time, there exist continuous projectors
P : X → X and Q : Z → Z such that ImP = KerL, Im L = Ker Q.
It follows that L|dom L∩Ker P : domL ∩ KerP → Im L is invertible. We
denote the inverse of this map by Kp.

Let Ω be an open and bounded subset of X. The map N will be
called L-compact on Ω if QN(Ω) is bounded and Kp(I − Q) : Ω →
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X is compact. Since ImQ is isomorphic to KerL, there exists an
isomorphism J : Im Q → Ker L.

Lemma 1 (Continuation theorem [5]). Suppose that L is a Fredholm
operator of index zero and N is L-compact on Ω, where Ω is an open
bounded subset of X. If the following conditions are satisfied:

(i) For each λ ∈ (0, 1), every solution x of

Lx = λNx

is such that x /∈ ∂Ω.

(ii) QNx �= 0 for x ∈ ∂Ω∩Ker L, and deg (JQN, Ω∩ KerL, 0) �= 0,
where Q : Z → Z is a continuous projector with Im L = Ker Q,
J : Z/Im L → Ker L is an isomorphism. Then the operator equation
(2.1) has at least one solution in dom L ∩ Ω.

In the following, in order to obtain the existence theorem of (1.1) (1.3),
we first introduce:

X = PC[J, R] = {x : J → R | x(t) is continuous for t ∈ J ′,
x(t + 0), x(t − 0) exist at t = ti and x(ti) = x(ti − 0), i = 1, 2, . . . , k
and x(0) = x(T )}

Z = {y : J → R | y(t) is continuous}×Rk.

For every x ∈ X, denote its norm by

‖x‖X = sup
t∈J

|x(t)|

and for every z = (y, c) ∈ Z, denote its norm by

‖z‖ = max{sup
t∈J

|y(t)|, ‖c‖}.

We can prove that X and Z are Banach spaces. Let

dom L = {x : J −→ R | x(t) is differentiable for t ∈ J ′}
⋂

X,

L : domL −→ Z, x 	−→ (x′(t),�x(t1), . . . ,�x(tk)),
N : X −→ Z, x 	−→ (f(t, x(t)), I1(x(t1)), . . . , Ik(x(tk))).
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Then problem (1.1) (1.3) can be written as Lx = Nx, x ∈ dom L.

Lemma 2. Suppose L is defined as above. Then L is a Fredholm
mapping of index zero. Furthermore, for the problem (1.1) (1.3)

Ker L = {x(t) ∈ X, x(t) = c, c ∈ R}
(2.2)

Im L =
{
(y, a1, a2 . . . ak) ∈ C[0, T ]×Rk : x′(t) = y(t),

(2.3)

�x(ti) = ai, i = 1, 2 . . . k, for some x(t) ∈ dom L
}

=
{

(y, a1, a2 . . . ak) ∈ PC[0, T ]×Rk :
∫ T

0

y(s) ds +
∑
T>ti

ai = 0
}

Proof. Firstly, it is easily seen that (2.2) holds. Next we will show
that (2.3) holds. Since problem

(2.4)
x′(t) = y(t), t ∈ J ′

�x(ti) = ai

has solution x(t) satisfying x(0) = x(T ) if and only if

(2.5)
∫ T

0

y(s) ds +
∑
T>ti

ai = 0.

In fact, if (2.4) has solution x(t) such that x(0) = x(T ), then from (2.4)
we have

x(t) = x(0) +
∫ t

0

y(s) ds +
∑
t>ti

ai

thus

x(T ) = x(0) +
∫ T

0

y(s)ds +
∑
T>ti

ai.
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In view of x(0) = x(T ), we have

∫ T

0

y(s) ds +
∑
T>ti

ai = 0.

Hence, (2.5) holds.

On the other hand, if (2.5) holds setting

x(t) = c +
∫ t

0

y(s) ds +
∑
t>ti

ai

where c ∈ R is an arbitrary constant, then it is clear that x(t) is a
solution of (2.4) and satisfies x(0) = x(T ). Hence, (2.3) holds.

Take the projector Q : Z → Z as follows:

(2.6) Q(y, a1, a2, . . . , ak) =
(

1
T

[ ∫ T

0

y(t)dt +
∑
T>ti

ai

]
, 0 . . . , 0

)

and for (y, a1, a2 . . . , ak) ∈ Z. Let

z = (y1, a1, a2 . . . , ak) = (y, a1, . . . , ak) − Q(y, a1, a2, . . . , ak).

Then z ∈ Im L. Thus, we have

dim (Z \ Im L) = dim ImQ = 1 = dim Ker L,

moreover by the Ascoli-Arzela theorem, L is a Fredholm mapping of
index zero.

3. Main results. In this section, we shall apply Lemma 1 to obtain a
general theorem for the existence of solutions to the problem (1.1) (1.3)
and use the general theorem to get a concrete existence condition of
the same problem.

For any subset G ⊂ R, let

Ω = {x ∈ X|x(t) ∈ G, for all t ∈ J ′, x(ti + 0) ∈ G, i = 1, 2, . . . , k}
Ω

⋂
KerL = {x = c | c ∈ R} := G1.
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Theorem 1. Let the following conditions be satisfied.

(1) Let G ⊂ R be an open bounded subset such that for every
λ ∈ (0, 1), each possible solution x(t) of the auxiliary system

(3.1)

⎧⎨
⎩

x′(t) = λf(t, x(t)) t ∈ J ′

�x(ti) = λIi(x(ti)) i = 1, 2 . . . , k,
x(0) = x(T )

satisfies x(t) /∈ ∂Ω.

(2) h(c) �= 0, for c ∈ ∂G1, deg(h, G1, 0) �= 0 where h is defined by

h(c) =
1
T

[ ∫ T

0

f(t, c) dt +
∑
T>ti

Ii(c)
]
, c ∈ R.

Then the PBVP (1.1) (1.3) has at least one solution x(t) ∈ G, for
t ∈ J .

Proof. By Lemma 2, we know that L is a Fredholm operator of
index zero, and the problem (3.1) can be written as Lx = λNx. Set
Ω = {x ∈ X : x(t) ∈ G, for t ∈ J , x(ti + 0) ∈ G, for i = 1, . . . k}.
Then Ω is open and bounded. To use Lemma 1, we show at first N is
L-compact on Ω.

Defining a projector

P : X −→ Ker L, P (x(t)) = x(0),

then Kp : Im L → KerP ∩ dom L can be written in

(3.2) Kpz =
∫ t

0

y(s) ds +
∑
t>ti

ai.

In fact, we have KpL = I − P ; thus, for any x ∈ dom L, KpLx =
x − x(0), so (3.2)holds.

Again from (2.6) and (3.2), we have

QNx =
(

1
T

[ ∫ T

0

f(s, x(s))ds +
∑
T>ti

Ii(x(ti))
]
, 0 . . . 0

)
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Kp(I − Q)Nx

=
∫ t

0

[
f(s, x(s)) − 1

T

( ∫ T

0

f(τ, x(τ )) dτ +
∑
T>ti

Ii(x(ti))
)]

ds

+
∑
t>ti

Ii(x(ti)).

By using the Ascoli-Arzela theorem, we can prove that QN(Ω) is
bounded and Kp(I − Q)N : Ω → X is compact, thus N is L-compact
on Ω.

At last, we will prove that (i) and (ii) of Lemma 1 are satisfied. Note
that x ∈ ∂Ω, if and only if x(t) ∈ G, for t ∈ J , and either x(s) ∈ ∂G,
for some s ∈ J , or x(ti0 + 0) ∈ ∂G, for some i0 = {1, 2 . . . k}. Then
assumption (i) follows from condition (1).

Let J : Im Q → Ker L; (c, 0 . . . 0) → c be the isomorphism. Then

JQNx =
1
T

[ ∫ T

0

f(s, x(s)) ds +
∑
T>ti

Ii(x(ti))
]
.

Since Ker L = R, Ω∩Ker L = {c ∈ R; c ∈ G}, let JQN = h, in view of
(2), h(c) �= 0, for c /∈ ∂G1, deg (JQN, Ω∩KerL, 0) = deg (h, G, 0) �= 0,
i.e., condition (2) implies (ii) of Lemma 1 and the proof is finished.

Remark 1. Comparing Theorem 1 with Theorem 3.1 in [3], we can
easily see that

(1) In this paper, L is a Fredholm mapping of index zero. However, in
[3], L is asked to be invertible. If a(t) ≡ 0, Theorem 3.1 in [3] requires
m1, . . . , mp �= 1 whereas in Theorem 1 we are interested in the case
m1 = m2 = · · · = mp = 1. So the results obtained are different from
each other.

(2) In [3], the auxiliary system of Theorem 3.1 is

(3.1λ)

⎧⎨
⎩

y′(t) − a(t)y(t) = f(t, y(t), λ) a.e. t ∈ [0, T ]
y(t+k ) = λIk(y(t−k )) + (1 − λ)mky(t−k ) k = 1, 2, . . . , p

y(0) = y(T ).
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Therefore, (3.1)1 is not equivalent to the impulsive periodic problem

(1.2)

⎧⎨
⎩

y′(t) = f(t, y(t)) t �= tk
y(t+k ) = Ik(y(t−k )) k = 1, 2, . . . , p

y(0) = y(T ).

Since the relation between f(t, y(t), 1) and f(t, y(t)) is not confined. In
other words, Theorem 3.1 in [3] has no relation with (1.2).

Theorem 2. Let f : J × R → R be a continuous function and
assume that there exists a constant M > 0 such that

(3.3) xf(t, x) > 0, x(ti)Ii(x(ti)) > 0,

for |x| ≥ M , t ∈ J , i = 1, 2, . . . , k.

Then the PBVP (1.1) (1.3) has at least one solution x(t) ∈ PC[0, T ].

Proof. Suppose x(t) is a solution to PBVP (3.1). We show that
‖x‖ < M , when λ ∈ (0, 1). Otherwise, there is t0 ∈ [0, T ) ∪ {t+i , i =
1, 2, . . . , k} such that ‖x‖ = |x(t0)| = supt∈J |x(t)| ≥ M .

Without loss of generality we suppose that x(t0) ≥ M .

If t0 /∈ {ti, t+i , i = 1, 2, . . . , k} ∪ {0}, then one has

x(t0) = sup
t∈J

x(t) ≥ M, x′(t0) = 0

However, by condition (3.3), x′(t0) = λf(t0, x(t0)) > 0, a contradiction.

If t0 ∈ {ti, i = 1, 2, . . . , k}, say t0 = ti, then Ii(x(ti)) > 0 and hence

x(t+i ) = x(ti) + λIi(x(ti)) > x(ti)

which contradicts the assumption x(ti) = supt∈J |x(t)|.
If t0 ∈ {t+i , i = 1, 2, . . . , k}, say t0 = t+i , then there is σ ∈ (0, ti+1 −

ti), (if i = k, ti+1 is replaced by T ), such that x(t) > M, t ∈ (ti, ti +σ).
Since x′(t) = λf(t, x(t)), t ∈ (ti, ti + σ), x′(t+i ) = λf(ti, x(t+i )) > 0,
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then

x(ti + σ) = x(t+i ) +
∫ ti+σ

ti

x′(s) ds > x(t+i )

which contradicts x(t+i ) = supt∈J |x(t)|.
If t0 = 0, x(0) = supt∈J |x(t)| ≥ M , then x′(0) = λf(0, x(0)) > 0.

So there is a σ > 0 small enough, such that x′(t) > 0, t ∈ (0, σ) which
yields

x(σ) = x(0) +
∫ σ

0

x′(s) ds > x(0),

a contradiction.

So ‖x‖X < M holds for all cases. Let Ω = {x ∈ X| ‖x‖X < M + 1}.
We have x /∈ ∂Ω.

By the proof of Theorem 1, we know that h(c) = JQNc

h(c) = 0 ⇐⇒ JQNc = 0 ⇐⇒ QNc = 0 ⇐⇒ Nc ∈ Im L

one has x = c, |c| < M + 1. When c = M + 1 or c = −(M + 1) by
condition (3.3), it holds that

sgn c ·
[ ∫ T

0

f(τ, c) dτ +
∑
T>ti

Ii(c)
]

> 0,

c ∈ ∂G1 = {−M − 1, M + 1}.
Obviously

sgn c · h(c) = sgn c · 1
T

·
[ ∫ T

0

f(τ, c) dτ +
∑
T>ti

Ii(c)
]

> 0

for c ∈ ∂G1 = {−M − 1, M + 1}. Then

deg {JQN, G1, 0} = deg {h, (−M − 1, M + 1), 0} = 1

the conditions of Theorem 1 are satisfied, the proof of Theorem 2 is
completed.

Remark 2. Theorem 2 is not included in Theorem 3.1 in [3] because
M and −M cannot serve as the lower and upper solutions for (1.2).



76 G. CAI, Z. DU AND W. GE

For example, if α(t) ≡ M is a lower solution for (1.2), it must hold
that

0 ≤ f(t, M), M ≤ Ik(M).

However, in our theorem, Ik(M) ≥ M is not required but Ik(x) > 0 for
x ≥ M.

Finally, we present an example to check our result.

Example. Consider the boundary value problem

(3.4)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x′(t) = x(t)[t2 + 2 − sin x(t)] + sin(x(t) + 1)
t ∈ [0, T ], t �= 1/3

�x(1/3) = x(1/3)[4 − cos x(1/3)] − 1/3 sin x(1/3)
t = 1/3

x(0) = x(T )

where f(t, x) = x(t)[t2 + 2 − sin x(t)] + sin(x(t) + 1), I(x) = x(t)×
[4 − cos x(t)] − t sin x(t).

In this example, we note that tk = 1/3, k = 1.

We choose a constant M > 0 large enough. When |x| ≥ M, obviously

x · f(t, x) = x2(t)[t2 + 2 − sin x(t)] + x(t)[sin(x(t) + 1)] > 0

x · I(x) = x2(t)[4 − cos x(t)] − tx(t) sinx(t) > 0

that is to say, the condition of Theorem 2 is satisfied. The BVP (3.4)
has at least one solution.
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